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Active matter exploits motion to induce changes in shape and conformation via external
input. In this paper, we establish theoretically that viscous liquid droplets containing
magnetic nanoparticles with frozen-in magnetic moments, sitting on a solid substrate
and surrounded by an ambient gas phase, can deform and migrate under the influence
of a magnetic torque. The effect arises because the collective rotation of the magnetic
nanoparticles at the liquid–gas interface tilts the droplet away from a symmetric
configuration, breaks the reflection symmetry with respect to the centre axis, and leads
to a left–right asymmetry of the contact angles. A sufficiently strong magnetic torque
leads the contact angles to overcome hysteresis effects leading the droplet to migrate. We
develop a general framework to explain how symmetry-breaking affects droplet migration.
Thus previous results of droplet spreading and migration can be recovered as special cases.
Such droplets can be employed as agents in active surfaces and can move against gravity,
chemical and thermal gradients, providing a mechanism that could be utilized by both
industry and medicine.

Key words: thin films, lubrication theory

1. Introduction

In recent years, it has become possible to design and synthesize systems that execute
cooperative functions employing active matter; cf. Driscoll & Delmotte (2019) and
references therein. Active materials are controlled by the application of external inputs
such as chemical energy, magnetic fields and/or light. Because magnetic fields can
penetrate matter, they can replace chemical energy in actuating systems by enabling, for
instance, the locomotion of robots (Li et al. 2020; Yang et al. 2020).
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Figure 1. Possible applications of the present formalism. (a) Active surfaces: active droplets embedded in
the grooves of a solid surface reduce hysteresis and increase mobility. Arrows indicate streamlines and flow
direction. (b) Active droplets: they can squeeze through narrow spaces, work against gravitational potentials,
temperature or chemical gradients, and overcome barriers (see § 5). Here they work against gravity climbing
an inclined barrier. (c) Active films: they can be employed to transport cargo in a ‘conveyor-belt’ manner (see
§ 6).

Droplets of a magnetic liquid that can be actuated by external fields form a special case
of active matter, which is employed in various fields of medicine and industry (Torres-Díaz
& Rinaldi 2014). In particular, such droplets can be employed to form ‘active surfaces’
(cf. figure 1a) whereby they are placed in grooves of a surface and with the application
of an external field they can reduce hysteresis effects and increase mobility (Torres-Díaz
& Rinaldi 2014). Such droplets can: navigate uncharted terrains; climb an inclined plane
working against pressure, thermal or chemical gradients and gravity (cf. figure 1b); move
on the underside of a plate; climb and get past obstacles and even deform to enter narrow
passageways (Torres-Díaz & Rinaldi 2014). Films composed of such a liquid can act as
‘conveyor belts’ for the transport of cargo (cf. figure 1c).

In this paper, we develop models capturing the motion of magnetic droplets in diverse
terrains employing continuum field theories incorporating antisymmetric and couple
stresses. Droplet motion as a whole – termed migration in this paper – depends on
processes taking place at the contact line. Thus a brief discussion of known facts regarding
the mobility of a contact line has a place here. It is a known experimental result (Dussan
1979) that a contact line moves with horizontal velocity uCL according to

uCL = k
[
θ(t)− θ̄A

]m
, when θ(t) > θ̄A, (1.1)

where θ̄A � 0 is the static advancing contact angle that θ(t) (the dynamic contact angle)
has to overcome for the contact line motion to commence. The exponent m has been found
in the experiments of Schwartz & Tejada (1972), Hoffman (1975) and Tanner (1979) to
acquire the value m = 3. The phenomenological constant k also has to be determined by
experiment. For instance, Ehrhard (1993) determined that k ∼ 4 mm s−1 for silicon oil
and k ∼ 8 mm s−1 for paraffin oil in experiments of non-isothermal spreading on glass
surfaces. For the receding contact angle of figure 2 (upper right), one has

uCL = −k
[
θ(t)− θ̄R

]m
, when θ(t) < θ̄R, (1.2)

where θ̄R � 0 is the static receding contact angle that θ(t) (the dynamic contact angle)
has to fall against for the contact line motion to commence. As discussed by Ehrhard &
Davis (1991), there are a number of approaches to model the contact line dynamics. The
first, termed the excision approach, uses lubrication theory to describe the bulk liquid flow
away from the contact line. The excised contact-line region is then replaced by a priori
statements about the drop shape and the ‘outer’ region (Tanner 1979; Ngan & Dussan V
1989). A second approach is to replace the contact line by a precursor film (de Gennes
1985). And a third is to consider the whole drop, introduce the constitutive law (1.1) and
(1.2) at the contact line, and employ lubrication theory for flat drops (Greenspan 1978).
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Activity-induced droplet migration
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Figure 2. Top right: experiment-inspired hysteretic diagram of a single contact line moving with velocity uCL
versus dynamic contact angle θ (cf. (1.1) and Dussan 1979). Thus motion of the contact line takes place when
the contact angle lies outside the interval [θ̄R, θ̄A], determined by the static advancing and receding contact
angles θ̄A and θ̄R, respectively. Main figure: viscous droplet with rotational degrees of freedom (suspended
ferromagnetic nanoparticles) sitting on a solid substrate and surrounded by an ambient gas phase. A moving
interface at z = ξ(x, t) separates a gas from a viscous liquid lying on a solid substrate located at z = 0. Nanosize
particles suspended in the carrier liquid rotate with a macroscopic angular velocity field ω = ω(x, z, t) ŷ by
responding to a magnetic torque density Nŷ = m × h produced by a rotating magnetic field of frequency ν
applied on the suspension of macroscopic magnetization m. The particle collective rotation near the liquid–gas
interface induces a dominant horizontal liquid velocity component u(x, z, t) x̂ deforming the droplet, tilting it
to the right. If the torque is strong enough so that the droplet overcomes hysteresis effects (and thus the left
dynamic contact angle θr(t) falls short of the receding static angle θ̄R, and the right dynamic contact angle θr(t)
exceeds the advancing static contact angle θ̄A – see the corresponding insets), then it starts moving to the right
with velocity uCL.

This latter approach was employed successfully by Ehrhard & Davis (1991) to develop
a theory of thermocapillary spreading, validated by subsequent experiments (Ehrhard
1993) and by Smith (1995) to study the migration of liquid droplets under a horizontal
temperature gradient. In the spreading case of Ehrhard & Davis (1991), a vertical
temperature gradient gives rise to surface tension variations that are symmetric with
respect to the centre axis of the droplet, and leads to the formation of two symmetric
flow cells inside the droplet (cf. Ehrhard & Davis 1991, figure 5), even when spreading
has ceased. In this spreading regime, the contact lines always remain equal and the droplet
shape stays symmetric with respect to its centre axis. On the other hand, a horizontal
temperature gradient gives rise to asymmetric surface tension with respect to the centre
axis of the droplet. The corresponding surface tension gradient tilts the droplet and gives
rise, in principle, to a single cell (Smith 1995, figure 6), and drives these non-isothermal
droplets to migrate. During migration, the left and right contact angles (cf. figure 2) are
unequal, and the shape of the droplet is asymmetric with respect to its centre axis. It is
interesting to note that the effect of the horizontal temperature gradient (subject to certain
approximations employed by Smith 1995) on the liquid–gas interface is equivalent to the
one that would be generated by a constant surface shear ‘wind’ imposed on a droplet or
film (Davis, Gratton & Davis 2010).

In this paper, we follow the third approach, based on the constitutive law (1.1) and
(1.2), validated by experiment (Schwartz & Tejada 1972; Hoffman 1975; Tanner 1979).
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It is perhaps important to point out here that the quasi-static migration droplet profiles
of Ehrhard & Davis (1991) and Smith (1995) were obtained by a perturbation approach,
whereby the external field (a vertical or horizontal temperature gradient, respectively) was
superposed as a perturbation on a basic state determined by gravity and surface tension.
In contrast, in the present paper, we obtain, theoretically, quasi-static migration profiles
exactly, that is, with a non-perturbative approach.

Migration is realized when both dynamic contact angles overcome their advancing and
receding static counterparts, i.e. when the right dynamic contact angle θa(t) exceeds the
static advancing contact angle θ̄A, and the left dynamic contact angle θr(t) falls short of
the static receding contact angle θ̄R (cf. figure 2). For the problem under consideration,
notation becomes increasingly cumbersome. With a view to simplify it, we adopt the
notation employed by Smith (1995) and Ehrhard & Davis (1991). We are interested mainly
in the steady-state regime, that is, when the droplet has acquired a constant migration
velocity, specific shape and constant radius. Initial and transient behaviour is of some
interest, and this have been discussed in detail by Smith (1995) for the thermocapillary
problem under a horizontal temperature gradient.

Fine ferromagnetic particles suspended in a Newtonian liquid can bring about an
imbalance of angular momentum (Dahler & Scriven 1961; Condiff & Dahler 1964; Rinaldi
2002). This imbalance is due to deviations of the macroscopic particle angular velocity
from the liquid angular velocity, that is, one-half of the liquid’s vorticity field, generated
by an external magnetic field.

A magnetic torque can drive the suspended particles in such a way that at the liquid–gas
interface, their collective rotation (in a ‘conveyor-belt fashion’, see figure 2) described by
the macroscopic particle angular velocity ω (Rinaldi 2002) manifests itself as an effective,
non-uniform surface shear stress. The effect of such a stress is to provide a dominant
component tangential to the liquid–gas interface for the fluid velocity u, which causes a
droplet to deform.

