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ABSTRACT

A discrete ordinate method is developed for
solving the equation of coherent line formation,
for arbitrary given variations with depth in an
atmosphere of the temperature (or Planck function,
assuming local thermodynamic equilibrium) and the
line absorption and scattering coefficients. The
direct solution thus obtained can then be used as
the starting point of an iterative procedure.
Results obtained for an exactly soluble case in-
dicate the utility of the method.

Key words: numerical methods, coherent line
formation.

INTRODUCTION'

The equation of coherent line formation can be
solved exactly only in a number of special cases
wl̂ ere certain restrictions are put upon the problem
(see references). Such restrictions may include the
imposition of simplifying boundary conditions and/or
assuming particular variations with optical depth of
parameters such as the temperature and the coeffi-
cient of absorption and scattering in the line. When
these restrictions are invalid, or otherwise un-
acceptable, a rigorous solution may still be obtained
by numerical iteration from an initially guessed
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trial solution, but this method converges very slowly
when the scattering coefficient is large compared
with the absorption coefficient. In the method of
the present paper none of the above mentioned sim-
plifications is assumed. The equation of transfer
is written in the form of an integral equation for
the source function for which a solution is obtained
directly by reduction of the integral equation to a
set of simultaneous linear equations. Iteration
from the direct solution then leads to more accurate
results, as indicated by applying the method to a
known soluble case.

THE EQUATION OF TRANSFER

The equation of radiative transfer, including
line absorption, in plane parallel geometry may be
written

dl (xffi)
)L- = -(k + i )i (x,y)
pdx v v v

(l-e)£vJv(x) + (kv

where v is the frequency, x is the geometrical depth
measured in the direction of the outward normal to
the atmosphere, \i is the cosine of the angle between
the direction of transfer and the outward normal,
and p is the mass density. I (x,]i) is the specific
intensity of radiation, Jv(x) the mean intensity,
BV(T) the Planck function for temperature T, kv and
&v are the continuous and line mass absorption co-
eificient and (1-e) is the fraction of radiation
absorbed which is scattered. Introducing an optical
depth T V defined in terms of some absorption coeffi-
cient kv by the relation

the equation of transfer takes the form
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dl (x y)
y — - — = a (T )I (T ,y) +

dTv

k + I
V Va =

a
v

k + Iv v
K
V

Defining the source function

S (T ) = 3 (T )J (T ) + y (T )B (T )
V V V V V V V V V V

the equation of transfer becomes

dl (T y)
—z 1 = a (x )I (T ,\I) - S (T )

dx v v v v' v v

for which the solution may be formally written down

rTV rTV d T"

J j a v(T V _
0 T '

Iv(xv,-y) = J exp - j a v ( T V

V

( rTv dx" ) ax1

I v(x v f +y) = j exp J- I O v ( T - , _ v | SvlT., _ v
V V
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Using the relations

SV(T;> E X ]
0 I J T '

where E (x) is the exponential integral of index n
defined by

r Vdt r
En(x) = e = e

1 0

the source function S (T ) then satisfies the in-
tegral equation

L J Q ^•'T
V

+ Y (T )B (T )
V V V V

SOLUTION FOR THE SOURCE FUNCTION

Suppressing the indicated frequency dependence
of all quantities, the integral equation for the
source function may be written

S(T) = |

where

S(T') E2 {fCx^
1) }dx'] + yB(T)

0 J

T1

f (T,T!) = | | a(T")dT"
T
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Choosing a set of points of subdivision T^ with
appropriate weights a^, the integral over T' may be
replaced by a summation, thus transforming the in-
tegral equation into a set of simultaneous linear
equations

si =

where the indices i,j denote that the quantities are
evaluated for T^,TJ. The calculation of the co-
efficient matrix elements is straightforward as long
as the range of integration does not include an in-
terval or subdivision one end of which corresponds to
j = i. For j = i, f^j vanishes and hence E^fij} is
infinite. We must therefore find an alternative
expression for the integral over those ranges of in-
tegration that include the singularity viz.,

E1 jf(Ti,T')|s(T
I)dxI

and

Ti+i

Ti
1 j f

Since as f •> o

00 n n

-Y- I - *nf = EJ(f) -£nf
1 n.n!

where y = 0.577215665.... we may isolate the singu-
larity in the &nf term and write

El | f (T')|s(T')dT' = | E ) f

- Unf(T')S(T')dT'
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ntegrand of the first term on the right-hand 
is now everywhere finite and so the integral 
e represented by a quadrature formula in the 
way, as a weighted sum of the values of the 
rand at the points of subdivision. The second 
ral may also be so represented provided we 
some assumptions about the variation of the 
rand. Thus expanding <J>(T" ) about T" = T. 

a ( T " ) = a. + a! ( T " - T.) ->-
1 1 1 

a! = (da (x")/dx") we have up to the terms 
ated i 

a.' 
ai(Ti - x') - -| (T

1 - T i )
2 , T1 £ T 

a! 
a. (T' - x.) + -± (T' - T. )2 , x" > x. 
l i 2 i — i 

+ £n(x.- T') + £n \l - -i— (T.- T 1) [ , x' < x 
1 2a. 1 » " 

l 

+ icn(Tf - x.) + &n|l + 75̂ — (x' - x.)f , x' > x. 
1 j 2a. 1 ' — 1 

rig S(x') = S(x.) = S. and taking it outside 
ntegral sign we have 

x. 

f x r 
Anf (T'jSdr'JdT1 = S. (£na.)t + 

i- 1 
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F i ( t ) + F 2 ( t , - b)J , t = T i - x i _ i

I Jinf ( T ' ) S ( T ' ) dx ' = S i [ u n a i ) t +
T .

