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ON THE PROJECTIVE TENSOR PRODUCT OF FRECHET
SPACES
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We are concerned with the following problem. Let F be a Frechet Montel space and let £ be a Frechet space
with a certain property (P). When does it follow that the complete projective tensor product F ® E has the
property (P)l (We consider the following properties: being Montel, reflexive, satisfying the density condition.)
In this paper we provide a positive answer if F is a Montel generalized Dubinsky sequence space with
decreasing steps.

1980 Mathematics subject classification (1985 Revision): 46M05, 46A14.

It is well known that the projective tensor product of two Frechet spaces £ and F
rarely inherits the good properties of both £ and F, e.g., I2 ® I2 is not reflexive and its
projective tensor basis is neither unconditional nor shrinking (cf. [10, 13 and 21]). More
recently, in [23], Taskinen constructed a Frechet Montel space F such that F ® F is not
Montel (even more, it is not reflexive). In [25] Taskinen shows that F can be chosen in
such a way that F ® F is not even distinguished. So it seems interesting to find wide
classes of Frechet spaces having a "good" behaviour with respect to the formation of
projective tensor products. In this paper, we introduce a class Q of Frechet sequence
spaces containing the Kothe echelon spaces Xp ( lgp<oo, or p = 0 and all Montel
Dubinsky generalized echelon spaces with decreasing steps. It also contains the sequence
spaces considered by Taskinen in his thesis to give positive answers to the problem of
topologies of Grothendieck. We show that given a Montel space X in il and a Frechet
space E with a certain property (P), then X ® E has property (P). We consider the
following properties (P): being Montel, reflexive, satisfying the density condition (cf. [1]),
not containing I1 (resp. c0), having a shrinking (resp. boundedly complete) basis. New
examples of Frechet-Montel sequence spaces X in Q and Frechet spaces E such that
Lb(X, £') is not (gDF) are also given (see [4]).

In Section 1 we introduce the class Cl and characterize the Montel spaces in this class.
Section 2 is devoted to the technical preliminaries. The main results are derived in
Section 3. In the Appendix we include some results which are needed in Section 3.

Our notation is standard. Given Frechet spaces £ and F, we denote by Lb(E,F') the
space of all linear continuous maps from E into F , provided with the topology of
uniform convergence on all bounded subsets of E. The space Lb(E, U), where U is the
field of real numbers, is denoted by £'. £ ® F and £ ® F denote the projective tensor
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product of E and F, and its completion respectively. The topology of a Frechet space E
is always assumed to be generated by an increasing fundamental system of seminorms
(f.s.s.), i.e. (pt)leM. with pk^pk + l (keN). We denote by e, the canonical ith unit vector in
co. We write e\ to mean that e{ belongs to the dual of a sequence space. For other
unexplained notation in the paper we refer to [14], [15] and [19].

1. On certain sequence spaces

We deal with the class Q of those Frechet sequence spaces X for which {et)ieN

constitutes an unconditional basis and whose topology is generated by a f.s.s. (pk)keN

satisfying the following condition (see [22,3. p. 8]).

(cQ) For every k,teN (k<i) there is a constant Mkt>0 so that, given Acfri and given
CeU+ such that pt(e,)^Cp,(e,) (isA), then pk(x)^CMktpt(x) for all X6sp{e,;i6/1}.

We may assume without loss of generality that the seminorms are monotone in the
lattice structure induced by the unconditional basis (e,)i6N (i.e., given (x,) and (>\)eA
with |x(|^|>>j| O'eM), pMxi))^pk((yi)), (keN)). Indeed, if not, we take the seminorms

qk((x,))=$up{pk{(yi));\(y,)\£\{xl)\}

(see [26,1.15]), and the f.s.s. (qk)ke\ also satisfies condition (cQ).
Examples of Frechet spaces in fl are Dubinsky's sequence spaces X = f}keN{\/ak)Xk,

with decreasing stepspaces (i.e. Xk+1czXk, keN) such that the coordinate vectors (ei)ieN

are an unconditional basis and the a-dual X* coincides with I' (both conditions are
satisfied if X is Montel) (cf. [9], see also [18, p. 166]). In particular, the Kothe echelon
spaces Xp, l ^ p < o o , or p = 0, belong to £1 The class of Frechet sequence spaces
considered by Taskinen in [22,3] is also (strictly) included in £1

Given a sequence space XeCl with seminorms (pk)keN we put ank: = pk(en),n,keN. The
matrix (ank)nkeN is said to be strongly increasing if there is no infinite subsequence J of
f̂J and k0 such that the sequence (aJko)jeJ dominates each sequence (aJk)jej (i.e., there
does not exist a sequence {Mk)k of positive numbers such that aJk ̂  Mkajko, for all ; e J,
fcelM).