In this paper, we establish theoretically that viscous liquid droplets containing
magnetic nanoparticles with frozen-in magnetic moments, sitting on a solid substrate and
surrounded by an ambient gas phase, can migrate under the influence of a magnetic torque
generated by a rotating magnetic field (cf. figure 2). The effect arises because the collective
rotation of the magnetic nanoparticles at the liquid–gas interface tilts the droplet away
from a symmetric configuration, breaks the reflection symmetry with respect to the centre
axis, and leads to a left–right asymmetry of the contact angles (cf. insets of figure 2). A
sufficiently strong magnetic torque leads the contact angles to overcome hysteresis effects
and induces droplet migration. Thus this is a symmetry-breaking effect at the level of the
Navier–Stokes equations. Symmetry-breaking is also inherited by the liquid–gas profile
evolution equation as well as the mobility constitutive law (1.1) and (1.2) describing the
motion of a contact line. The effect is a companion to the thermocapillary migration of the
non-isothermal liquid droplets analysed theoretically by Smith (1995). Thus the theoretical
framework developed in the present paper, with respect to symmetry-breaking and droplet
mobility, encompasses these former results as special cases.

The paper is organized as follows. In § 2, we outline the theory of liquids with rotational
degrees of freedom that embodies the balance of internal angular momentum of suspended
particles through their macroscopic angular velocity ω. It is important to note that the
conditions that couple stresses satisfy on a free surface of such a liquid were derived only
recently by Chaves & Rinaldi (2014). This point as well as other interfacial conditions are
discussed in § 2.1.
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Activity-induced droplet migration

The reduction of the full Navier–Stokes and angular momentum equations in the
geometry displayed in figure 2 is described in detail in § 3. Allowance is made for a
body force potential originating from a gravitational field. Such a potential can squeeze a
droplet, leading to spreading, but it can also act in an accelerating or decelerating manner
if the droplet migrates on an inclined substrate. A body force of magnetic origin is not
included explicitly in this discussion as its effects are subdominant to their magnetic torque
counterpart; cf. Kirkinis (2017). The reduction continues further in § 3.1 by resorting to
the small initial contact angle (thin droplet) approximation (Ehrhard & Davis 1991; Smith
1995). The flow, driven by a time-averaged constant torque, leads to the generation of new
nonlinear terms in the evolution equation for the liquid–gas interface of the droplet. To
understand their physical significance, the asymptotic limit of vanishing film thickness is
considered, which brings to prominence new convective terms of magnetic origin in the
evolution equation.

In the ensuing sections, we will be taking the limit of small capillary number (§ 4.1
onwards), which provides a non-perturbative derivation of the liquid–gas interface (subject
to the aforementioned approximations) away from an initial layer. In § 4, we calculate
the migration velocity and the magnitude of the magnetic torque required to induce the
mobility of the droplet. Possible effects of rotational slip (that is, finite particle angular
velocity at the liquid–solid interface) are examined. Rotational slip favours migration,
as velocity slip favours nonlinear wave propagation (Kirkinis 2017). It is interesting that
all observables in this case can be expressed with respect to the capillary length, which
determines the regime where gravity becomes important, through a Langevin function.
Thus varying the capillary length, we can obtain the shape and velocity of droplets in
various regimes. Numerical simulations of the piecewise mobility law embodied in (1.1)
and (1.2) show the existence of a fixed point of both the droplet radius and its migration
velocity, which are independent of initial data. Excellent agreement is established with our
theoretical calculations of contact line velocity during the migration stage.

In § 5, we show that droplets can work against the potential of fields, here the
gravitational field. Thus such a droplet can climb an inclined plane if the strength of the
magnetic torque exceeds a certain limit. In § 6, we show that our theory also applies to
the case of films climbing an inclined substrate. This case would be of interest for cargo
transport in a conveyor-belt manner; see figure 1(c). We thus calculate the velocity of
transport for the two aforementioned cases of zero and non-zero particle angular velocity
at the liquid–solid interface.

Droplet migration is induced by symmetry-breaking. In § 7, we show how
symmetry-breaking in the Navier–Stokes equations is inherited by the liquid–gas profile
evolution equation and by the mobility law (1.1) and (1.2). Thus previous behaviours of
thermocapillary spreading (Ehrhard & Davis 1991) or thermocapillary droplet migration
(Smith 1995) can be recovered as special cases of our analysis.

In § 8, we provide estimates of the magnitude of the physical phenomena discussed in
this paper based on standard experimental data available in the literature.

We conclude this paper in § 9 with a discussion of how the present framework could,
in principle, be generalized to include effects that were met only recently in experiment
(Ganeshan & Abanov 2017).

The inspiration of this problem originates from medicine, and in particular in how
it would be possible to invent new and unconventional strategies for locomotion and
thus therapy. We thus end this section with a discussion of targeting-specific locomotion
strategies. In Appendix B, we develop a general framework that is valid when the
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mechanism leading to spreading (Ehrhard & Davis 1991) or migration (Smith 1995) is
superposed as a perturbation on a basic state. Thus previous perturbative results (Ehrhard
& Davis 1991; Smith 1995) are recovered as special cases of this framework. In fact, in the
small magnetic torque limit, our non-perturbative results can also be reduced and captured
by this general (but perturbative) framework.

Although only suspensions of ferromagnetic particles driven by a magnetic field are
considered in this paper, analogous arguments can be applied to the case of particles
endowed with an electric dipole moment and acted upon by an electric field.

2. Viscous liquid motion in the presence of rotational degrees of freedom

In a liquid with rotational degrees of freedom – a classical Newtonian liquid with small
suspended particles that can respond to an external torque – the balance of linear and
internal angular momentum can be expressed in the form (Dahler & Scriven 1961; Condiff
& Dahler 1964)

ρ Dui/Dt = ∂kσik and I Dωi/Dt = ∂kCik + Ni + εimkσkm, i, k,m = 1, 2, 3,
(2.1a,b)

where D/Dt is the convective derivative, ρ is the fluid density, I is the volume density of
particle moment of inertia, ui is the fluid velocity, ωi is the particle angular velocity, and
Ni is the magnetic torque density. As noted by Dahler & Scriven (1961), the last term of
(2.1b) represents the transformation of moment of momentum εijkxiuj into internal angular
momentum only when the stress σij has an antisymmetric part. This part augments the
standard Cauchy stress tensor and arises solely due to the inclusion of the nanostructure in
the liquid. The resulting total stress σ is (Rinaldi 2002)

σik = −pδik + ηV̂ik + ζ Ŵik + T̂ik, (2.2)

where V̂ik = ∂kui + ∂iuk is twice the rate-of-strain tensor, Ŵik = ∂kui − ∂iuk − 2εkilωl is a
‘spin’ tensor measuring the imbalance between liquid and particle angular velocity, T̂ik =
(hibk − 1

2 h2
j δik)/4π is the Maxwell stress tensor, and h and b denote the macroscopic

magnetic field and induction, respectively. The liquid is considered incompressible

∂iui = 0, (2.3)

p is the hydrostatic pressure, and η is the liquid viscosity. The phenomenological
coefficient ζ multiplying Ŵ in (2.2) is termed the vortex viscosity in the literature (Condiff
& Dahler 1964; Rinaldi 2002); εijk is the alternating pseudo-tensor, and we employed
the Einstein summation convention on repeated indices; Ŵ has curl u − 2ω as its axial
vector. When this vector vanishes identically in the body of a slowly flowing viscous liquid
in the absence of externally applied torques and non-conservative forces, the balance of
internal angular momentum in (2.1a,b) is satisfied automatically, and the balance of linear
momentum in (2.1a,b) reduces to the standard Navier–Stokes equations satisfied by the
velocity field of an unstructured liquid (Condiff & Dahler 1964). Diffusion of internal
angular momentum takes place due to couple stresses C, where

Cik = η′ (∂kωi + ∂iωk)+ ζ ′ ∂jωj δik, (2.4)

that the suspended particles experience in their rotational motion. Here, η′ and ζ ′ are the
shear and bulk coefficients of spin viscosity (Condiff & Dahler 1964). Therefore, ∂jCij in
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Activity-induced droplet migration

(2.1a,b) is the rate of arrival of internal angular momentum by way of diffusion. Maxwell’s
equations are

∇ × h = 0 and ∇ · b = 0, (2.5a,b)

where b = h + 4πm. Since the torque density

N = m × h (2.6)

depends on the macroscopic magnetization field m of suspended particles, one more
constitutive equation describing the evolution of this field has to be imposed in order to
provide closure (Rinaldi 2002). This is

Dmi/Dt = εijkωjmk − (mi − χhi)/τB, i = 1, 2, 3. (2.7)

Here, τB is the Brownian relaxation time (Rinaldi 2002, pp. 54–57) and χ is the effective
magnetic susceptibility:

χ = nmd L(α)/h, L = cothα − 1
α
, α = mdh

kBT
, (2.8a–c)

where md = MdV is the magnetic moment of a single subdomain particle, V is the particle
volume, Md is the domain magnetization of dispersed ferromagnetic material, and n is
the number density of the magnetic grains. In this form, (2.7) applies only at moderate
strengths of the applied field. For a discussion of this point, see Rinaldi (2002, pp. 54–57)
and references therein.

2.1. Boundary conditions
At a liquid–gas interface with mean curvature K and constant surface tension γ , continuity
of traction implies (Oron, Davis & Bankoff 1997)

− [[σn]] + 2Kγn = 0, (2.9)

where n and t are the normal and tangent unit vectors at this interface, respectively, and
the symbol [[·]] denotes the jump of the field across an interface. Thus for the shear and
normal stresses, we have

[[tσn]] = 0 and [[nσn]] = 2Kγ, (2.10a,b)

on the liquid–gas interface, while the couple stress tensor C satisfies (Chaves & Rinaldi
2014)

[[Cn]] = 0. (2.11)

At the liquid–solid interface, the no-slip and no-penetration conditions read

u · t = 0, u · n = 0, (2.12a,b)

respectively. When required, the former can be relaxed and be replaced by a slip model as
is usual in thin liquid film and droplet studies (Oron et al. 1997; Kirkinis & Davis 2013,
2014). Finally, the question arises as to the most suitable boundary condition satisfied
by the particle angular velocity at the liquid–solid interface. In the literature of magnetic
liquids, one may specify a condition of the form (Rinaldi & Zahn 2002; Chaves et al. 2006;
Chaves, Zahn & Rinaldi 2008)

ω = 0. (2.13)

It may, however, be necessary to allow for a finite angular velocity at this boundary. Aero,
Bulygin & Kuvshinskii (1965) allowed for rotation of the ferroparticles derived by the
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balance of their overall angular velocity at the liquid–solid interface with the surface
density of micro-moments:

ω = λ̂Ĉn̂; (2.14)

cf. Aero et al. (1965, equation (6.6)) where λij, having units of length, is the inverse of
the rotational friction tensor, and n̂ is normal at the solid–liquid interface so that the
appearance of micro-moments at the surface is due to friction. We note that this boundary
condition is analogous to the Navier slip condition of Newtonian fluid mechanics (Lauga,
Brenner & Stone 2007), thus λij is a rotational slip length. Its values will depend on surface
roughness, liquid viscosity and particle size.

