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MARKOV'S AND BERNSTEIN'S INEQUALITIES ON 
DISJOINT INTERVALS 

PETER B. BORWEIN 

1. Introduction. In 1889, A. A. Markov proved the following 
inequality: 

INEQUALITY 1. (Markov [4]). If pn is any algebraic polynomial of degree 
at most n then 

2n2 

\\Pn\\[aM S £ - 3 7 - ||Ai||[a,ô] 

where || \\A denotes the supremum norm on A. 

In 1912, S. N. Bernstein established 

INEQUALITY 2. (Bernstein [2]). If pn is any algebraic polynomial of 
degree at most n then 

n 
lPn'(x)l = ((x - a){b - xYT l^"l , ["« 

for x G (aj b). 

In this paper we extend these inequalities to sets of the form 
[a, b] VJ [c, d]. Let Tln denote the set of algebraic polynomials with real 
coefficients of degree at most n. 

THEOREM 1. Let a < b ^ c < d and let pn £ Un. Then 

n 
((b — x)(x — a)) \pn(x)\ ^ yd _ J ~((k _ ^ ( ^ ^ / 2 | |^n| | [a ,&] U led] 

for x £ (a, b). 

We note that Inequality 2 is a special case (b = c = d) of the above 
theorem. 

COROLLARY 1. Let a < b ^ c < d and let pn £ Un> Then 

\P'M\ £ \t=Z) ({x - C)(d - X))^ ll^ll[«.«u[«.«.i. 

for x G (c, d). 
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202 PETER B. BORWEIN 

COROLLARY 2. Let a < b ^ c < d and let pn 6 nn. Then, 

I I ^ H t M l ^ \jZTl) rf^l limita. ,6] U [c,d]-

Thus, we obtain sharper bounds than those we achieve by applying 
Inequality 1 or Inequality 2 directly to [c, d]. 

On sets of the form [ — b, — a] KJ [a, b] we can derive an asymptotically 
"best possible" form of Markov's inequality. 

THEOREM 2. a) If 0 < a < b, n is even and pn £ nn , £feew 

/ 9 \ n2b 
\\Pn\\[-b,-a] U [a. &] = I 1 + " 2 ) ~L2~~? I I A i I I [-&,-«] U [a,b] 

provided that n is large enough to satisfy 

b2 - o2 , (b + a) I, , 6 \ 2 6(&2_a2)5a&w 

3a6n ^ 2b \ ^ nl 

b) .For each even n there exists pn Ç n^ 50 /^a£ 

2/ 

l b n ' | | [ - 6 , - a ] U [a,b] = ~jf~Z~^2 \ \pn\ \ [-b,-a] U [a, &] • 

COROLLARY 3. Suppose n is even and n ^ 50. / / ?̂n G IIW then 

2 

3~ 
( 9 \ 2n2 

1 + "2 I - ^ - | b n | | [ - 2 , - l ] U [1,2]-

2. Characterizing polynomials that maximize Markov's or 
Bernstein's inequalities. In this section we show that polynomials 
that maximize \pn'(t)\> subject to \\pn\\ / ^ 1 where / is compact, must be 
of the form 

axn + fix71'1 — gn-2(oc) 

where gn_2 G nn_2 is the best approximation to axn + fix"1*1 on / . In 
particular, we show, as Bernstein did for the interval [0, 1] (see [2]), that 
the polynomial that satisfies \\pn\\ 1 ^ 1 and has maximum derivative at 
max / is of the form 

pn(x) = axn - qn-i(x) 

where qn-i 6 nw_i and qn-\ is the best approximation to axn on / . 

THEOREM 3. Let I be any infinite compact set of real numbers and let 
f G R. Suppose pn Ç IIn satisfies 

(l) JMm_maxi&i(m 
\l) 11^ 11 ~ max u u 

I l / M l I qn£Un \\qn\\ I 
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Then, there exist a and ft so that pn(x) = axn + fixn~l — sn-2(x) where 
V-2 £ nw_2 is the best Chebyshev approximation to axn + $xn~l on I. (The 
best Chebyshev approximation is the one that minimizes the supremum norm.) 