The next proposition characterizes the Montel spaces in Q and will be needed in the
sequel.

Proposition 1.1. Let k be in Q. The following conditions are equivalent.

(i) X is Montel.

(ii) The matrix (ank)nJcex is strongly increasing.

Proof. (i)=>(ii) If there is a sequence JczN and koeN such that (aJko)JeJ dominates
every [aJk)jeJ, then the sequence (ej/ajko)jeJ is weakly convergent to 0 but does not
converge in the topology of X, contradicting (i).
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(ii) => (i) We omit the proof of this implication which is very similar to the one of
[15,1.30.9] (see also [9,2.5]). It can also be derived from our Lemma 2.1 below. •

2. Technical preparations

We first introduce further notation and some remarks. Given a sequence (x,)ieNea>.
and given DcN, SD(xj) stands for the sequence (x;)I£N defined by x, .=x, if ieD, and
x,:=0 otherwise. Given AeQ and D<=N, then SD defines a continuous linear projection
from A onto the sectional subspace AD={SD(x);xeA}.

Given AeQ and a Frechet space E, then e\ will be identified with a continuous linear
mapping from A <§) E into E in the following way:

xh®wh\:= £ e'iixh)wJ = £ xihwh\, where xh = (xj7l) = £ xjhe}, (heN).
l / h=l \ h=\ 1 j=l

We also recall that any element / e (I <§> £)' can be considered as a continuous linear
mapping from A into E', as follows: given x e A, we define /(x): E -» R by y H-» <X (g) _v, /> .
With these identifications, given z = ££L j (xjA) ® wh e A ® £, /e(A<g)£)', and ie^J, we
can write <ej(z), /(e,)> as meaning ^"= i ^,/,<wA, /(e,-)>=E"= i x*<ei ® w/.' />•

The next result is the key to the remainder of the paper.

Lemma 2.1. Let A be a sequence space in Q, with (ank)nkQX strongly increasing, and let
E be a Frechet space. Let (za)a6/( and (/tI)liex be bounded nets in A ® £ and (A®£)'
respectively, so that

Km <ej(za),/.(*,)> = (), VieN.
a

Then

Proof. If the assertion were not true, there would be e > 0 and a subnet of A
(denoted by A again) such that | (za , / a> |>£ (a6A). Let us choose representations
za = YJL I Wji) ® Wj (<xeA). Then, we can write our hypothesis and the inequality above
as follows:

lim <ej(z.),/.(*,)> = Hm I x^w],/,(e,)> =0, Vie N (1)
a a j = 1

and

co / oo

I ( I^<wJ,/.(e,)> >e,
, i = i
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From this inequality,for every aeA and neW there are hx,mx>n such that

ha mix

Z Z *&<*?,/„(*.)> >6, VaeA. (2)

From now on we fix f.s.s. (pk)ksN and (qk)keN in X and E respectively. We divide the
proof into three steps.

1. There are sequences (<x(r))reN in A, and (h(r))reN, (m(r))reN in N, with (m(r))reN

strictly increasing, such that for every r e N one has

h(r)

Z Z <»<Wf»
j = 1 > = m(r) + 1

>e

and

(Pr I g 1.

(3)

(3')

Indeed, the result follows by (1) and (2) and by using a "sliding hump" argument. The
details are left to the reader.

2. We put zr: = YJ}t\(x$r)) ® wfr). By (3'), the sequence (zr)reN is bounded, whence,
for every keN, we can choose representations zr = Yj:(x'j) ® wjk such that
YjPk((x^j))ik(wrjk)<Tk, f°r s o m e TkeU+ not depending on r. The net (fx)xeA is bounded,
so there is /coeN such that \<.z,fx}\S(pko®qko)(

z)> f°r a " Z G ^ ® £ - We then take
scalars dkeU+, k^k0, such that Zk°=ko^ot/^= V2, where Mtot are the constants in
(cQ), and, for every k,se N, we set

and aik>(Tkdk/e)aiko}.

We now assert that, given k^k0, seN, and DcTks, we get

(p*o®4j(SD®l£(2r))<eMkotA4, VreM.