At the liquid–gas interface, the induction and magnetic field components are continuous:

[[b · n]] = 0 and [[h · t]] = 0. (2.15a,b)

3. Reduction of the equations of motion

In the geometry displayed in figure 2 and in dimensional units, the liquid–gas interface lies
at

z = ξ(x, t), (3.1)

and the solid–liquid interface at z = 0. The fluid velocity u, macroscopic particle angular
velocity ω and magnetization m obtain the component forms

(u(x, z, t), 0,w(x, z, t)), (0, ω(x, z, t), 0) and (m1(x, z, t), 0,m3(x, z, t)), (3.2a–c)

respectively. The stress tensor (2.2) has the non-vanishing components

σ11 = −p + 2ηux and σ13 = (η + ζ )uz + (η − ζ )wx − 2ζω, (3.3a,b)

σ31 = (η − ζ )uz + (η + ζ )wx + 2ζω and σ33 = −p + 2ηwz, (3.4a,b)

where a lower-case Latin subscript denotes differentiation with respect to the
corresponding dimensional variable. For clarity and brevity, we did not explicitly include
the Maxwell stress tensor components in these expressions because they give rise only to
a body force whose effects are subdominant to those of the torque studied in the present
paper (assuming weak fields and slow rotations); see the discussion in Kirkinis (2017,
Appendix A). The couple stress tensor C has the non-zero components

C12 = C21 = η′ωx and C23 = C32 = η′ωz, (3.5a,b)

and we assume that ∂jωj = 0 is also satisfied. Then the governing equations (2.1a,b) reduce
to

ρ
[
ut + uux + wuz

] = −px − 2ζωz + (ζ + η)(uxx + uzz)− φx, (3.6)

ρ
[
wt + uwx + wwz

] = −pz + 2ζωx + (ζ + η)(wxx + wzz)− φz, (3.7)

I
[
ωt + uωx + wωz

] = 2ζ(uz − wx − 2ω)+ η′(ωxx + ωzz)+ N, (3.8)

where N is an applied magnetic torque, and the potential φ represents fields acting on
the droplet, such as gravity and intermolecular forces. For the present analysis, we will

955 A10-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
51

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1051


Activity-induced droplet migration

consider that φ represents the gravitational field acting on a droplet placed on an inclined
substrate at angle ψ to the horizontal x-axis, leading to

φ = ρg(x sinψ + z cosψ). (3.9)

The boundary conditions (2.12a,b) and (2.14) become

u = 0, w = 0 and ω = λωz, at z = 0, (3.10a–c)

respectively, which will be employed in our quasi-static analysis.
The tangent and normal vectors to the interface are, in Cartesian coordinates,

t = (1, 0, ξx)/

√
1 + ξ2

x and n = (−ξx, 0, 1)/
√

1 + ξ2
x , (3.11a,b)

respectively. Thus at the liquid–gas interface z = ξ(x, t), the boundary conditions (2.10a,b)
read

σ13 − ξ2
x σ31 + ξx(σ33 − σ11) = 0 and σ33 + ξ2

x σ11 − ξx(σ13 + σ31) = γ ξxx√
1 + ξ2

x
,

(3.12a,b)

where in (2.10a,b), we employed the expression for the curvature

2K = ξxx

(
√

1 + ξ2
x )

3
. (3.13)

Equation (2.11) becomes
ωz − ξxωx = 0. (3.14)

To the above, one may add the kinematic condition

w = ξt + uξx (3.15)

at the liquid–gas interface z = ξ(x, t), which constitutes the starting point in deriving the
sought-after evolution equation.

The problem of determining the motion of a droplet reduces to solving an evolution
equation for the liquid–gas interface z = ξ(x, t) with boundary conditions

ξ(ca(t), t) = ξ(cr(t), t) = 0,
∫ ca(t)

cr(t)
ξ(x, t) dx = V0, (3.16a,b)

where
ca(t) and θa(t), cr(t) and θr(t) (3.17a,b)

are the x-locations of the contact line and dynamic contact angles at the right and the left
contact lines of the droplet, respectively (cf. figure 2). Following Smith (1995), we adopt
the mobility law

dca

dt
=

⎧⎪⎨
⎪⎩
(θa − θ̄A)

m, θa > θ̄A,

0, θ̄R � θa � θ̄A,

−(θ̄R − θa)
m, θa < θ̄R,

and
dcr

dt
=

⎧⎪⎨
⎪⎩

−(θr − θ̄A)
m, θr > θ̄A,

0, θ̄R � θr � θ̄A,

(θ̄R − θr)
m, θr < θ̄R,

(3.18a,b)

where θa(t) = −ξx(ca(t)) and θr(t) = ξx(cr(t)) (cf. figure 2), and

θ̄A and θ̄R (3.19a,b)

are the advancing and receding static contact angles, respectively (cf. upper right corner
of figure 2).
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3.1. Scalings for the lubrication approximation
In this approximation, the Navier–Stokes equations (3.6) and (3.7), and internal angular
momentum equation (3.8), are scaled with respect to small initial contact angle,
characteristic droplet radius and droplet volume

θ0, a0 and V0, (3.20a–c)

respectively. This introduces slow longitudinal and slow temporal variables

X = x
a0
, Z = z

a0θ0
, T = kθm

0
a0

t, (3.21a–c)

where a0 and θ0 are characteristic scales for the liquid droplet spreading radius and initial
contact angle, respectively, and the partial derivatives ∂/∂X and ∂/∂Z are now quantities
of unit order (Ehrhard & Davis 1991; Oron et al. 1997; Davis 2002). The dimensionless
velocity, particle angular velocity, pressure and liquid–gas interface location become,
respectively,

U = u
kθm

0
, W = w

kθ1+m
0

, Ω = a0ω

kθm−1
0

, P = a0p

(η + ζ )kθm−2
0

, Ξ = ξ

a0θ0
.

(3.22a–e)

We define the dimensionless Reynolds numbers, scaled capillary number and rotational
slip coefficient (cf. (3.10a–c))

Re = ρa0kθm+1
0

η + ζ
, Re′ = Ia0kθm+1

0
η′ , C̄ = (η + ζ )kθm−3

0
γ

, Λ = λ

a0θ0
, (3.23a–d)

and dimensionless potential and torque

Φ = εξ0φ

(η + ζ )U0
, N̄ = Na3

0

η′kθm−3
0

. (3.24a,b)

Finally, we define subsidiary dimensionless parameters α, β and κ:

α = ζ

η + ζ
, β = 2

ζa2
0θ

2
0

η′ , κ2 ≡ 2β(1 − α) = 4ηζa2
0θ

2
0

η′(η + ζ )
. (3.25a–c)

Parameter α is important as it regulates the shear stress at the liquid–gas interface
generated by the collective rotation of the rotating nanoparticles which gives rise to the
effect discussed in this paper.

When the potential φ is due to a gravitational field as in (3.9), its dimensionless
counterpart reads,

Φ = Ḡ
(

X
sinψ
θ0

+ Z cosψ
)
, Ḡ = ρga2

0

(η + ζ )kθm−3
0

. (3.26a,b)

We note that although the above dimensionless groups are based on a small (initial)
contact angle θ0, they can be identified with the standard lubrication approximation groups
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Activity-induced droplet migration

developed by Oron et al. (1997) by performing the substitution

θ0 → ε, a0θ0 → ξ0, kθm
0 → U0. (3.27a–c)

With the above notation, and by setting θ0 = ε (3.6)–(3.8) obtain the following
dimensionless form:

ε Re [UT + UUX + WUZ] = −PX − 2αΩZ + (ε2UXX + UZZ)−ΦX, (3.28)

ε2 Re [WT + UWX + WWZ] = −1
ε

PZ + 2εαΩX + ε(ε2WXX + WZZ)− 1
ε
ΦZ, (3.29)

ε Re′ [ΩT + UΩX + WΩZ] = β(UZ − ε2WX − 2Ω)+ ε2ΩXX +ΩZZ + N̄ . (3.30)

The boundary conditions (3.10a–c), (3.12a,b), (3.14), become respectively

U = 0, W = 0, Ω = ΛΩZ, at Z = 0, (3.31a–c)

and

UZ − 2αΩ + O(ε) = 0, −P = C̄−1ΞXX + O(ε), ΩZ + O(ε) = 0, at Z = Ξ(X,T).
(3.32a–c)

The kinematic condition (3.15) becomes W = ΞT + UΞX , and leads to the following
evolution equation for the profile Ξ :

ΞT +
[∫ Ξ

0
U dZ

]
X

= 0. (3.33)

This is obtained in the standard way (Oron et al. 1997) by integrating the incompressibility
condition UX + WZ = 0 from Z = 0 to Z = Ξ(X, T), using the second equation of
(3.31a–c) and integration by parts.