We need the following lemma for the proof of this theorem: 

LEMMA 1. Let pn Ç Hn and let f be any point that is not a root of pn. 
Suppose that there exist at most k ^ n — 2 points x\ < x2 < ... < xk where 
pn changes sign. Then there exists qn Ç Un so that 

a) sgn gn ' (f) = sgn pn'(Ç), 
b) sgn qn(x) = —sgn pn(x), except possibly at the roots of qn. 

Proof. Let 

k 

s(x) = - ( s g n ^ „ ( - o o ) ) ( - l ) * n (x-Xi) 

and consider qn
v(x) = s(x)(x — y)2. Then, if s(Ç) ^ 0, 

= (r-y)(2î(r) + (f-yK(r)) 
f 

which as a function of y changes sign a t f. Thus , for an appropria te 3> close 

to f, <// satisfies a) and b) . 

Proof of Theorem 3. Let £w satisfy the assumptions of the theorem ( tha t 
such a pn exists is a simple consequence of nw being finite dimensional) . 

Suppose pn has a t most n — 2 changes of sign and suppose pn(£) ^ 0. 
If qn satisfies the conclusion of Lemma 1, then for sufficiently small e > 0, 

\\pn + egn\\j £ \\pn\\r a n d \pn'(ft + eqn'(ft\ > \pn''(f)| 

which contradicts the assumption tha t pn satisfies (1). Now suppose 
Pn(£) = 0 and pn changes sign a t x\ < ... < xk. If 

qn(x) = - ( s g n p „ ( - o o ) ) ( - l ) * ( n ( * - * < ) ) ( * ~ f ) 2 

then, for sufficiently small e > 0, 

\\pn + eqn\\i < \\pn\\i and \pn'(Ç) + eqn'(ft\ = \pn'(Ç)\ 

which also contradicts the assumption tha t pn satisfies (1). Thus , pn has 
a t least n — 1 sign changes. 

We now suppose tha t the coefficient of xn is non-zero for pn. I t follows 
tha t pn has n real roots X\ < x2 < ... < xn. We claim tha t in each interval 
(Xj, Xj+i) there exists a point yt Ç I so t ha t 

(2) \pn(yt)\ = \\Pn\\l. 

If (2) is false then as in the proof of the lemma, we can, for a sui tably 

dqn
v(x) 
dx 
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chosen y, construct 

qnix) = - ( s g n / > » ( - » ) ) ( - l ) n ( n ( * - * < ) ) ( f i ( * - * < ) 

X (x - y) 2 

where 

a) sgn gn ' (f) = sgn£ r c ' ( f ) 

and 

b) sgn gn(x) = - s g n £w(x), 

except possibly for x G {xi, ..., xn, ;y} U [x ;, x^ - J . We note t ha t since the 
y of Lemma 1 can be chosen from an interval, we may assume tha t 
\pn(y)\ ^ ll^nll i- I t follows from a ) , b) and the assumption 

WPnWixj^j+i] < \\pn\\ I 

t ha t for sufficiently small e > 0, 

\\pn + €g„|| 7 < \\pn\\l 

and 

\pn'(t) + «z»'(r)i è IK(r)l-
This contradiction establishes (2). 

We may by a similar a rgument show tha t there exists yn so tha t 

yn 6 J Pi ( - 0 0 , Xi) or yn £ I C~\ (xw, 00 ) 

a n d 

l£nCyn)| = \\Pn\\l-

Thus , if pn(x) = axn + /3xn-1 — 5w_2(x) where a ^ 0, then £n achieves 
its maximum norm, with a l ternate sign, a t n points 3/1 < y2 < ... < yn 

in / . This suffices to establish the theorem. 

If pn is actually of degree n— 1, then pn(x) = /3xw__1 — gn_2(x). A 
similar a rgument shows tha t gn_2(x) is the best approximation to fixn~l 

on / . 

T H E O R E M 4. Let I be any infinite compact set and let f §; b — max / . 

Suppose pn Ç IIW satisfies 

m M Û l _ m a x M f ) l 
^1>' I k II ~ m d X I | „ I I 

llPnll / çn6nn | |2n | | 7 

rfcew pn(%) — a^n ~ <Ln-i(%) where gn_i e Ilw_i awd gw_i is Jfte fres£ Cheby-
shev approximation to axn on I. 
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Proof. Let 7 = min I. The preceding theorem guarantees the existence 
of ?z — 1 points 7 < xi < ... < xn-i < 8 where pn changes sign. We first 
show that pn has n distinct roots in [7, 8]. Suppose pn does not change 
sign at any point in [7, 8] other than xlf ..., xn-i. Consider 

q/M = - sgn (pn^))\H (x - xk)J (y - x) 

= sn(x)(y - x) 

then 

Since sgn sn'(Ç) = sgn sn(Ç) 5* 0 we may, for a suitable choice of y > f, 
set 4 = <Ln w h e r e 

a) s g n ^ ( f ) = sgnp/Cf) 
b) sgn /n = - s g n £w on J. 