In fact, by the monotony of the seminorms (pk)eN and by (cCl), we have

Tk

(4)

l£(zr)).
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3. For each seM, there is a natural number is, with m(s) + l^is^m(s + 1) and such
that i^T^, for all k^k0.

If not, there would be klt...,k,^k0 such that {i;m(s) + \ ^i^m(s + l)} = (JS=i TkiS =
\J'i=iDk.s, where the sets DkiS are pairwise disjoint and DkiSczTkjS, lg iSj t . Then, by (3)
and (4) one would have

e/2< Z Z x?f<wf ,/a(s)(e,.)
.7=1 i = m(s)+l

Z I Z ^W.-Wfo)

^ Z zs))S Z eMk0Jdkn<e/2.
n = l

This contradiction establishes our assertion 3. Hence we can take a subsequence (is)seN

such that (aisko)seN dominates each (aUk)seN contradicting the fact that (ank)ntkeN is
strongly increasing. •

As a first consequence we obtain the following proposition from which we shall derive
most of the main results.

Proposition 2.2. Let k be a Montel space in fl, let E be a Frechet space and let (za)liey,
and (fx)aeA be bounded nets in A® E and (A(§) E)' respectively. Then:

(a) (za)aeA (resp. (fx)aeA) converges to 0 whenever (e'i(za))xeA (resp. (/a(ej))ae J converges
to Ofor every ieN;

(b) (zXeA converges weakly to 0 {resp. (/a)ae/4 is weak*-convergent to 0) if(e'i{zx))asA

converges weakly to 0 (resp. (fJ,ei))a:£A is weak*-convergent to 0),for all ieM;

(c) (za)xeA (resp. (fx)aeA) is Cauchy whenever (e\(zx))xeA (resp. (/a(c,))ae/4) is Cauchyjor
all ieM. The same holds in the weak (resp. weak*-) topology.

Proof, (a) Take (zx)xeA bounded in A® £ and so that (e'i(za))xeA converges to 0 in £
(ieN). Let us see that (zx)xeA converges to 0. To this end we take (fa)aeA bounded in
(A<§) £)' and we show that (<za,/ t t»ae/4 converges to 0. Indeed, for every ieN,
is bounded in £', whence
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lim (sup | <C;.(z J, /,(e,)> | ) = 0, Vi € JV.

Thus, in particular, lima<e}(z<,),/a(eI-)> = 0, (ieM). We now apply Lemma 2.1.
The proof of the dual case is analogous.
(b) Assume now that (ej(za))a6i4 is a(E,£')-convergent to 0, for every ieN. Take any

fe(X<g>E)', and set / a : = / , (a e A). Then

lim «.(z J , /.(*,)> = lim <e;(z.), /(«,)> = 0, V ie N;

thus, l ima<za,/> = 0 by applying Lemma 2.1, and the assertion follows.
The dual case is similar,
(c) is readily checked using (a) and (b). •

3. Main results

Taskinen ([23]) gave an example of a Frechet Montel space F such that F ® F is not
Montel (even more, it is not reflexive). On the other hand, there are examples of pairs of
Frechet spaces £ and F such that E ® F is Montel (see [3, Corollary (1)], [18] and [23,
3.3]). Our theorem below extends these results, and it also improves [3, Corollary (2)]
and [18, Theorem 4, (2)].

Theorem 3.1. Let X be a Montel space in il and let E be a Frechet space with a
certain property (P). Then X ® E has the property (P) whenever (P) is:

(i) the Montel property,

(ii) non-containment of I1 {resp. c0),

(iii) reflexivity,

(iv) having a shrinking (re$p- boundedly complete) basis.

Proof, (i) X ® E is separable so we must only show that strongly convergent and
weak*-convergent sequences coincide in (X ® £)'. To do this, take a weak*-null sequence
( /J , £ N in (X® £)'. One readily checks that (/„(£,-))„eN O'eN) is weak*-null in £', hence it
is strongly convergent to 0 since £ is Montel. We now apply Proposition 2.2(a).

(ii) First assume that £ contains no copy of I1 and let (zn)neN be a bounded sequence
in X® E. We are done if we show that (zn)n6N has a weak Cauchy subsequence (see
Proposition A.I in our Appendix). Indeed, (e'lzn))neN is bounded in £, whence it has a
weak Cauchy subsequence, for all ieN. Then, by using induction and a diagonal
procedure, we find a subsequence of (zn)neN, say (znj)jeN, such that (e|(znj))JeN is weak
Cauchy for every ieN. Thus (zn.)jeN is weak Cauchy by Proposition 2.2(c).