We proceed by expanding all fields in a regular perturbation expansion with respect to
the small parameter ε: (U,W,P,Ω) = (U0,W0,P0,Ω0)+ ε(U1,W1,P1,Ω1)+ O(ε2).
To leading order (which corresponds to the lubrication approximation) and dropping
superscripts denoting order in ε, scaled equations (3.28)–(3.30) simplify to

−PX − 2αΩZ + UZZ −ΦX = 0, −PZ −ΦZ = 0, β(UZ − 2Ω)+ΩZZ + N̄ = 0.
(3.34a–c)

To the above, one should add the corresponding expressions for the magnetization equation
and magnetic fields, which are identical to Kirkinis (2017, (4.20a,b) and (4.21a,b)) and
need not be repeated here,

UZ − 2αΩ = 0, −P = C̄−1ΞXX, ΩZ = 0, at Z = Ξ(X, T), (3.35a–c)

and the boundary conditions at the liquid–solid interface remain the same as (3.31a–c)
with the understanding that they now refer to the leading-order approximation.

Integration of the second equation of (3.34a–c) and application of the normal
stress boundary condition (second equation of (3.35a–c)) leads to the reduced pressure
P̄(X, T) ≡ P +Φ = Φ|Z=Ξ − C̄−1ΞXX . Thus when Φ is associated with gravity, the
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pressure reads

P̄(X, T) = Ḡ
(

X
sinψ
θ0

+Ξ cosψ
)

− C̄−1ΞXX. (3.36)

Thus the problem of determining the motion of a droplet reduces to solving the evolution
equation (3.33) with boundary conditions

Ξ(ca(t)/a0) = Ξ(cr(t)/a0) = 0,
∫ ca(t)/a0

cr(t)/a0

Ξ(X) dX = 1, (3.37a,b)

and the mobility law (3.18a,b) (cf. figure 2), along with suitable initial conditions.
In the limit ωτB � 1 (the Brownian relaxation time τB was defined in (2.7)), the

magnetic torque appearing in (3.34a–c) can be considered as a constant; cf. Zahn & Greer
(1995) and Kirkinis (2017). Then (3.34a–c) yield closed form expressions for the fields
U, W and Ω (whose exact forms appear in Appendix A). Thus the flux function in (3.33)
becomes

∫ Ξ

0
U dZ = α

6κ3(α − 1)β(cosh κΞ +Λκ sinh κΞ)

×
{((

−6βκ (Ξ sinh (κΞ) κ − 2 cosh (κΞ)+ 2) α + 2Ξ3 sinh (κΞ) βκ4
)
Λ

− 6β
(
Ξ2 sinh (κΞ) κ2 −Ξ cosh (κΞ) κ + 2κΞ − sinh (κΞ)

)
α

+ 2Ξ3 cosh (κΞ) βκ3
)

P̄X +
(
−3Ξ2ακ4 sinh (κΞ)Λ

− 3ακ
(
Ξ2 cosh (κΞ) κ2 − 2Ξ sinh (κΞ) κ + 2 cosh (κΞ)− 2

))
N̄

}
, (3.38)

where the parameters α, β and κ were defined in (3.25a–c). This equation should be
contrasted to the flux function

∫ Ξ
0 U dZ = −1

3 P̄XΞ
3 obtained in the absence of the

rotational degrees of freedom (Oron et al. 1997; Davis 2002). Setting Λ = 0, (3.38)
reduces to (4.24) of Kirkinis (2017).

It is difficult to extract any physical meaning directly from the flux function (3.38). We
thus seek an asymptotic limit Ξ → 0 to obtain

∫ Ξ

0
U dZ =

(
N̄Λα − 1

3
P̄X

)
Ξ3 + 2α

(
βN̄ (α − 1)Λ2 − 1

4
P̄XβΛ+ 1

8
N̄

)
Ξ4

+
(

4βN̄ (α − 1)2Λ3 − P̄Xβ (α − 1)Λ2 + 7N̄ (α − 1)Λ
6

− P̄X

10

)
βαΞ5

+ O(Ξ6), (3.39)

where the effects of magnetic torque N̄ , pressure gradient P̄X and rotational slip length Λ
become evident.

In the ensuing sections, we will be interested in two limits of the evolution equation
(3.33) with flux function (3.39). First is the case of non-zero rotational slip Λ and torque
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Activity-induced droplet migration

N̄ , where the evolution equation, to leading order in Ξ , obtains the form

ΞT + αΛN̄Ξ2ΞX − 1
3 (Ξ

3P̄X)X ∼ 0. (3.40)

In the second case, we set Λ ≡ 0 and the evolution equation reduces to a known form (cf.
Kirkinis 2017, equation (5.1))

ΞT + αN̄Ξ3ΞX − 1
3(Ξ

3P̄X)X ∼ 0, (3.41)

whose nonlinear term multiplying the torque has been shown to give rise to nonlinear
interfacial capillary wave propagation in the context of stabilization mechanisms of thin
liquid films (Kirkinis & Davis 2015).

The form of the two nonlinear evolution equations (3.40) and (3.41) can be justified
in an alternative way. Consider κ to be the small parameter κ ∼ ξ0 ≡ a0θ0 (see the third
equation of (3.25a–c)), and expand the flux function (3.38) with respect to this parameter.
The result is ∫ Ξ

0
U dZ = Ξ3(α (4Λ+Ξ) N̄ − 4

3 P̄X)

4
+ O(κ2). (3.42)

Thus (3.40) is obtained when ξ � λ and ξ � (η′/η)(px/N), achieved for sufficiently
small droplets, and (3.41) is obtained when Λ ≡ 0.

4. Droplet migration on a horizontal substrate

4.1. Small capillary number expansion
In the following discussion, it will be convenient to introduce the dimensionless Bond
number and torque as

G ≡ ḠC̄ = ρga2
0

γ
and N ≡ C̄N̄ = (η + ζ )a3

0N
η′γ

. (4.1a,b)

We will be interested in the limit of small capillary number C̄. We rewrite equations (3.40)
and (3.41) in the form

C̄ΞT + αΛNΞ2ΞX − 1
3(Ξ

3C̄P̄X)X ∼ 0 (4.2)

and

C̄ΞT + αNΞ3ΞX − 1
3(Ξ

3C̄P̄X)X ∼ 0, (4.3)

respectively, where

C̄P̄X = G
(

sinψ
θ0

+ΞX cosψ
)

−ΞXXX. (4.4)

As discussed by Ehrhard & Davis (1991, § 5), in taking the limit C̄ → 0, one considers
the ‘outer’ asymptotic expansion for the liquid–gas interface profile Ξ in powers of the
capillary number and neglects an initial layer.

Studying (4.2) and (4.3) in the limit C̄ → 0 will, from now on, be the exclusive content
of the analysis to follow.
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4.2. Rotating nanoparticles at the substrate Λ /= 0, N /= 0
In this case, the quasi-static equation (4.2) in the limit of small capillary number and flat
substrate (ψ = 0) becomes

ΞXXX − GΞX + 3αΛN = 0, (4.5)

where the Bond number G and torque N were defined in (4.1a,b). The liquid–gas interface
profile obtains the form

Ξ(X, T) = C1 eGX + C2 e−GX + C3 + 3αΛNX
G

, (4.6)

where the Ci are constants of integration. Employing the boundary conditions (3.37a,b)
and reverting to a frame of reference whose origin lies at the centre of the base of the
droplet (see S A.1), we obtain the profile

Ξ(X, T) =
√

G
2

cosh X
√

G − cosh A
√

G

sinh A
√

G − A
√

G cosh A
√

G
+ 3αΛN X sinh A

√
G − A sinh X

√
G

G sinh A
√

G
,

(4.7)

where

A(t) = ca(t)− cr(t)
2a0

(4.8)

is the dimensionless droplet radius. When Λ ≡ 0, (4.7) recovers the liquid–gas profile
of Ehrhard & Davis (1991, equation (6.1p)) for isothermal spreading of a droplet, in the
presence of a vertical temperature gradient.

The dynamic contact angle θa(t) on the right of the droplet (cf. figure 2) reads

θa(t) = G
2

− sinh A
√

G

sinh A
√

G − A
√

G cosh A
√

G
+ 3αΛN A

√
G cosh A

√
G − sinh A

√
G

G sinh A
√

G
,

(4.9)
and its counterpart at the left of the droplet reads θr(t,N ) = θa(t,−N ).

Although our approach is not perturbative, we can still employ the general treatment of
Appendix B to form the droplet migration velocity

UCL =
(

3αΛN A
√

G cosh A
√

G − sinh A
√

G

G sinh A
√

G
− θ̄A − θ̄R

2

)m

. (4.10)

In figure 3, we show that during migration, the droplet radius reaches a fixed point
(a(t)/a0 ∼ 1.14706) irrespective of the initial conditions. At the same time, the velocity
of the midpoint of the droplet, d(c̄/a0)/dt, also reaches a fixed point, that is, the fixed
value UCL, denoting the theoretical value of the dimensionless migration velocity that
we derive in (4.10) evaluated at the fixed point attained asymptotically by the radius
a(t)/a0 ∼ 1.14706 in figure 3(a). The results are obtained by solving the piecewise
mobility law (3.18a,b) with contact angles taken from (4.9). Thus figure 3 shows excellent
agreement between our theoretical calculations and numerical simulations.

Figure 4 displays the droplet migration on a solid substrate with velocity UCL (cf. (4.10))
whose profiles are calculated from (4.7) by incorporating the contact angles (4.9) into
the mobility law (3.18a,b). Thus the magnetic-torque-induced deformation of the droplet
leads to a left–right asymmetry of the contact angles that overcomes hysteresis effects (at
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UCLt
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(b)

Figure 3. (a) Time evolution of dimensionless droplet radius a(t)/a0 by solving (3.18a,b) with contact angles
taken from (4.9) for the case of finite particle angular velocity at the liquid–solid interface. Here, G = 0.1,
3αΛN = 1, m = 3 and (θ̄A − θ̄R)/θ0 = 0.1. Independent of initial data, the radius converges to a fixed width
a(t)/a0 = 1.14706. (b) Time evolution of dimensionless droplet midpoint c̄(t)/a0. Independent of initial data,
the midpoint acquires a slope proportional to UCL, the latter denoting the theoretical value of the dimensionless
migration velocity that we derive in (4.10) evaluated at the fixed point attained asymptotically by the radius
a(t)/a0 ∼ 1.14706 in (a).