Thus, for sufficiently small e > 0, 

II?» + tkWi < \\pn\\i and |A/(r) + eC(f)| > |/>n'(f)| 

which is a contradiction. Thus, pn has ft distinct roots 7 ^ Xi < x2 < ... 
< xn 5g 5. We now show that 

\Pnip)\ = |£n(7) | = ||/>»||/. 

This, coupled with (2) of the proof of Theorem 3, suffices to complete the 
result. We will only show that \pn(8)\ = \\pn\\ 1 since the proof that 
\Pn(y)\ = \\Pn\\i is similar. Suppose \pn(8)\ < \\pn\\i- Let 

qn(x) = - ( s g n ^ ( - o o ) ) ( - l ) w - 1 ( n (* -xt))(y-x) 

where, as before, y > f is chosen so that 

sgn gn'(f) = sgn£n ' ( f) . 

Then, for sufficiently small e > 0, pn + egn contradicts the assumption 
that pn satisfies (1). 

3. Bernstein's inequality on [a, b] U [c, d]. 

Proof of Theorem 1. Let A = [a, b] VJ [c, d] and let T £ A. Let p„ G Un 

satisfy 

M M _ m a x M i l l 
11 11 — m a x j - | | 
MPnlU ?n6nn ||<Z»IU 
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and 

\\PU\\A = i . 

We may, by the proof of Theorem 3, assume t h a t pn has all its roots in A 
with the possible exceptions of a root Xi £ (b, c) and a root X2 > d or 
X2 < a. We t rea t the case where Xi Ç (&, c) and X2 > d. T h e other cases 
proceed analogously. We observe t ha t if we increase c or a and if we 
decrease b or d we strengthen the inequali ty in the s ta tement of the 
theorem. Thus , we may also assume tha t for y £ {a, b, c, d}, 

\pn(y)\ = 1 and \pn'(y)\ 9* 0. 

(If there is no point z £ (b, c) where \pn(z)\ è 1 then we can deduce the 
result from Inequali ty 2.) We have guaranteed the existence of points 

b < a < di < Xi < Ô2 < €2 < c 

and 

d < e3 < <53 < X2 < £4 

so t h a t 

\pn'{u)\ = 0 i = 1 , 2 , 3 

and 

\pn(St)\ = 1 Î = 1,2, 3 ,4 . 

W e deduce from Theorem 3 and a comparison of roots and leading terms 
t ha t 

(Pn(x))2(% — a)(x — b)(x — c)(x — d)(x — di)(x — d2)(x — <53) 

X (x - Ô4) 
= ^ 2 ( ( ^ ( x ) ) 2 - l ) ( x - e i)

2(% - e2)2(x - e3)2. 

Thus , if r G (aj b), 

2 / \2 / \2 

(/>»'(r))* ^ 
x2 ^ n (r — €2) (r — ei) 

| (T _ a ) ( T _ 6 ) ( T _ C)(T _ d ) | (T _ Ô1)(T - Ô2) 

(r - e3)2 . n\r - c)2 

(T - <53)(r - Ô4) = \(j - a)(r - b)(r - c)(r - d)\ 

and the result now follows. 

Corollary 1 follows immediately from Theorem 1. Corollary 2 is a 
consequence of Corollary 1 and the next inequality. 

INEQUALITY 3. (Schur [3] p . 41). If pn-i G IIn_i and 
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then 

2Ln 
\\Pn-l(x)\\la.bl ^ 

4. Markov's inequality on [ — b, — a] VJ [a, b]. We require the follow­
ing results for the proof of Theorem 2. 

THEOREM 5. (Achieser [1], p. 287). Let n be an even integer. The poly­
nomial pn Ç TLn with leading coefficient 1 that deviates least from zero on 
[ — b, —a] U [a, b] is 

where Tn is the n'h Chebyshev polynomial (Tn = cos n cos-1x). 

