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1. Introduction. A balanced incomplete block design (BIBD) B[k, \;v] 
is an arrangement of v distinct elements into blocks each containing exactly k 
distinct elements such that each pair of elements occurs together in exactly X 
blocks. 

The following is a well-known theorem [5, p. 248]. 

THEOREM 1. A necessary condition for the existence of a BIBD B[k, X',v] 
is that 

(1) \(v - 1) =s 0 (mod(& - 1)) and Xv(v - 1) = 0 (mod k(k - 1)). 

I t is also well known [5] that condition (1) is not sufficient for the existence 
oîB[k,\;v]. 

There is an old conjecture that for any given k and X condition (1) may be 
sufficient for the existence of a BIBD B[k, X; v] if v is sufficiently large. I t is 
attempted here to prove this conjecture in some specific cases. 

2. Auxiliary lemmas. Let q = pv, where p is an odd prime and v a positive 
integer. By [3, p. 248] there exists afield GF(g) of q elements and an element 
x 6 GF (q) called a generator of GF (g) such that 

{xs: s = 0, 1, . . . , q - 2} \J {0} = GF(q). 

Consider the differences {xy — 1: y = 1, 2, . . . , q — 2}. Each of them is some 
power 0(7) of x. The number of values of 7 such that 7 = j (mod 2) and 
0(7) = i (mod 2) will be denoted by M(i,j), i,j = 0, 1. 

LEMMA 1. Let qbea power of an odd prime. If q = 3 (mod 4), then M(0, 0) = 
M{1, 0) = (q - 3) /4; if q = 1 (mod 4), then ikf(0, 0) = (q - 5)/4 and 
M(h 0) = (2 - l ) /4 . 

Proof [11]. Let x be a generator of GF(g). The differences 

{xy - 1: 7 = 1, 2, . . . ,q - 2} 

produce all the powers of x with the exception of — 1 = #(ff~1)/2. Therefore 

M(0, 0) + M(0, 1) = (q - l ) / 2 , M(l, 0) + ikf (1, 1) 

(2) = (q - 3)/2 for q = 3 (mod 4) ; 

M(0, 0) + M(0, 1) = (s - 3)/2, Af(l, 0) + M( l , 1) 
= (q - l ) / 2 f o r g ^ 1 (mod 4). 
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Let a be an integer (1 ^ a ^ (g - 3)/2) such that 

(3) x2<* - 1 = x 2 ^ 1 

for some 0 (0 ̂  0 ^ (g - 3)/2). Multiplying (3) by ar2*"1 we obtain 
x2(a-^)-i _ i = x-2^-i which shows that M (I, 1) = Af (1, 0). From (2) follows 
MQ, 0) = (g - 3)/4 for g = 3 (mod 4) and Af(l, 0) = (g - l ) / 4 for 
g = l (mod 4). On the other hand, it is clear that M(0, 0) + M( l , 0) = 
(g — 3)/2, which proves the lemma. 

LEMMA 2. Let qbe a power of an odd prime and let x be a generator of GF(g). 
The differences of the elements 0, 1, 1, x2, x2, x4, x4, x6, x6, . . . , xff-3, xff~~3 are; 
(g — l ) / 2 times the element 0 awo7 q — 1 tames eacA o>/ £Ae elements 

(A\ 1 r r 2 r(ff-3)/2 
I T : y l j vVj ^ j • • • ^ «v . 

Proof. Clearly, the difference 0 occurs (q — l ) / 2 times. Further, for 
g = 3 (mod 4), each of the differences 

(5) |(x2« - l)x2*|, a = 1, 2, . . . , (g - 3)/4, 0 = 0, 1, . . . , (g - 3)/2, 

occurs four times and each of the differences 

(6) |**|, 0 = 0, 1, . . . , ( g - 3)/2, 

occurs twice. The differences (5) produce (g — 3)/4 times each of the elements 
(4) and the differences (6) produce these elements once each. Accordingly, 
every element of (4) occurs as difference 4(g — 3)/4 + 2 • 1 = g — 1 times. 

Let g = 1 (mod 4). Considering that |x(2~1)/2| = 1, each of the differences 

(7) |(x2? - l)x25 |, 7 = 1, 2, . . . , (g - 3)/2, Ô = 0, 1, . . . , (g - 5)/4, 

occurs four times as well as each of the differences 

(8) |x25|, Ô = 0, 1, . . . , ( g - 5 ) / 4 . 