The proof of the co-case can be checked by the reader in a similar way by using
Proposition A.2.
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(iii) According to (ii), no subspace of A® £ is isomorphic either to c0 or to I1. Thus,
A (§) £ is weakly sequentially complete by Lemma A.4 and Theorem A.5, whence it is
reflexive by Proposition A.I.

(iv) Let (xn)neN be a basis (by a basis we always mean a Schauder basis here) in £.
Let us recall that (e,® xJ)®(iiJ)=1 is a Schauder basis of A® £, where <D(i, j) denotes the
upper rectangular ordering of N x N (i.e., <D(1,1) = 1, 0>(l,2) = 2, 0(2,2) = 3,...). As a
consequence, (e|® Xj)£(1>J)=1 is a basis of (A®£)' in the weak*-topology, where (Xj)jeN

are the associated coefficient functionals. Now let us assume that {xn)neN is shrinking
(see [14,14] for the definitions). Take any / e ( A ® £ ) ' and let (cy)i.j6N be t n e matrix
associated with / (i.e., cij: = / ( e ; ® x,), i,jeM). We set /n: = X3,(,,.,)=iCi/;® x}. The
sequence ( / — /Jn eN is weak*-null, hence bounded. Furthermore, since (x'j)JeN is a basis
in £', it follows that ( / — fn(e())neN is strongly convergent to 0 (ief^J). Thus, ( / — /B)B6N is
strongly convergent to 0 by Proposition 2.2(a). Consequently (e\ ® x})^(j}) = x is a basis
in (A ® £)'.

Let (xn)neN now be a boundedly complete basis in £. Take a bounded sequence
zn=Z»(".j) = i a i j c i® */> «6^> and let us see that it is Cauchy. Indeed, for any ieN, we
set Fim: = {j;<t>(i,j)£m}. Then, (e;(zB))n6N (=CZjeFin^jXj)neN) is bounded in £, hence
ĴLjOtfyXj- converges in £, so (ej(zn))neN converges. The index i is arbitrary, whence

(zn)neN is Cauchy by Proposition 2.2(c). D

We finish this section with a further result related to the problem of topologies of
Grothendieck. Given two Frechet spaces £ and F, the projective tensor product £ ® F
is said to have the property (BB) (cf. [22]) whenever every bounded set B of £ ® F is
contained in a set T(K ® L) for some bounded sets K in £ and L in £. The problem of
whether £ ® F has property (BB) for arbitrary Frechet spaces is called the problem of
topologies of Grothendieck and it was recently solved, in the negative, by Taskinen (see
[22,23,24]). We recall that (£ ® F)' and Lb(E, F ) can be (algebraically) identified in a
canonical way as follows: I:Lb(E,F') ^ ( £ ® £)', (X , -*® y,,/(/)>: = £ ,< t t ,/(*«)>,
(feLb(E,F')). I is open and it makes the families of bounded sets correspond to each other.
Moreover, / is continuous if and only if £ ® F has property (BB) (see [8,3.4]). Our next
result should be compared with [8,3.5] and [3, Lemma 3].

Proposition 3.2 Let I be a Montel space in Cl and let E be a Frechet space. The
canonical mapping I: Lb(X, £') -> (A ® £)' is an isomorphism when restricted to the bounded
sets. In particular, X ® £ has property (BB) whenever Lb(X, £') is a gDF-space.

Proof. We must only show that / is continuous when restricted to the bounded sets.
Thus, take a bounded net (fa)xeA in Lb(l,E'), convergent to 0. Then (I(fa))xeA is
bounded in (A®£)'. Moreover, one can easily check that (/(/a)(e1))0,ey4( = (/a,(e,))(t6/4)
converges strongly to 0 in £', for all ieN. The conclusion follows from Proposition
2.2(a). •

Remarks, (a) A Frechet space £ is said to be an FBB-space if £ ® F has property
(BB) for each Frechet space F. By the work of Taskinen (cf. [24]), we know that an
FBB-space must be a 7i-space (see [12] for the definition). We also know that a non-
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nuclear, Kothe echelon space A", with l<p^oo or p = 0, is not a 7i-space (see [12,1.5]
and [20,29.7.6]). Consequently, by using Proposition 3.2, we get new counterexamples
to an old open problem which was solved by Taskinen resp. Bonet-Galbis (compare
with the examples in [4]). Namely, we have: Let A" (1 <p^oo) be a Montel, non-nuclear
Kothe echelon space. Then, there is a Frechet space E such that Lb(A

p,E') is not a
(gDF)-space. By [22,3.1] and by our Theorem 3.1, the Frechet space E in the statement
above can be neither normable nor Montel. Furthermore, the space E that we know is
the one constructed by Taskinen in [24,3.2.4], which is non-distinguished according to
the results of Bonet and Dierolf (cf. [5]), but can even be taken to be reflexive by
reformulating the construction (see the forthcoming article by Defant, Floret and
Taskinen).