LEMMA 2. Let n be even and let Sn be defined as in Theorem 5. Then, 

imU.-aiuk.» _ \S'(b)\ _ n2b 
-a] U [a,b] b — a 

The proof of Lemma 2 is straightforward and is omitted. 

LEMMA 3. Suppose n is even. Then 

\pn'{b)\ nb 
m a x 77—yy ' = 72 2 . 
Pn€nn | |Pn| |[-ô,-o] Ula.b] 0 ~ & 

Proof. This is a direct consequence of Theorem 4, Theorem 5 and 
Lemma 2. 

LEMMA 4. (Soble [5]). If pn G IIn has non-negative coefficients then, for 
x > 0 

\p,!(x)\sl\p,(x)\. 

Proof of Theorem 2. Suppose pn 6 Hn satisfies 

I !&/11 [-&,-«! U [a.61 = llffn H[-ft,-a] U [a.6] 

| | A i | | [ - & , - a î U ia,b] qnfUn I \Cn\ \ [-b,-a] U la,b] 

Suppose f G [a, &] is a point where 

\P'(t)\ = llP'l|[->.-«] u [«.*] 

and 

- a ] U [a.61-
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Then, by Inequality 2 applied to [a, b] 

n b n 

6 2 - a 5 = a ô - f ) ( f - a ) ) î 7 5 

and 
/ ? 2 2 s 2 

Since either (b — f) ̂  | (6 — a) or (f - a) ̂  £(6 - a), either 

(ft _ r ) * 2(M^)(J!^!) or (f _ a) ^ 2J6 ± a^L = V i 

Suppose 

(2) (,_f)^?(^.(^^^^^)_ 

Then, by Lemma 3 and (2), for n ^ 10, 

Hftw / | l[-&,-a1 U [a,b] - \Pn'(Ç)\_ ^ » f 
max YJ—rp ~^— ^ max ——-p ' ^ -9—-—2 
Pn&n \\Pn\\[-b,-a]\J[a,b] Vn&U I \Pn \ | [-f,-a] U [a H f ~ ^ 

2 \ 

9 \ n%_ 

I6 bn^-) ~a 

Suppose now that (f — a) ̂  4(&2 — a2)/bn2. Write pn(x) = qm(x)rh(x) 
where çm(x) has all its roots in [ —0, —a] and rft(x) has no roots in 
[ —0, —a]. By Theorem 3, pn oscillates between its maximum and 
minimum at least n times on [ — b, —a] KJ [a, b]. Hence, pn has at least 
n — 2 distinct roots in [ — 0, —a] KJ [a, b]. By the proof of Theorem 3, 
between any two roots of pn there is a point of [~b, — a] VJ [a, b] where pn 

attains its norm. Suppose now that m ^ 2 + n/2. Then, pn(x) — pn( — x) 
G IIn_i has at least n/2 roots in [—-0, —a] and at least n/2 roots in [a, b] 
and hence, pn(x) = — pn( — x)- However, if pn is even, then it follows from 
Theorem 3, Theorem 5 and Lemma 3 that pn = Sn and we are done. Thus, 
we may assume m ^ n/2 + 1. Similarly, since rn has at least h — 2 roots 
in [a, 6], we may assume that h g w/2 + 3. We may also assume that 
n è 10. 

(3) I&/G0I ^ ̂  |g.(f)| ^ ^ 2 | g . ( f ) | . 

Also, since gm(x) = all(x + xt) with Xj ^ a, 

(4) feM . n(L±B) s n(, + i^i) * (1 + »£=,£)""• 
\qm(a)\ \a + xj \ a + xj \ abn / 

< 6(62—a2)/5a&w 
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By Inequality 1, 

2h2 2 ( 2 + 3 ) 2 

(5) K(r)| ^ yz~a llr»ll[«.« = — Y^~^~ IhWia.rt-
Thus, by (3), (4) and (5), 

|p„'(f)| ^ K(f)IK(f)l + |r»'(f)||î„(f)| 

2(f+3) ; 

2 

2 
?z + 2 \^ 

2 ( 5 + 3V 

/ V - a* (è + a ) / . , 6 V 6(ô2-a2)/5a&n\ _ ^ _ 

- \~3^T + ~2b~ V + n) e ) b^c 

X WpnWla.*]. 
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