Can. J. Math., Vol. XXXIII, No. 1, 1981, pp. 201-209

MARKOV’S AND BERNSTEIN’S INEQUALITIES ON
DISJOINT INTERVALS

PETER B. BORWEIN
1. Introduction. In 1889, A. A. Markov proved the following
inequality:

IneQuaLITY 1. (Markov [4]). If p, is any algebraic polynomial of degree
at most n then

o’

Hpn’”[a.b] = b —a Han[a,lﬂ
where || || 4 denotes the supremum norm on A.
In 1912, S. N. Bernstein established

INEQUALITY 2. (Bernstein [2]). If p, is any algebraic polynomial of
degree at most n then

’ n
[P ()] = (x —a)(b — x))l/Z [12n] a0
for x € (a, ).

In this paper we extend these inequalities to sets of the form
[a, b] \J [¢, d]. Let II, denote the set of algebraic polynomials with real
coefficients of degree at most #.

THEOREM 1. Let a < b < ¢ < d and let p, € 1,,. Then

X

1/2
n
x) (b =) —a))” Noalltan U te.a

b ()| < (2 =
for x € (a,b).

We note that Inequality 2 is a special case (b = ¢ = d) of the above
theorem.

COROLLARY 1. Let a < b £ ¢ < d and let p, € 1,,. Then

IP ( )I ——< ( . ]) : X . 1 X /2 Hp “[ 1 [c.al
X (( )( ))] 2 n|(la,0] U [¢c,dly
fO? X (E (C, d).
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COROLLARY 2. Let ¢ < b £ ¢ < d and let p, € 1I,. Then,

d—b\'"* 24"
164 lliear (d—_—) .

a

T 1ol v e

Thus, we obtain sharper bounds than those we achieve by applying
Inequality 1 or Inequality 2 directly to [¢, d].

On sets of the form [—b, —a] \U [a, b] we can derive an asymptotically
“best possible” form of Markov's inequality.

THEOREM 2. a) If 0 < a < b, n 1s even and p, € 1L, then

on et Uan = |1+ ‘95 ‘_i__nib 3 | |Pnlli=v—al U taun)
n/) b a
provided that n is large enough to satisfy
b2 - 612 (b + (1) ( 6)2 6(b2—a?) babn
= <
3abn t 2b 1+ nl © = 1

b) For each even n there exists p, € 11, so that

2.
nb

Hpn'H[—b.—a] U la,0] = 55 . HanFb,—a] U la,0]-

COROLLARY 3. Suppose n is even and n = 50. If p, € 11, then

, 9\ 21’
o 2y = |1+ ) [|Pn]li=2~11 U 11,21

2. Characterizing polynomials that maximize Markov’s or
Bernstein’s inequalities. In this section we show that polynomials

that maximize |p,’ (£)|, subject to ||p,|| ; < 1 where I is compact, must be
of the form

ax” + fx"t — gpa(x)
where ¢,_» € II,_» is the best approximation to ax" + B8x"~! on I. In
particular, we show, as Bernstein did for the interval [0, 1] (see [2]), that
the polynomial that satisfies ||,]| ; < 1 and has maximum derivative at
max I is of the form

pa(x) = ax" — gu1(x)
where ¢,—1 € II,_; and ¢,_; is the best approximation to ax”™ on I.

THEOREM 3. Let I be any infinite compact set of real numbers and let
¢ € R. Suppose p, € 11, satisfies

'O _ o el @)
O ealls = ik Tlanll 1

nF
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Then, there exist a and B so that p,(x) = ax® + Bx"1 — s,_o(x) where
Su—2 € IL,_s is the best Chebyshev approximation to ax™ + Bx*' on I. (The
best Chebyshev approximation is the one that minimaizes the supremum norm.)

