A NEW PROOF OF THE d-CONNECTEDNESS OF d-POLYTOPES

BY
A. BRØNDSTED AND G. MAXWELL

Abstract

Balinski has shown that the graph of a d-polytope is d connected. In this note we give a new proof of Balinski's theorem.

A fundamental result in the theory of convex polytopes is the following theorem of M. Balinski [1]:

Theorem. The graph $\mathcal{G}(P)$ of a d-polytope P is d-connected.
Here a d-polytope is a convex polytope P in \mathbf{R}^{n} whose affine hull aff P has dimension d. The graph $\mathcal{G}(P)$ is the graph whose vertices are the vertices of P and whose edges are the edges of P. A graph \mathcal{G} is d-connected provided that is has at least $d+1$ vertices and the removal of as many as $d-1$ vertices (and the edges incident to a removed vertex) does not destroy connectedness. For background information on convex polytopes, including Balinski's theorem, the reader may consult A. Brøndsted [2] and B. Grünbaum [3].

The proofs of Balinski's theorem in [2] and [3] are variants of Balinski's original proof. The aim of this note is to present a new proof based on a different idea.

We need a little terminology. Let P be a d-polytope. Identifying aff P with \mathbf{R}^{d}, we may assume that P lies in \mathbf{R}^{d}. For any facet, i.e. $(d-1)$-dimensional face, F of P we denote by $K(F)$ the closed supporting halfspace of P bounded by the hyperplane aff F. It is a standard fact that

$$
\begin{equation*}
P=\bigcap\left\{K(F) \mid F \in \mathcal{F}_{d-1}(P)\right\} \tag{1}
\end{equation*}
$$

where $\mathcal{F}_{d-1}(P)$ denotes the set of facets of P, see e.g. [2, Corollary 9.6].
For any vertex v of P we denote by $C(P, v)$ the intersection of all closed halfspaces $K(F)$ such that F is a facet of P and v is a vertex of F. It is trivial that

$$
\begin{equation*}
P \subseteq C(P, v) \subseteq K(F) \tag{2}
\end{equation*}
$$

for all facets F of P and all vertices v of F. Combining (1) and (2) we obtain

$$
\begin{equation*}
P=\bigcap\{C(P, v) \mid v \in \operatorname{vert} P\} \tag{3}
\end{equation*}
$$

Received by the editors April 6, 1988.
AMS Subject Classification: 1. 52A25; 2. 05C40.
Key words: Convex polytope, graph, d-connected.
© Canadian Mathematical Society 1988.
where vert P denotes the set of vertices of P.
Our proof of Balinski's theorem is based on the following lemma which shows that we may omit as many as $d-1$ vertices from the right hand side of (3):

Lemma. Let V be a set of at most $d-1$ vertices of a d-polytope P in \mathbf{R}^{d}. Then

$$
\begin{equation*}
P=\bigcap\{C(P, v) \mid v \in(\operatorname{vert} P) \backslash V\} \tag{4}
\end{equation*}
$$

Proof. The inclusion \subseteq is a trivial consequence of (3). To prove \supseteq, let x be a point not in P. Then by (1) there is a facet F of P such that $x \notin K(F)$. Being a ($d-1$)-polytope, F has at least d vertices, whence at least one vertex v of F is not in V. Using (2) we see that $x \notin C(P, v)$. Hence, x is not in the right hand side of (4). This completes the proof of the lemma.

We next turn to
Proof of the Theorem. Let V be any set of at most $d-1$ vertices of P. We shall prove that the subgraph \mathcal{G}^{\prime} of $\mathcal{G}(P)$ spanned by (vert $\left.P\right) \backslash V$ is connected. Let $\mathcal{G}^{\prime \prime}$ be a connected component of \mathcal{G}^{\prime}; we reach the desired conclusion by showing that $\mathcal{G}^{\prime}=\mathcal{G}^{\prime \prime}$.

We denote the vertex set of a graph \mathcal{G} by vert \mathcal{G}. Then vert $\mathcal{G}^{\prime}=($ vert $P) \backslash V$. Let Q denote the convex polytope spanned by (vert $\left.\mathcal{G}^{\prime \prime}\right) \cup V$; then vert $Q=\left(\right.$ vert $\left.\mathcal{G}^{\prime \prime}\right) \cup V$.