1.0

0.8

0.6

z

x

0.4

0.2

0
–1 0 1 2

t = 0.01 t = 12 t = 80

3 4 5

Figure 4. Magnetic droplet profiles calculated from (4.7) migrate on a solid substrate with velocity UCL
(cf. (4.10)). The effect is due to finite particle angular velocity at the liquid–solid substrate 3αΛN = 4 (see
boundary condition (3.31a–c)) coupled with the magnetic torque. The combined effects of particle rotation at
both the liquid–gas and liquid–solid interfaces leads to a left–right asymmetry in the contact angles, migration
and a commensurate deformation. The profiles were generated by solving (3.18a,b) with dynamical contact
angles θa(t) and θr(t) from (4.9), and static advancing and receding contact angles θA = 1.2 and θR = 1.1
(both scaled by the initial contact angle θ0).
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x
Figure 5. Droplet migration with 3αΛN = 4 at time t = 80, as displayed in figure 4. The synergy between the
magnetic torque and the solid-surface tank-treading embodied in the ‘forcing’ term 3αΛN of (4.5) deforms
the droplet and its streamlines, breaks the left–right symmetry of the contact angles, and leads to migration
with velocity U (cf. (4.10)).

a sufficiently strong magnitude of the torque), as this is displayed in (4.10), and leads to
droplet migration.

Figure 5 displays the streamlines at the final time of figure 4. The streamlines are closed,
and the liquid performs a clockwise rotation. To obtain this figure, the streamfunction

Ψ (X, Z) =
∫ Z

0
U(X, Z) dZ (4.11)

was substituted into the profile (4.7) by expanding to first order in H to match
the asymptotics leading to (4.5). For this problem, because C̄P̄X = 3ΛαN , we can
replace the pressure gradient in the expression for U and thus Ψ with the constant
3αΛN .

We note that the above results can be expressed concisely with respect to the Langevin
function

L(x) = coth x − 1
x
. (4.12)

Thus

θa(t) =
√

G
2A

1

L(A√
G)

+ 3αΛN A√
G
L(A

√
G) (4.13)

and

UCL =
(

3αΛN A√
G
L(A

√
G)− θ̄A − θ̄R

2

)m

. (4.14)

The required torque strength that would give rise to droplet migration is

N >

√
G

3αΛAL(A√
G)

θ̄A − θ̄R

2
or N >

η′γ
√
ρg/γ �θ

6ζλa0 L
(
a0

√
ρg/γ

) , (4.15)

where �θ = θ̄A − θ̄R. The above expressions are very useful as they provide estimates
of the observables for all ranges of capillary lengths. For instance, in the limit of
small droplets (A

√
G � 1, or equivalently, a � acap; see below), resorting to the series
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Activity-induced droplet migration

expansion L(x) ∼ x/3 − x3/45 of the Langevin function, we obtain results corresponding
to (4.13)–(4.15) that are independent of gravity:

θa(t) ∼ 3
2A2 + αΛNA2, UCL ∼

(
αΛNA2 − θ̄A − θ̄R

2

)m

, N >
θ̄A − θ̄R

2αΛA2 .

(4.16a–c)

The leading-order expression in θa is the same as the corresponding leading-order terms
of the spreading (Ehrhard & Davis 1991, equation (7.3p)) and migration (Smith 1995,
equation (15a)) results. The argument of the Langevin function A

√
G is related to the

capillary length acap by

A(t)
√

G = a(t)
acap

, where acap =
√
γ

ρg
, (4.17)

recalling that the dimensional and dimensionless droplet radii are defined by a(t) =
(ca(t)− cr(t))/2 and A(t) = a(t)/a0, respectively. Thus with respect to dimensional
parameters, the migration velocity reads

uCL = k
[

3ζλNaacap

η′γ
L
(

a
acap

)
− θ̄A − θ̄R

2

]m

∼ k
[

3ζλNa2

η′γ
− θ̄A − θ̄R

2

]m

. (4.18)

The required torque strength (4.15) that gives rise to migration is

N >
η′γ (θ̄A − θ̄R)

6ζaacapλL(a/acap)
∼ η′γ (θ̄A − θ̄R)

2ζλa2 , (4.19)

and the approximation in (4.18) and (4.19) is applied in the limit a � acap.
We see that the above results are a direct consequence of the presence of a magnetic

torque N, the antisymmetric stress (ζ /= 0) and the couple stress (η′ /= 0) of the constitutive
laws (2.2) and (2.4), respectively.

For certain applications, for instance those promoting active surfaces (cf. figure 1 and
Torres-Díaz & Rinaldi 2014), one will be interested in estimating the liquid velocity at the
peak of the interface z = ξ(x, t). This is given by the tangential velocity ut(x, h) = u · t̂,
that is, the component of the interfacial velocity in the direction of the tangential vector t̂
defined below (3.10a–c). Thus

Ut = 1
2
αΛN̄Ξ2 + O(Ξ4), or ut = ζλ

2(η + ζ )η′ Nξ2 + O(ξ4) (4.20)

in the limit of small thickness.
In figure 6, we display droplet snapshots taken at various regimes formed in the G,N

plane for a given initial droplet configuration with spreading radius A = 2(3/(2θ̄A))
1/2,

in a manner similar to the numerical simulations of Smith (1995, figure 2). Here,
however, our results are exact, thus we do not resort to numerical analysis or perturbation
expansions as was the case in the non-isothermal migration of droplets in Smith (1995).
The interpretation of the various regimes is given in figure 6(b). Pure migration (without
spreading or receding contact angles) takes place at the central vertical line θa(t)− θ̄A =
−θr(t)+ θ̄R, for all marked torque values, from its intersection with the θa = θ̄A and
θr(t) = θ̄R curves to its intersection with the θr(t) = 0 curve.

In figure 7, we display droplet snapshots taken at various regimes formed in the A,N
plane for the value G = 1 of the Bond number. The interpretation of the various regimes is
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Figure 6. Parameter plot for Bond number G = ρga2
0/γ versus dimensionless torque

3αΛN = 3λζa2
0N/(η′γ ) (cf. (4.1a,b) and Smith 1995, figure 2) for the evolution of the droplet with

static advancing and receding contact angles θ̄A = 1.2 and θ̄R = 1.1 (scaled by θ0), away from an initial
state of dimensionless droplet radius A = 4.141, by employing (4.9) and its receding counterpart. The seven
allowed regions describe: I, two-sided spreading; II, pinned (immobile) droplet; III, receding droplet; IV,
pinned left, spreading right contact line; V, pinned right, receding left contact line; VIa, droplet migrates and
spreads; VIb droplet migrates and recedes. The delineations correspond to θr(t) = θ̄A, θr(t) = θ̄R, θr(t) = 0,
θa(t) = θ̄A, θa(t) = θ̄R, θa(t)− θ̄A = −θr(t)+ θ̄R. The upper left corner region of the plot (above the line
θr = 0) corresponds to unphysical behaviour.

given in figure 7(b). Pure migration (without spreading or receding contact angles) takes
place at the central vertical line θa(t)− θ̄A = −θr(t)+ θ̄R, for all marked torque values,
from its intersection with the θa = θ̄A and θr(t) = θ̄R curves to its intersection with the
θr(t) = 0 curve.

4.3. Immobile nanoparticles at the substrate: Λ = 0, N /= 0
In this case, the particle angular velocity at the solid–liquid substrate vanishes (Ω = 0 at
Z = 0). The quasi-static equation (4.3) in the limit of small capillary number becomes

ΞXXX − GΞX + 3
4αNΞ = 0, (4.21)

where the Bond number G and torque N were defined in (4.1a,b). We consider the zero
gravity case (G = 0) for simplicity, which would apply to very small droplets. Then the
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Figure 7. Parameter plot for dimensionless droplet radius A = (ca(t)− cr(t))/2a0 versus dimensionless torque
3αΛN = 3λζa2

0N/(η′γ ) (cf. (4.1a,b)) for the evolution of the droplet with static advancing and receding
contact angles θ̄A = 1.2 and θ̄R = 1.1 (scaled by θ0), for Bond number G = 1, by employing (4.9) and its
receding counterpart. The seven allowed regions describe: I, two-sided spreading; II, pinned (immobile)
droplet; III, receding droplet; IV, pinned left, spreading right contact line; V, pinned right, receding left contact
line; VIa, droplet migrates and spreads; VIb droplet migrates and recedes. The delineations correspond to
θr(t) = θ̄A, θr(t) = θ̄R, θr(t) = 0, θa(t) = θ̄A, θa(t) = θ̄R, θa(t)− θ̄A = −θr(t)+ θ̄R. The upper right corner
region of the plot (above the line θr = 0) corresponds to unphysical behaviour.

liquid–gas profile obtained from (4.21) becomes

Ξ = c1 exp

(
−

(
3
4
αN

)1/3

X

)

+ exp

((
3
32
αN

)1/3

X

)⎡
⎣c2 cos

(
9
√

3
32

αN
)1/3

X + c3 sin

(
9
√

3
32

αN
)1/3

X

⎤
⎦ ,

(4.22)

where ci are integration constants, and the exponents are determined from the cubic root of
−3

4αN . Employing the boundary conditions (3.37a,b), the dynamic right and left contact
angles become, respectively,

θa(t) =
(

3
4 αN

)2/3 exp
(

3A( 3
4αN )1/3

)
− √

3 sin − cos

−
(√

3 sin + cos
)

exp
(

2A( 3
4αN )1/3

)
+ exp

(
3A( 3

4αN )1/3 + √
3 sin − cos

)
(4.23)
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and

θr(t) =
(

3
4 αN

)2/3
exp

(
−A

(
3
4 αN

)1/3
)

×
1 + exp

(
3A(3

4αN )1/3
) (√

3 sin − cos
)

−
(√

3 sin + cos
)

exp
(

2A(3
4αN )1/3

)
+ exp

(
3A(3

4αN )1/3
)

+ √
3 sin − cos

,

(4.24)

where the argument of the trigonometric functions is
√

3(3
4αN )1/3A.