We need the following lemma for the proof of this theorem:

Lemma 1. Let p, € I, and let ¢ be any point that is not a root of py.
Suppose that there exist at most k < n — 2 points x; < x2 < ... < x, where
D changes sign. Then there exists q, € 11, so that

a) sgn g,' (¢) = sgn p,'(¢),

b) sgn q,(x) = —sgn p,(x), except possibly at the roots of q,.

Proof. Let

@) = = Gogn pu(—0 (=T (& = =0
and consider ¢,*(x) = s(x)(x — )% Then, if s(¢) # 0,

dif(}ix@. = = »@sE) + ¢ =)

which as a function of y changes sign at ¢. Thus, for an appropriate ¥y close
to ¢, g,/ satisfies a) and b).

Proof of Theorem 3. Let p, satisfy the assumptions of the theorem (that
such a p, exists is a simple consequence of II, being finite dimensional).

Suppose p, has at most # — 2 changes of sign and suppose p,(¢) # 0.
If ¢, satisfies the conclusion of Lemma 1, then for sufficiently small € > 0,

”pn + GQnHI =< Hpni 7 and ‘Pr/(?) + GQn/(g‘)l > Ipn/(§)|

which contradicts the assumption that p, satisfies (1). Now suppose
.(£) = 0 and p, changes sign at x; < ... < x;. If

k
06) = — san pu(—o0 ) (=[] & = w0 @ = 0
then, for sufficiently small ¢ > 0,

l£n + equll r < ||pall s and [p) () + g,/ ()] = [pa (§)]

which also contradicts the assumption that p, satisfies (1). Thus, p, has
at least » — 1 sign changes.

We now suppose that the coefficient of x* is non-zero for p,. It follows
that p, has n real roots x; < x2 < ... < x,. We claim that in each interval
(x;, xj41) there exists a point y; € [ so that

If (2) is false then as in the proof of the lemma, we can, for a suitably
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chosen y, construct
gn(x) = —(sgn ;Dn(—OO))(—l)"(Ij1 (x — xi)) (igz (x — xi))
X (x — )"
where
a) sgn ¢, (¢) = sgn p,'(¥)
and
b) sgn ¢,(x) = —sgn p,(x),

except possibly for x € {x1, ..., x,, ¥} \U [x;, x,11]. We note that since the
y of Lemma 1 can be chosen from an interval, we may assume that
|po(¥)] # |Ipal] 1. It follows from a), b) and the assumption

||pn”[xj,rj+1] < HPWHI
that for sufficiently small ¢ > 0,

and

[ () + eqa ()] = [p’ ().
This contradiction establishes (2).
We may by a similar argument show that there exists v, so that
Yo € ITMN (—00,x;) or vy, € TN (x,,0)

and

Thus, if p,(x) = ax” + Bx"' — 5,_2(x) where a # 0, then p, achieves
its maximum norm, with alternate sign, at n points y; < vy, < ... < ¥,
in I. This suffices to establish the theorem.

If p, is actually of degree n— 1, then p,(x) = Bx"! — q,_2(x). A
similar argument shows that ¢,_»(x) is the best approximation to Bx"~!
on I.

THEOREM 4. Let I be any wnfinite compact set and let { = & = max I.
Suppose p, € 1, satisfies

T —)
Hpnlls  onettn 11gnll s

an#0

Then p,(x) = ax™ — ¢—1(x) where g,—1 € I,y and q,_1 is the best Cheby-
shev approximation to ax™ on 1.
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Proof. Let v = min I. The preceding theorem guarantees the existence
of » — 1 points v < x; < ... < x,-1 < § where p, changes sign. We first
show that p, has #n distinct roots in [v, 6]. Suppose p, does not change
sign at any point in [v, 6] other than xy, ..., x,_1. Consider

7" (x) = —sgn (Pn(f?))(:g (x — xk)) (y —x)

= Sn(x)(y - x)
then
d—g”d%x—) =W OO =0 = ).