By Lemma 1, the differences (7) produce (g — 5)/4 times the even powers of 
x and (g — l ) / 4 times the odd powers of x. The differences (8) produce once 
the even powers of x. Accordingly, each element of (4) occurs as difference 
q — 1 times. 

LEMMA 3. Let q = 3 (mod 4) be a power of a prime and let x be a generator of 
GF(g). The differences of the elements 0, 0 ,1 , 1, x2, x2, x4, x4, x6, x 6 , . . . . , xQ~8

fx
Q~* 

are: (g + l ) / 2 times the element 0 and g + 1 times each of the elements 

(Q\ 1 X X2
 Y(ff-3)/2 

Proof. Clearly the difference 0 occurs (g + l ) / 2 times. Further, each of the 
differences (5) and (6) occurs four times and the proof continues on the same 
lines as that of Lemma 2. 
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3. Orthogonal Latin squares. A Latin square of order n (n ^ 2) is an 
arrangement of n distinct elements in an n X n matrix in such way that in 
each row and in each column every element occurs exactly once and in the 
whole matrix every element occurs exactly n times. 

Two Latin squares are said to be orthogonal if for every element a of one 
square and every element b of the other one there exists exactly one pair of 
integers i, j such that in the ith row and jth column of the first square is the 
element a and in the same place in the second square is the element b.r (r ^ 2) 
Latin squares are said to be mutually orthogonal if any two of them are 
orthogonal. 

Let N(n) denote the maximal number of mutually orthogonal Latin squares 
of order n. Chowla, Erdôs, and Straus proved [4] that N(n) tends to infinity 
with n\ in other words we state the following result. 

THEOREM 2. For every positive integer r there exists nr such that N(n) ^ r 
for every n > nr. 

Let nr be the smallest integer satisfying Theorem 2. The best known esti
mates for nr are the following. 

THEOREM 3. (i) [10]. For every r ^ 2, nT < cr42, where c is some constant, 
(ii) [ 9 ; 1 ; 2 ] . * 2 = 6. 
(hi) [8]. nz ^ 51, n5 ^ 62, n29 ^ 34,115,553. 
We may also assume that no = 0, n± — 1. 

Let a rectangular n X m array A of mn elements in n rows and m columns 
be given. We denote by a group divisible design GD[&, \ ; w X t w ] a n arrange
ment of the elements of A into blocks each containing exactly k elements such 
that each pair of elements of distinct columns occurs together in exactly X 
blocks, while no pair of elements of the same column occurs together in any 
block. 

By a doubly group divisible design DGD[&, X; n X m] we denote an arrange
ment of the elements of A into blocks of exactly k elements each such that 
each pair of elements of distinct columns and rows occurs together in exactly 
X blocks, while no pair of elements of the same column or the same row occurs 
together in any block. 

The existence of a group divisible design GD[&, \\n X k] is equivalent to 
the existence of k — 2 mutually orthogonal Latin squares of order n. To show 
this we note that the blocks of GD[&, 1; n X k] are of the form 

{ ( a i ; l ) , ( a 2 ; 2 ) , . . . , (a*;*)}, 

where (a*; i), i — 1, 2, . . . , k, is the element of intersection of the a^th row 
and ith column in A, and each such block states that on the intersection of the 
afc_ith row and akth column of the j th Latin square comes the element (a ;; j ) , 
j = 1, 2, . . . , k - 2. 

Let a group divisible design GD [k,l\nXk] be given. Delete the &th column. 
The blocks which contained any fixed element of the &th column are now dis-
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joint and on the other hand they contain all the remaining elements of A. 
Without loss of generality we may assume that one such family of blocks 
coincides with the (truncated) rows of A. Delete those blocks (but not their 
elements). The remaining blocks form a doubly group divisible design 
DGD[& — 1; n X (k — 1)]. By Theorem 2 we have the following result. 

THEOREM 4. If k is a positive integer and v > nk-i, then there exists a doubly 
group divisible design DGD[&, 1; v X k]. 