To calculate the migration velocity UCL and required torque for this problem, one can
easily form the expression

UCL =
[
θa(t)− θr(t)

2
− θ̄A − θ̄R

2

]m

, (4.25)

resorting to (4.23) and (4.24). Explicitly,

UCL =
⎡
⎣1

2

(
3
4 αN

)2/3 sinh 2a(3
4αN )1/3 − √

3 cosh × sin + sinh × cos

exp
(

2a(3
4αN )1/3

)
− √

3 sinh × sin − cosh × cos
− θ̄A − θ̄R

2

⎤
⎦

m

,

(4.26)

where the arguments of the trigonometric and hyperbolic functions are
√

3(3
4αN )1/3A

and (3
4αN )1/3A, respectively. In figure 8, we show that during migration, the droplet radius

reaches a fixed point (a(t)/a0 ∼ 1.14562) irrespective of the initial conditions. At the same
time, the velocity of the midpoint of the droplet d(c̄/a0)/dt also reaches a fixed point,
that is, the fixed value UCL denoting the theoretical value of the dimensionless migration
velocity that we derive in (4.26) evaluated at the fixed point attained asymptotically by the
radius a(t)/a0 ∼ 1.14562 in figure 8(a). The results are obtained by solving the piecewise
mobility law (3.18a,b) with contact angles taken from (4.23). Thus figure 8 shows excellent
agreement between our theoretical calculations and numerical simulations.

Figure 9 displays the droplet migration on a solid substrate with velocity UCL (cf. (4.26))
whose profiles are calculated from (4.22) by incorporating the contact angles (4.23) and
(4.24) into the mobility law (3.18a,b). Thus the magnetic-torque-induced deformation of
the droplet leads to a left–right asymmetry of the contact angles that overcomes hysteresis
effects (at a sufficiently strong magnitude of the torque), as this is displayed in (4.26), and
leads to droplet migration. Figure 10 displays the streamlines at the final time of figure 9.

It is instructive to derive the corresponding expressions in the limit N → 0:

θa ∼ 3
2A2 + 3A

20
αN , θr ∼ 3

2A2 − 3A
20
αN , (4.27a,b)

which form a special case of the general perturbative formulation developed in
Appendix B. Thus the migration velocity becomes

UCL ∼
[

3a
20
αN − θ̄A − θ̄R

2

]m

, or uCL ∼ k

[
3ζa3

0N
20η′γ

− θ̄A − θ̄R

2

]m

, (4.28)
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Figure 8. (a) Time evolution of dimensionless droplet radius a(t)/a0 by solving (3.18a,b) with contact
angles taken from (4.23) and (4.24) for the case of immobile particles at the liquid–solid interface. Here,
3αN /4 = 1, m = 1 and (θ̄A − θ̄R)/θ0 = 0.1. Independent of initial data, the radius converges to a fixed width
a(t)/a0 = 1.14562. (b) Time evolution of dimensionless droplet midpoint c̄(t)/a0. Independent of initial data,
the midpoint acquires a slope proportional to UCL, the latter denoting the theoretical value of the dimensionless
migration velocity that we derive in (4.26) evaluated at the fixed point attained asymptotically by the radius
a(t)/a0 ∼ 1.14562 in (a). Similar behaviour is obtained for the choice of the mobility exponent m = 3.

1.0

0.8
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3 4

Figure 9. Magnetic droplet profiles migrate on a solid substrate with velocity UCL. The effect is due solely to
magnetic torque, where 3

4αN = 1. Particle rotation at the liquid–gas interface leads to a left–right asymmetry
in the contact angles, migration and a commensurate deformation. The profiles were generated by solving
(3.18a,b) with dynamical contact angles θa(t) and θr(t) from (4.23) and (4.24), and static advancing and
receding contact angles θA = 1.2 and θR = 1.1 (both scaled by the initial contact angle θ0).
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Figure 10. Droplet migration with 3

4αN = 4 at time t = 580, as displayed in figure 9. The synergy between
the magnetic torque and the solid-surface tank-treading embodied in the ‘forcing’ term 3

4αN of‘(4.21) deforms
the droplet and its streamlines, breaks the left–right symmetry of the contact angles, and leads to migration
with velocity UCL (cf. (4.26)).

with respect to dimensionless and dimensional parameters, respectively, from which one
can derive a bound for the necessary torque required to give rise to droplet migration,

N >
10η′γ �θ

3ζa3
0

, (4.29)

by making the simplifying estimate A ∼ 1, that is, a ∼ a0.
Droplet migration takes place when the expression inside the square brackets of (4.26)

is positive. This is a transcendental equation that N has to satisfy in order for migration to
take place.

For certain applications, for instance those promoting active surfaces, one will be
interested in estimating the liquid velocity at the peak of the interface z = ξ(x, t) (cf.
figure 1). Following the same line of argument as at the end of the previous subsection, we
arrive at the estimates

Ut ∼ 7
24
αN̄Ξ3 + O(Ξ5), or ut ∼ 7

24
ζ

(η + ζ )η′ Nξ3 + O(ξ5) (4.30)

in the limit of small droplet thickness.
In figure 11, we display droplet snapshots taken at various regimes formed in the

A,N plane. The interpretation of the various regimes is given in figure 11(b). Pure
migration (without spreading or receding contact angles) takes place at the central line
θa(t)− θ̄A = −θr(t)+ θ̄R, for all marked torque values, from its intersection with the
θa = θ̄A and θr(t) = θ̄R curves to its intersection with the θr(t) = 0 curve.

5. Droplet migration against fields: the inclined substrate

Interfacial driving mechanisms are particularly important in microfluidic devices due
to their large surface-to-volume ratio. Current interest lies in discrete or continuous
microscopic control of small-scale systems, and applications vary from clinical and
forensic analysis to semiconductor devices and environmental monitoring (Darhuber &
Troian 2005).

An immediate application can be found in actuating droplets against fields and forces.
For instance, the mechanism described in the present paper can be employed to drive
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Figure 11. Parameter plot for dimensionless droplet radius A = ca(t)− cr(t)/2a0 versus dimensionless torque
3
4αN = 3λζa3

0N/(η′γ ) (cf. (4.21)) for the evolution of the droplet with static advancing and receding contact
angles θ̄A = 1.2 and θ̄R = 1.1 (scaled by θ0), employing (4.23) and (4.24). The seven allowed regions describe:
I, two-sided spreading; II, pinned (immobile) droplet; III, receding droplet; IV, pinned left, spreading right
contact line; V, pinned right, receding left contact line; VIa, droplet migrates and spreads; VIb droplet migrates
and recedes. The delineations correspond to θr(t) = θ̄A, θr(t) = θ̄R, θr(t) = 0, θa(t) = θ̄A, θa(t) = θ̄R, θa(t)−
θ̄A = −θr(t)+ θ̄R. The upper right corner region of the plot (above the line θr = 0) corresponds to unphysical
behaviour.

droplets against the gravitational field: pressure gradients will be balanced against gravity
when droplets climb a plane inclined at an angle ψ (cf. figure 1b).

5.1. Infinitesimally inclined substrate
We recall from (4.4) that C̄P̄X = G(sinψ/θ0 +ΞX cosψ)−ΞXXX. Assuming small
inclination angles ψ = θ0ψ0 (small θ0, finite ψ0), the perpendicular and horizontal
components of gravity involve

G cosψ ∼ G and
G
θ0

sinψ ∼ Gψ0, (5.1a,b)

respectively. Thus the quasi-static profile of the liquid–gas interface is given (for Λ /= 0)
by

ΞXXX − GΞX + 3αΛN − ψ0G ∼ 0. (5.2)

This is the same as the equation describing the quasi-static evolution of droplets with finite
particle angular velocity at the liquid–solid substrate interface (cf. (4.5)) corrected for the
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Figure 12. Droplet profiles at times t = 0.1, 12 and 80 from left to right. The combined effect of bulk magnetic
torque and tank-treading at the liquid–solid interface induces droplet migration on an inclined substrate with
G sinψ = 0.1, 3αΛN = 4. Their effect leads to a left–right asymmetry in the contact angles, a commensurate
deformation that, when contact angles overcome hysteresis effects (see (5.4)), will lead the droplets to act
against the gravitational field, thus starting to climb the inclined plane.

presence of finite inclination ψ0G. Thus the results of § 4.2 carry over here by making the
substitution

3αΛN → 3αΛN − ψ0G. (5.3)

In particular, the droplet migration velocity is given by

UCL =
[
(3αΛN − ψ0G)

A
√

G cosh A
√

G − sinh A
√

G

G sinh A
√

G
− θ̄A − θ̄R

2

]m

. (5.4)

Figure 12 displays droplets climbing an inclined plane at small angle θ0ψ0 with velocity
UCL (cf. (5.4)) whose profiles are calculated from (4.7) by incorporating the contact
angles (4.9) into the mobility law (3.18a,b) and performing the substitution (5.3). Thus
the magnetic torque-induced deformation of the droplet leads to a left–right asymmetry of
the contact angles that overcomes both hysteresis effects (at a sufficiently strong magnitude
of the torque) and the decelerating effects of gravity. The propulsion mechanism described
in this paper can be employed to drive droplets against other fields, such as temperature
gradients.

6. Climbing films

The evolution equation with flux function (3.38) that incorporates the effects of finite
particle angular velocity (Λ /= 0) at the liquid–solid interface can be employed to realize
the climbing of magnetic films on an incline (cf. figure 1c). There are two physical effects
at play here: the magnetic torque itself generates a ‘conveyor-belt’ type mechanism induced
by the particle collective rotation at the liquid–gas interface, which can enable transport of
cargo. On the other hand, the finite particle angular velocity at the liquid–solid interface
acts as ‘tank-treading’ that enables the whole film to climb.