Since sgn s, ({) = sgn s,(¢) # 0 we may, for a suitable choice of y > ¢,
set t, = q,Y where

a) sgn £,/ (¢) = sgn p,/({)
b) sgnt, = —sgn p, on I.

Thus, for sufficiently small ¢ > 0,
[pn + etull r < [IPall; and  [p)/(§) + et/ ()] > [P (©)]

which is a contradiction. Thus, p, has # distinct roots v £ x; < %2 < ...
< x, £ 8. We now show that

!Pn(a)l = ipn('}’)' = HPn”I

This, coupled with (2) of the proof of Theorem 3, suffices to complete the
result. We will only show that [p,(8)| = ||p.]l; since the proof that
[£.(¥)| = [1pa]l 1 is similar. Suppose [p,(8)] < [pa] 7. Let

n—1
gn(x) = —(sgn Pn(—oo))(—l)"_l(g (xr — xf)) (y — x)
where, as before, y > ¢ is chosen so that

sgn g,/ (§) = sgn p./ (§).

Then, for sufficiently small ¢ > 0, p, + g, contradicts the assumption
that p, satisfies (1).

3. Bernstein’s inequality on [a, b] U [c, d].

Proof of Theorem 1. Let 4 = [a,b]\J [¢,d] and let 7 € A. Let p, € 1II,
satisfy

o@Dl _ a0
palla  onctty lgalla
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and

[palla = 1.

We may, by the proof of Theorem 3, assume that p, has all its roots in 4
with the possible exceptions of a root N\ € (b, ¢) and a root Ny > d or
A2 < a. We treat the case where \; € (b, ¢) and Ny > d. The other cases
proceed analogously. We observe that if we increase ¢ or a and if we
decrease b or d we strengthen the inequality in the statement of the
theorem. Thus, we may also assume that for vy € {q, b, ¢, d},

()| =1 and [p,/ ()| # 0.

(If there is no point z € (b, ¢) where |p,(z)| = 1 then we can deduce the
result from Inequality 2.) We have guaranteed the existence of points

b<a<h<Mm<i<eae<c
and

d < e3 <53 < Ay < 4y
so that

lon (e)) =0 4
and

[p(8:)] = 1 i=1,23,4.

1,2,3

We deduce from Theorem 3 and a comparison of roots and leading terms

that

(pn' (€))2(x — a)(x — D) (x — ) (x — @) (x — &1) (x — 82) (x — &3)

X (x — 84)

= n2((pn(®))* — D(x — e1)?(x — €2)?(x — €3)™

Thus, if 7 € (a,d),
’ 2 n2(r - 62)2 . (r — 61)2
A L [y Ty [y L) | R R N Ty
(r — e)° n'(r —¢)*

. <
(r=8)F—6) = [t —a)ir —0)(r — ) (v — d)]
and the result now follows.

Corollary 1 follows immediately from Theorem 1. Corollary 2 is a
consequence of Corollary 1 and the next inequality.

INEQUALITY 3. (Schur [3] p. 41). If p,—1 € I, and

[pa—1(x)] = = a)(ll; o fora < x < b,
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then

2L
1) temr = 5 _na .

4. Markov’s inequality on [—b, —a] \U [a, b]. We require the follow-
ing results for the proof of Theorem 2.

THEOREM 5. (Achieser (1], p. 287). Let n be an even integer. The poly-

nomial p, € I, with leading coefficient 1 that deviates least from zero on
[—=b, —a] \J [a, b] is

B — A2 o — bt — 4°
Sn(x)=( Znill) T xbz_afz =

where T, 1s the n'™ Chebyshev polynomial (T, = cos n cos™x).

LEMMA 2. Let n be even and let S, be defined as in Theorem 5. Then,

IS impmal U ta0) _ |S'(0)] _ 2n2b i
HSHetat Utans  [SHlmp—a Utan) & —a

The proof of Lemma 2 is straightforward and is omitted.