4. Balanced incomplete block designs. Let DGD[&, 1 ; v X k] be given. 
Denote by (j; i ) , j = 1, 2, . . . ,v, i = 1, 2, . . . , k, the element of intersection 
of the j th row and the ith. column in the corresponding array A. The blocks of 
the DGD[&, 1; v X k] have the shape {(a^i): i = 1, 2, . . . , k], where 
a* £ {1, 2, . . . , v) for i = 1, 2, . . . , k and at ^ ah for i ^ h. We form a con
figuration C of elements and blocks, taking as elements of C the rows of A, 
and for every block b of DGD[&, 1; v X k] forming a block of C consisting of 
the rows of A which intersect b. Clearly C is a BIBD B[k, k(k — l);v] and the 
following result follows from Theorem 4. 

THEOREM 5. If k is a positive integer and v > 7^-1, then there exists a BIBD, 
B[k,k(k - l);v]. 

Let DGD[&, 1 ; v X k] be given, where k is a power of an odd prime. Consider 
a set E of kv + e elements, where e = 0 or 1. Denote the elements of E by 
(j, g7), j = 1, 2, . . . , v, y = 1, 2, . . . , k, where gy are distinct elements of 
GF(fe). In the case that e = 1, denote the additional element by (00). For 
every block {(au i): i = 1, 2, . . . , k} of DGD[&, 1; v X k] form on the set E 
the blocks 

{(augy), (ai9xWW-» + gy):i= 2 , 3 , . . . , * } , 7 = 1, 2, . . . , *, 

where x is a generator of GF(q). By Lemma 2, every pair of elements of E, 
{(j>gy)> (̂ >&s)} with h 9e j occurs together in exactly k — 1 blocks. Form 
additional blocks on E as follows: if e = 0, form the blocks 

{(j,gy):y = 1 , 2 , . . . , * } , j = 1,2, ...,v, 

k — 1 times each; if e = 1, form on each of the sets 

{(00), 0'. £r): 7 = 1,2, . . . , * } , j = 1, 2, . . . , w , 

all the k + 1 possible fe-tuples. The constructed blocks on E form clearly a 
BIBD B[k, k — l;kv + e] and by Theorem 4 we have the following result. 

THEOREM 6. If k is a power of an odd prime and if v > knk-X + 1 satisfies 
v == 0 or 1 (mod k), then there exists a BIBD, B[k, k — 1; v]. 

Let DGD[&, 1; v X k] be given, where £ — 1 = 3 (mod 4) is a power of a 
prime. Consider a set £ of (k — l)z/ + 1 elements, which we denote by (00 ) 
and (j, gy),j = 1, 2 , . . . , z;, 7 = 1, 2 , . . . , & — 1, where gy are distinct elements 
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olGF(k - 1). For every block {(at; i): i = 1, 2, . . . , k) of DGD[&, l;vX k], 
form on the set E the blocks 

{(ai, fo), K gy), (a» **«</']-» + fo): * = 2, 3, . . . , k - 1}, 

7 = 1, 2, . . . , k — 1, where x is a generator of GF(& — 1). By Lemma 3, 
every pair of elements of E, {(j, gy), (h, go)} with h =̂  j , occurs together in 
exactly k blocks. Form additional blocks on E, namely 

{(oo), (j,gy):y= 1 , 2 , . . . , * - 1}, 

j = 1, 2, . . . , v, k times each. The constructed blocks on E form clearly a 
BIBD, B[k, k; (k — l)v + 1] and by Theorem 4 we have the following result. 

THEOREM 7. If k = 0 (mod 4) and k — 1 is a power of a prime and if 
v > (k — l)nk-i + 1 satisfies v = 1 (mod k — 1), /Aew JAere awfo a BIBD, 
B[k,k;v]. 

I t should be mentioned that for k ^ 5, Theorems 5, 6, and 7 are correct 
without the restriction that v must be sufficiently large [6; 7]. 

Putting together Theorems 5, 6, 7 with Theorem 1 we obtain the following 
result. 

THEOREM 8. Condition (1) is necessary and sufficient for the existence of a 
BIBD, B[k,\;v], if v is sufficiently large and 

(i) if\ = k(k - 1), or 
(ii) if k is a power of an odd prime and X = k — 1, or 

(iii) if k — 1 = 3 (mod 4) is a power of a prime and X = k. 
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