1

(t) + F 2 ( t , + b)J , t = T ± + 1 - T±

where b = a!/2a. and

Fa (t) = I £nxdx = |x Unx - I ) ] 1 = t (Ant - 1)
J L J
•0

F 2 ( t ,b) = I £n(l+bx)dx = [i(l+bx)]In(1+bx)-1)[ Jt =

= i [ ( l+b t ) Kn( l+b t ) - l - i f

Now replacing the derivative a' by the divided
differences 1

a! = (a±- V i ' / ' V Ti-i>' Ti- 1
< T' < Ti

ai = (ai+r ai>/(T±+i- Ti>' T± < T'

we obtain an expression for the integral through
the singularity at T- in terms of
ing the reduction of the integral
of simultaneous linear equations.

the singularity at T- in terms of S., thus complet-
ing the reduction of1the integral equation to a set

THE EMERGENT INTENSITY

Given the source function, the specific inten-
sity at any depth and in any direction may then be
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obtained. To facilitate the quadrature we write

f (T 1) = f±+ f • (T1 - T ±)

S(T') = Si+ S
1(x1 - T ±)

where f is as defined, f. = ±{T^), S^ = S(xi) and
the primes denote derivatives. The contribution to
Iv due to the source function in any interval (11,12)
is then

2l
V
= M exp[-J f (T')(/u] S(x')dTl

= I e-a r(l Sl + A S ; 2 ) ( 1 - e"
bt) - J s -

y L b K2 b X

where t = T 2- Tlf a = fj/y, b = fJ2/y, f{ 2 =
(f2-fa)/t S[2 = (S2-Sj)/t. The intensity emergent
from the atmosphere in the direction corresponding
to y is simply Iv(o,y) from which the equivalent
width of a line in wavelength units is given by

1 - R.(o,y)| dX
A I

where the residual intensity

I-v (o,y)
R, (o,y) =

(o,y)

and Ix(o,y) is the background or continuous emergent
intensity in the absence of line absorption. When
the integrated width, and not the variation with the
angle of emergence, is required we have instead

1 - R (o) dX
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with i
f
yl, (o,y)dy

R, (o) = -
A 1f C

l
C

yl, (o,y)dy
J o

NUMERICAL CALCULATIONS

To test the feasibility of our method we apply
it to a situation where the solution is already ac-
curately known. For K V = kv (so that T V is now the
optical depth in the continuum) and with n = &v/^v
constant with depth, e = o and a temperature distri-
bution such that B V ( T V ) = Bo(l + 3/2 T V) the exact
solution has been given by Chandrasekhar (1947) in
the form

R(o,y) = H(y) 4

R(o) = 3 ± 6a2 + ± ax + 4 6
1/2(l-6)aJ

where 6 = l/(l+n) and

} / 2 J

an = | ynH(y)dy

H(y) being the solution of the'integral equation

I

= 1 + T (1-5) yH.(y) [ 2

In applying the method of solution developed in
the present paper, the number and distribution of the
points of subdivision in optical depth have to be
specified. It seemed desirable to have a distribu-
tion with zero optical depth as one end point and
for which the points of subdivision were closer to-
gether at small optical depth than at large optical
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depth. The points of subdivision were therefore
chosen according to the formula

T = A(n-l) 2 , n = 1, N

with A and N as variable parameters. Because of the
unequal intervals the trapezoidal rule was used in
performing the relevant quadratures.

Calculations were carried out for »N = 2 5 and
with A taking the values 0.01, 0.02 and 0.04. The
results for R\(o) for various values of l/(l+n)
obtained from both the direct and iterated solutions,
are shown in Table 1 together with the exact results.
It may be seen that the direct solution is very good
for small n but can be considerably in error for
large n. However iteration of the solution leads to
a very marked improvement, but for any value of n
the best direct solution does not necessarily lead
to the best iterated solution. Thus while A = 0.02
gives the best iterated solution for small n, that
for large n is obtained with A = 0.01, indicating
that small optical depths are more important for
strong lines than for weak lines. The results have
also been used to calculate the equivalent width
V!\ of a line, for various values of the Voigt profile
parameter a which is the ratio of the Lorentz width
to the Gaussian width and for various values of r\o,
the value of n at the line centre. Table 2 gives
the values of log (Wx/X). It will be observed that
both the direct and iterated solutions give good
agreement with the exact results. In particular the
iterated solution for A = 0.02 gives results which
are indistinguishable from the exact results for all
values of the parameters considered. This conver-
gence of the calculated values of the equivalent
width must be due to the fact that the important
contributions come from regions of the line where
n is small, for which values both the direct and
iterated solutions are most accurate.
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DISCUSSION

Kalko^an to Gn.ant'> Can you apply your method to
semi-infinite media?

GfLant: We did not try that, but it may be
possible to handle these cases.

Pecfeê .* As we conclude today's session I would
like to remind you once more that many phenomena that
can be observed very clearly on the solar disk are
practically invisible in stellar spectra or can be
found only in the far UV. This means that many of
the important phenomena that occur in extended atmos-
pheres give only very small observable effects.
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