LEMMA 3. Suppose n is even. Then

|t (0)] n’b
max = .
pn€lln llpﬂl [[—b,—a] U [a,0] b2 - a’z
P#£0

Proof. This is a direct consequence of Theorem 4, Theorem 5 and
Lemma 2.

LeEmMA 4. (Soble [5]). If p, € II, has non-negative coefficients then, for
x>0

Ip::, (x)l = Z}C_ lp(x)l
Proof of Theorem 2. Suppose p, € II, satisfies

o li=p.=al U a1 _ max 119w | lt=0.=a1 U ta.0 ‘
]|Pn| l[—b,—a] U la,d] qn€lln “qn| |[—b,—al U la,d)

Suppose { € [a, b] is a point where
Ol = 1P llco~a U 1)

and

2

b
(1) IPn'(f)l > 2n__ 2 Han [-b.—al U [a.b]*
b a
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Then, by Inequality 2 applied to [a, b]

n’b < n _
b —a = (0 — ) —a)”

and

(b2 . 0,2)2

G- —a)= e

Since either (b — ¢) = 3(b — a) or ({ — a) = 3(b — a), either

S2@+ayy—a6 S2@+aﬂf—a5'

b-=1) 2 or (¢ —a) bt
Suppose
20 +a) °—d’) _ 40" —dY)
— < . < 9 )
Then, by Lemma 3 and (2), for n = 10,
’ ’ 2
max Hpn ”[—b,-—a] U [a,b} < max an ({)I < 2” g- 5
pn€lln Hpﬂ; [[—'bv‘_(l] U [a,d] pa€lly HpﬂH[—i’v—u] U la {1 é- —a
Pn#0 Paz0
n’b ( 9) n’b
= (b_4(b2‘"“2l)2_ Jé L+ a) g2
bn’ ¢

Suppose now that ({ — a) < 4(b* — a?)/bn? Write p,(x) = qn(x)7,(x)
where ¢, (x) has all its roots in [—b, —a] and 7,(x) has no roots in
[—0, —a]. By Theorem 3, p, oscillates between its maximum and
minimum at least # times on [—b, —a] \U [a, b]. Hence, p, has at least
n-— 2 distinct roots in [—b, —a] \J [a, b]. By the proof of Theorem 3,
between any two roots of p, there is a point of [—b, —a] \U [a, b] where p,
attains its norm. Suppose now that m = 2 + n/2. Then, p,(x) — p(—x)
€ II,—; has at least #n/2 roots in [—b, —a] and at least #/2 roots in [a, b]
and hence, p,(x) = —p,(—x). However, if p, is even, then it follows from
Theorem 3, Theorem 5 and Lemma 3 that p, = S, and we are done. Thus,
we may assume m < #n/2 4+ 1. Similarly, since 7, has at least 7 — 2 roots
in [a, b], we may assume that 2 < n/2 + 3. We may also assume that
n = 10.

@) lgn' @] = ﬁ“; lan ()] = * ;; ? lgn(©)]

Also, since ¢, (x) = all(x + x;) with x; = «,

lgm(i')l _ : (5‘ + xi) ( ¢ — a) ( Zﬁﬁ:_gz)) (n+2) /2
@ gm(a)| -0 a—+x; =1 1+a+xi s\1+ abn®
< eﬁ(bz-—zf—')/ﬁabn‘
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By Inequality 1

2
n
oh? 2(2 + 3)

G) 1@ = 57 nllen £ —5 = [Inllwn

Thus, by (3), (4) and (5),
122" )] = gn’ a1 + 17" ) Ham ()]

o3 +3).

IA

2
§ HPnH [a,b] + ______ ll7h||[a bIIQm(f)I
(5+3)
2~+Q
< — s i_g __.2____ ‘gm(f)l
= HPnH(rI ] + Hpn“h 0] Iq (a I
b* (b + a) ( )2 G(b‘-’—aﬂ)/snbn) _ nzb__
§(3abn + 20 +n ¢ b —a’
X [Pl lta.n-
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