Let $v \in$ vert $\mathcal{G}^{\prime \prime}=($ vert $Q) \backslash V$. Since $\mathcal{G}^{\prime \prime}$ is a connected component of \mathcal{G}^{\prime}, any vertex of P adjacent to v is in (vert $\mathcal{G}^{\prime \prime}$) $\cup V=$ vert Q. In other words:
(5) Any $v \in($ vert $Q) \backslash V$ has the same adjacent vertices in Q as in P.

The following is a standard fact, cf. [2, Corollary 11.7]:
For any convex polytope R and any vertex u of R, the affine hull of u and its adjacent vertices in R is aff R.

Now, since P is a d-polytope, it follows from (5) and (6) that Q is also a d-polytope. Noting that $V \subseteq$ vert Q, we may then apply the lemma to Q, obtaining

$$
\begin{equation*}
Q=\bigcap\{C(Q, v) \mid v \in(\operatorname{vert} Q) \backslash V\} \tag{7}
\end{equation*}
$$

We next claim that

$$
\begin{equation*}
P \subseteq C(Q, v) \text { for all } v \in(\text { vert } Q) \backslash V \tag{8}
\end{equation*}
$$

To prove (8), let $v \in$ (vert $Q) \backslash V$. Let x be an arbitrary point of P. If $x=v$, then $x \in C(Q, v)$ as desired. If $x \neq v$, we choose a hyperplane H which separates v from the remaining vertices of P and from x. The sets $P^{\prime}:=H \cap P$ and $Q^{\prime}:=H \cap Q$ are then $(d-1)$-polytopes, cf. [2, Theorem 11.2]. The vertices of P^{\prime} are the points where the edges of P connecting v and its adjacent vertices in P intersect H, cf. [2, Theorem
11.2]. Similarly for Q^{\prime}. It then follows from (5) that P^{\prime} and Q^{\prime} have the same vertices, whence $P^{\prime}=Q^{\prime}$. Let x^{\prime} be the point where the segment from v to x intersects H. Then obviously $x^{\prime} \in P^{\prime}$. Since $P^{\prime}=Q^{\prime}$, it follows that $x^{\prime} \in Q^{\prime}$, whence $x^{\prime} \in Q$, and so $x^{\prime} \in C(Q, v)$. Since $C(Q, v)$ is a cone with vertex v, it follows that the entire halfline emanating from v and passing through x^{\prime} is in $C(Q, v)$. In particular, $x \in C(Q, v)$ as desired.

Combining (7) and (8) we obtain $P \subseteq Q$, whence

$$
\begin{equation*}
P=Q \tag{9}
\end{equation*}
$$

since $Q \subseteq P$ is obvious.
Finally, let $v \in$ vert $\mathcal{G}^{\prime}=($ vert $P) \backslash V$. Then $v \in($ vert $Q) \backslash V=$ vert $\mathcal{G}^{\prime \prime}$ by (9). Hence vert $\mathcal{G}^{\prime}=\operatorname{vert} \mathcal{G}^{\prime \prime}$. By the nature of \mathcal{G}^{\prime} and $\mathcal{G}^{\prime \prime}$ this implies $\mathcal{G}^{\prime}=\mathcal{G}^{\prime \prime}$ as desired.

References

1. M. Balinski, On the graph structure of convex polyhedra in n-space, Pacific J. Math. 11 (1961), 431-434.
2. A. Brøndsted, "An introduction to convex polytopes," Springer-Verlag, New York-Heidelberg-Berlin, 1983.
3. B. Grünbaum, "Convex polytopes," John Wiley \& Sons, London-New York-Sydney, 1967.

A. Brøndsted
Institute of Mathematics
University of Copenhagen
Universitetsparken 5
DK-2100 Copenhagen \emptyset
Denmark
G. Maxwell
Department of Mathematics
University of British Columbia
121-1984 Mathematics Road
Vancouver, B.C.
Canada V6T 1Y4