If such a mechanism is to be used for the transport of cargo, then one would need to
know the order of magnitude of the ‘conveyor-belt’ velocity. The liquid velocity field will
again be given by (A1), employing the alternative scalings (cf. Kirkinis 2017)

U = u
U0
, Ξ = ξ

ξ0
, Λ = λ

ξ0
, N̄ = Nξ2

0
η′Ω0

, α = ζ

η + ζ
, β = 2

ζ ξ2
0
η′ , (6.1a–f )
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Figure 13. Symmetries of the equations of motion for (a) a torque-driven (hard-wall) channel flow, (b) a
pressure-driven droplet, and (c) symmetry-breaking in a torque-driven droplet. See the text for discussion of
(c) (developed in the present paper).

where ξ0, U0 and Ω0 = U0/ξ0 are the characteristic thickness, horizontal velocity and
particle angular velocity of the film. We consider the quasi-static limit for which C̄ → 0.

The interfacial velocity is thus given in the two separate regimes

Ut ∼ 1
2
αΛN̄Ξ2, or ut ∼ λζ

2η′(η + ζ )
Nξ2, for Λ /= 0, (6.2)

and

Ut ∼ 7
24
αN̄Ξ3, or ut ∼ 7ζ

24η′(η + ζ )
Nhξ3, for Λ = 0. (6.3)

Thus, under this mechanism, the transport of cargo (cf. figure 1) is a possibility.

7. Droplet migration is induced by symmetry-breaking

When a magnetic liquid moves in a channel under the influence of a magnetic torque N,
the equations of motion (3.6)–(3.8) and the corresponding boundary conditions (3.12a,b)
and (3.14) are invariant with respect to the transformation (cf. figure 13a)

(x, z) → (−x,−z), (u,w) → (−u,−w), ω → ω, (7.1a–c)

where the latter two symmetries are present because the velocity is a polar vector and the
angular velocity is an axial or pseudo-vector, and the gravitational potential is ignored. A
similar symmetry (x → −x, u → −u, ω → −ω) holds for a magnetic liquid in a droplet
in the presence of a pressure gradient but in the absence of an external field (magnetic
torque or temperature gradient); see figure 13(b).

In this paper, we consider the case displayed in figure 13(c). A droplet in the presence of
a magnetic torque breaks the reflection symmetry x → −x, whereby ω and its derivatives
become the symmetry-breaking terms in the equations of motion (3.6)–(3.8) and in the
shear stress boundary condition (first equation of (3.12a,b)). The loss of symmetry in the
above system is inherited by the evolution equation for the liquid–gas interface,

ξt + N
(
ξn)

x +
[
ξ3(−gξx + γ ξxxx)

]
x
= 0, (7.2)

written in a form suggestive only of the physical effects by scaling the numerical factors,
and where n is a positive integer (cf. (3.40) and (3.41)). Here, N is the magnetic torque or
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the strength of a surface tension gradient induced by a horizontal temperature gradient
(Smith 1995), g is the gravitational acceleration, and γ is the surface tension. In the
analysis of the thermocapillary droplet migration, Smith (1995) found the exponent n = 2.
Here, we consider problems described by equations more general than (7.2), but in certain
limits, our problem can be reduced to equations of the type (7.2), so one can explore the
physics of droplet migration by this simple model. In these simplifying cases, we find
the exponents n = 3 (when a finite particle angular velocity is allowed at the liquid–solid
interface, λ /= 0 in (3.10a–c); see (3.40)) and n = 4 (when λ ≡ 0; see (3.41)).

In the absence of external torque, (7.2) is invariant with respect to the reflection
symmetry x → −x. The torque N breaks this symmetry. For a thin long film, and in
the presence of an instability mechanism (Rayleigh–Taylor instability, thermocapillary
instability, attractive van der Waals intermolecular forces, etc.), it was shown (Kirkinis
& Davis 2015) that the loss of this symmetry leads to a unidirectional nonlinear interfacial
wave propagation that can mitigate the effects of instability. The unidirectional character
of (7.2) comes from the single time derivative, and the nonlinearity (convective term
multiplying N) gives rise to shock or rarefaction waves that, however, become smoothed
out by surface-tension-mediated dispersion (the term multiplying γ ) and by gravity.

A droplet is, however, characterized by the absorbing boundaries (3.37a,b) that limit
wave propagation. Thus the consequence of the symmetry-breaking nonlinear term
multiplying N in (7.2), or the symmetry-breaking that equivalently takes place in the
original equations (3.6)–(3.8) coupled to the shear stress boundary conditions (first of
(3.12a,b)), is to induce a permanent non-axisymmetric deformation of the droplet.

The effects of symmetry breaking are also inherited by the mobility law (3.18a,b). In the
absence of torque (but in the presence of gravity or a vertical temperature gradient with a
Marangoni number denoted by M; Ehrhard & Davis 1991), the midpoint of the droplet is
immobile:

d(ca + cr)

dt
= 0. (7.3)

This is because in the cases considered by Ehrhard & Davis (1991), the left and right
dynamic contact angles are equal to each other (θa = −hx(ca) = hx(cr) = θr) and the
droplet can undergo only spreading or retraction. Analytically,

d(ca + cr)

dt
= (θa(M)− θ̄A)

m − (θr(M)− θ̄A)
m ∼ m(θa(0)− θ̄A)

m−1M
(

dθa

dM
− dθr

dM

)
= 0

(7.4)

because dθa/dM = dθr/dM; see figure 14(a) and the mobility law (3.18a,b) – in this
calculation, we considered the approximation θa(M) ∼ θa(0)+ M(dθa/dM)(0), θr(M) ∼
θr(0)+ M(dθr/dM)(0) and the fact that θa(0) = θr(0).

In the presence of torque that we are considering in this paper (or a horizontal
temperature gradient considered by Smith (1995), both denoted by N) we show that the
droplet midpoint is instead mobile:

d(ca + cr)

dt
/= 0. (7.5)
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θr(0)

M
dθr
dM

θa(0)

M
dθa
dM

Spreading

θr(0)

N
dθr
dN

θa(0)

N
dθa
dN

Migration

(b)(a)

Figure 14. (a) Explanation of the calculation of the midpoint velocity of the droplet in (7.4), under a vertical
temperature gradient (Ehrhard & Davis 1991). The droplet whose contact angles, in the absence of the
temperature gradient, are θr(M = 0) = θa(M = 0) spreads under the influence of the gradient of strength
M. The contact angle increments generated by it are equal: M(dθr/dM)(M = 0) = M(dθa/dM)(M = 0). (b)
Explanation of the calculation of the midpoint velocity of the droplet in (7.6), under a horizontal temperature
gradient (Smith 1995) or the magnetic torque (studied in the present paper). The droplet whose contact angles,
in the absence of the temperature gradient, are θr(N = 0) = θa(N = 0) migrates under the influence of the
horizontal temperature gradient or magnetic torque (whose strength is denoted by N). The contact angle
increments generated by it have equal magnitudes but opposite signs: N(dθr/dN)(N = 0) = −N(dθa/dN)(N =
0).

Thus, in contrast to the case of spreading described by (7.4) (Ehrhard & Davis 1991), we
now have dθa/dN = −dθr/dN (see figure 14b). Thus

d(ca + cr)

dt
= (θa(N)− θ̄A)

m + (θ̄R − θr(N))m

∼ mN(θa(0)− θ̄A)
m−1

(
dθa

dN
− dθr

dN

)
= 2N

dθa

dN
/= 0, (7.6)

where in the last equality we set m = 1. Thus symmetry-breaking, evident in the
Navier–Stokes equations, its various reductions and constitutive laws, accompanies the
migration of liquid droplets.

8. Estimates

In this section, we provide numerical estimates of the effects discussed in this paper.
Various magnetic torque density experimental measurements have appeared in the
literature, ranging from 0.3 dyne cm−2 to 2 × 104 dyne cm−2. In table 2, we take the
middle of these values to use as a characteristic torque density.

For the non-zero particle angular velocity at the liquid–solid substrate case, developed in
§ 4.2, from (4.19) and employing values from table 2, we calculate η′γ (θ̄A − θ̄R)/6ζλa2 ∼
2, which provides a conservative estimate of the required magnetic torque that leads to
droplet migration. This estimate is much lower than characteristic experimental torque
measurements (see table 2 and Chaves et al. 2008), demonstrating that the theory that we
developed in the foregoing sections is compatible with experiment.

A similar estimate can be carried out for the zero particle angular velocity at the
liquid–solid substrate case, developed in § 4.3. Equation (4.29), 10η′γ �θ/3ζa3

0 ∼ 9,
shows that this value is also compatible with experimental torque measurements (see
table 2 and Chaves et al. 2008).