(b) Let us recall that a Frechet space E has the density condition if and only if the
bounded sets in E' are metrizable (cf. [1]). It follows from [2,6] that Lb(E, F') has a
fundamental sequence of bounded sets which are metrizable whenever E and F are
Frechet spaces with the density condition. From this and the first part of Proposition
3.2, we get: Let X be a Montel space in Q and let E be a Frechet space satisfying the
density condition. Then "A ® E satisfies the density condition.

Appendix

The following propositions generalize, from Banach to Frechet spaces, well known
results. The first one was proved in [7]. The second one is an extension of [16,2.e.4]
and can be readily checked by the reader.

Proposition A.I. A bounded sequence in a Frechet space either has a weak-Cauchy
subsequence or a subsequence which is a basic sequence equivalent to the unit vector basis
ofl\

As a consequence, c. weakly sequentially complete Frechet space is reflexive if and only
if it contains no copy of I1.

Proposition A.2. A Frechet space E contains a copy of c0 if and only if there is a
sequence (zn)n£N in E such that £"=i |<zn,x'>|<oo for every x'eE', the set
{YJ= I zp n e ^ } ' s bounded and £™=, zn diverges.

An (unconditional) Schauder decomposition of a Frechet space £ is a sequence of
continuous projections {Qk)ke\, Qk:E->E, such that QjQk = SjkQk

 a n d Zk°= i 6*(z) = z for
all zeE, where the series converges unconditionally. The decomposition is said to be
boundedly complete if a series £"=iz t converges whenever zkeQk(E) (keN) and
(Ej=i ZJ> ne ^ ) i s bounded.

Remark. If (Qn)neN is an unconditional decomposition in a Frechet space E, and we
denote by A the set of all scalar sequences 8 such that |^n| = 1 (nel^l) then the family of
operators {Y.JBM^JQJ'< <5eA, M c N ) is equicontinuous (the proof is similar to that of
[14,14.7.31]; also see [26]).

The next two lemmata are easy extensions of [11], Lemma 1 and Lemma 2
respectively:
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Lemma A.3. Let E be a Frechet space and (Qk)keN
 an unconditional decomposition on

E. A weak Cauchy sequence (zn)neN in E is weakly convergent to zoeE if and only if
(.Qk(zn))ne\ converges weakly to Qk(z0)for every keN.

Lemma A.4. Let E and F be Frechet spaces such that E has an unconditional basis
(xJneN- Then, the sequence (Qk)k£\ of canonical projections, Qk:E® F -* {xk} ® F, is an
unconditional decomposition of E® F.

Theorem A.5. Let E be a Frechet space with an unconditional decomposition (Qk)keN

such that Qk(E) is weakly sequentially complete (keN). Then, the following are equivalent:

(a) the decomposition is boundedly complete,
(b) E is weakly sequentially complete,
(c) E contains no copy of c0.

Proof. (a)=>(b) Let (yn)neN be a weak Cauchy sequence in E. Then, for every
(Qk(}>n))neN is weak Cauchy in Qk(E), so weakly convergent to some zkeQk(E). Now,
{^"=1Zj-; neN} is bounded (see the Remark); hence the series X"=i z " converges. By
Lemma A.3 it follows that (yn)ne\ converges to X^°=i zn-
(b) => (c) is known. So it remains to show that (c) implies (a). Indeed, assume that there

are elements zneQn(E) (neN) so that {Yj=izjl J£^} is bounded but Yj=izj diverges.
Given any x'eE', we take a sequence of scalars (<5n)n such that |<zfc,x'>| = 5k<zk,x'>
(keN). The set {£"=i 8jZj,neN} is bounded, whence £j°=1 |<2_,,x'>|=J>=1 5J<zJ-,x'><
oo. Since x' is arbitrary we apply Proposition A.2 to get a subspace of E isomorphic to
c0, contradicting (c). Q

Note. M. A. Minarro and the first-named author have recently proved that Theorem
3.1 remains true if the property (P) is that of being distinguished (see Doga, Tr. J. Math.
14 (1990), 191-208).
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