The contact line velocity depends on the mobility k and the deviation of N away from
�θ . The phenomenological constant k also has to be determined by experiment. For
instance, Ehrhard (1993) determined that k ∼ 4 mm s−1 and k ∼ 8 mm s−1 for silicon
oil and paraffin oil, respectively, in his experiments on non-isothermal spreading on glass.
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Quantity Description Definition

θ̄A, θ̄R Static advancing and receding contact angles figure 2, (3.19a,b)
θa(t), θr(t) Right and left dynamic contact angles figure 2, (3.17a,b)
η, ζ, η′ Constitutive parameters (2.2), (2.4)
ca(t), cr(t) Horizontal coordinates of right/left contact lines (3.17a,b)
a(t),A(t) Dimensional (-less) droplet half-width (radius) (A8), (4.8)
c̄(t) Dimensional centre of the droplet (A6)
u,w, (U,W) Dimensional (-less) horizontal/vertical velocity fields (3.2a–c), (3.22a–e)
uCL, (UCL) Dimensional (-less) contact line velocity (1.1), (3.22a–e)
ω, (Ω) Dimensional (-less) particle angular velocity (3.8), (3.22a–e)
m, h, b Dimensional magnetization and magnetic fields (2.5a,b)
λ, (Λ) Dimensional (-less) rotational slip length (2.14), (3.23a–d)
k Contact line mobility (1.1)
K Mean curvature (2.9), (3.13)
t̂, n̂ Tangent and normal unit vectors at an interface figure 2, (2.9), (3.11a,b)
x, z, t, (X,Z,T) Dimensional (-less) spatial coordinates and time figure 2, (3.21a–c)
ξ(x, t), (Ξ(X,T)) Dimensional (-less) liquid–gas interface (3.22a–e), (3.1)
θ0, a0,V0 Characteristic contact angle/droplet radius/volume (3.21a–c), (3.37a,b), (3.20a–c)
τB, ν Brownian time scale and external field frequency (2.7)
p, (P) Dimensional (-less) pressure (2.2), (3.22a–e)
Re,Re′ Translational and rotational Reynolds numbers (3.23a–d)
C̄ Capillary number (3.23a–d)
N, (N̄ ,N ) Dimensional (-less) magnetic torque (2.6), (3.24a,b), (4.1a,b)
g, (Ḡ,G) Dimensional (-less) grav. acceleration, Bond number (3.9), (3.26a,b), (4.1a,b)
φ, (Φ) Dimensional (-less) potential (3.9), (3.24a,b), (3.26a,b)
Ψ Dimensionless streamfunction (4.11)
ψ Inclination angle of a plane § 5

Table 1. Notation employed in this paper.

Quantity Value Definition

θ̄A − θ̄R (deg.) 10–20 Hysteresis angle
η (g cm−1 s−1) 0.045 Viscosity (2.2)
ζ (g cm−1 s−1) 0.003 Vortex viscosity (2.2)
η′ (g cm s−1) 10−7 Spin viscosity (2.4)
γ (dyne cm−1) 29 Surface tension
a0 (cm) 5 × 10−2 Characteristic droplet radius
θ0 (deg.) 3–10 Characteristic initial angle
ξ (cm) 2 × 10−3 Droplet maximum thickness
N (dyne cm−2) 2 Characteristic torque density
λ (cm) 10−2 Rotational slip length (2.14)

Table 2. Experimental values taken from Rinaldi & Zahn (2002) and Chaves et al. (2006, 2008) for EMG
900_2 ferrofluid and from Ehrhard (1993).

An estimate of the velocity of cargo transport (6.3) by a climbing film is

ut ∼ 7ζ
24η′(η + ζ )

Nξ3 ∼ 30 μm s−1, (8.1)

following the values of table 2.
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Activity-induced droplet migration

9. Discussion

In this paper, we demonstrated the effectiveness of a magnetic torque in a liquid endowed
with rotational degrees of freedom to induce migration of liquid droplets: the collective
particle rotation at the droplet free surface, acting as a surface shear, can overcome
hysteresis effects and lead to their migration even in the presence of opposing external
fields. We obtained non-perturbative expressions for the droplet migration velocity and
other observables that could be incorporated easily in an experiment.

It was discussed recently that a liquid with broken time-reversal symmetry allows for
the incorporation of new stress and rate-of-strain relations into the liquid constitutive
laws (Ganeshan & Abanov 2017). At a liquid–gas interface, the stress accompanying
odd viscosity is always normal to the standard shear stress of Newtonian liquids. This
can bring about new effects. For instance, the particle-angular-velocity-induced shear
stress giving rise to the effects studied in the present paper will be accompanied by an
odd viscosity-induced normal pressure (Avron 1998). This could influence the shape of
the droplet and its dynamics. Investigation of such effects is beyond the scope of the
present paper. See Kirkinis, Mason & Olvera de la Cruz (2022) for a discussion of the
consequences of odd viscosity on free-surface flows.

Although the effect discussed in the present paper has definite applications in industry
(cf. figure 1), its inspiration originates from medicine. In particular, it is based on the
observation that targeting malignant cells with nanoparticles has proven elusive: recent
research showed that only 1 % of these particles reach their target (Wilhelm et al. 2016).
The ramifications of this failure include poor translation of nanotechnology to humans,
increased costs and toxicity, and declining therapeutic efficacy. To digress from the
1 % targeting threshold, it is imperative that new and unconventional mechanisms of
locomotion are invented. Thus our work in the present paper should be considered as a
precursor to the development of future targeting-specific locomotion strategies.
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Appendix A. U and Ω for constant torque

In the lubrication approximation, the liquid velocity and particle angular velocities
(already satisfying UZ = 2αΩ , at Z = Ξ(X, T), and U = 0 at Z = 0) take the forms

U = (1/2z2 − Hz)P̄X

1 − α
+ αN̄ z
β(1 − α)

+ 2
α
(
C1(eκz − 1)− C2(e−κz − 1)

)
k

, (A1)
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Ω = P̄X(z − H)
2 − 2α

+ C1 eκz + C2 e−κz + 1
2

N̄
β (1 − α)

(A2)

where the constants Ci are determined from the boundary conditions

Ω = 0 at Z = Ξ(X, T) and Ω = ΛΩZ at Z = 0. (A3a,b)

as

C1 = −
(
Ξ e−κΞ κ +Λ e−κΞ κ −Λκ − 1

)
P̄X

2
(
Λκ eκΞ −Λ e−κΞ κ + eκΞ + e−κΞ ) κ(α − 1)

+ N̄ e−κΞ

2(α − 1)
(
Λκ eκΞ −Λ e−κΞ κ + eκΞ + e−κΞ )β (A4)

and

C2 = −
(
Ξ eκΞ κ +Λκ eκΞ −Λκ + 1

)
P̄X

2
(
Λκ eκΞ −Λ e−κΞ κ + eκΞ + e−κΞ ) κ(α − 1)

+ eκΞ N̄
2(α − 1)

(
Λκ eκΞ −Λ e−κΞ κ + eκΞ + e−κΞ )β . (A5)

A.1. Formulation in the ‘centre-of-mass’ frame of reference
Following Smith (1995), we can formulate the problem by considering the droplet moving
with respect to the reference frame whose origin is located at the centre of the droplet:

c̄(t) = ca(t)+ cr(t)
2

. (A6)

Then we define a new coordinate X with respect to the new origin and a new droplet height
ξ̄(x̄) such that

x̄ = x − c̄(t) and ξ̄(x̄) = ξ̄(x − c̄(t)) = ξ(x) = ξ(x̄ + c̄(t)). (A7a,b)

Defining the half-width of the droplet as

a(t) = ca(t)− cr(t)
2

, (A8)

we have, for example, ξ̄x̄(a) = ξx(ca) and ξ̄x̄(−a) = ξx(cr). Then the boundary conditions
become

ξ̄(−a) = ξ̄(a) = 0, 1 =
∫ a

−a
ξ̄(x̄) dx̄, (A9a,b)

with
θa(t) = −ξ̄x̄(a), θr(t) = ξ̄x̄(−a). (A10a,b)

One then needs to integrate (3.18a,b) with the above boundary conditions to obtain ca and
cr, and from them obtain expressions for the half-width a(t) and droplet centre c̄(t).

We will invoke two simplifications in the notation. First, we drop the bars on the
variables defined in this section. And second, we will scale the static angles θ̄A and θ̄R, and
their dynamic counterparts θa(t) and θr(t), by the initial angle θ0. For notational simplicity,
we will retain the same symbol for both unscaled and scaled angles.
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Appendix B. General expression for migration velocity in the perturbative regime

We recall that in the case of thermocapillary spreading of a viscous droplet (Ehrhard &
Davis 1991), the left and right contact lines are simultaneously advancing or receding.
Without loss of generality, we consider only the advancing case (as was developed in the
thermocapillarity problem; Ehrhard & Davis 1991): the left and right contact angles are
always equal, so

θa = F0 + MF1 and θr = F0 + MF1, (B1a,b)

where F0 = −3/(2a2), F1 = 3a/2, M � 1 is the Marangoni number (proportional to the
temperature gradients responsible for the spreading behaviour), and a = a(t) is the droplet
spreading radius. The smallness of the parameter M implies that the above result holds in a
perturbative calculation, or when the external effects that lead to motion can be superposed
on a base motion (as is the case in the non-perturbative result that we derive in § 4.2).

On the other hand, in the presence of a horizontal temperature gradient (Smith 1995) or
torque of strength N̄ (considered in the present paper), the left–right symmetry of contact
angles breaks

θa = F0 + N̄F1 and θr = F0 − N̄F1. (B2a,b)

The explicit forms of F0 and F1 are not needed here; in the context of a specific problem,
they are given, for instance, by (4.16a–c). When the droplet has reached its steady-state
migration shape and velocity (i.e. moving as a whole without deforming and at constant
speed), the contact angles are related by

θa − θ̄A = θ̄R − θr and θa − θ̄A > 0, θr � 0 (B3a,b)

(cf. the central vertical curve in figures 6, 7 and 11). Employing (B2a,b), the above
expressions lead to

θa + θr = 2F0 = θ̄A + θ̄R, (B4)

and the inequality

0 < 1
2(θ̄A − θ̄R) < N̄F1. (B5)

Employing (B4), the migration velocity is then given by

UCL = (θa − θ̄A)
m = [

F0 + N̄F1 − θ̄A
]m =

[
N̄F1 − θ̄A − θ̄R

2

]m

. (B6)

Migration velocities derived in the main body of the present paper in the limit of small N̄
acquire this form (see (4.16a–c) and (4.28)). For a specially prepared substrate devoid of
hysteresis effects (θ̄A = θ̄R /= 0), the migration velocity reduces to

UCL = (N̄F1
)m
, (B7)

thus droplet migration is a purely magnetic-torque-induced effect. This discussion is
independent of the specific numerical value attached to the exponent m. A direct derivation
of (B6) and (B7) can also be carried out.
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