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1. Introduction 

The motion of the planets is one of the best modelized problems in physics, 
and its study can be practically reduced to the study of the behavior of 
the solutions of the well known gravitational equations, neglecting all dissi-
pation, and treating the planets as mass points. In fact, the mathematical 
complexity of this problem, despites its apparent simplicity is daunting and 
has been a challenge for mathematicians and astronomers since its formu-
lation three centuries ago. 

With the advent of computers, numerical integration of the planetary 
equations appears as a straightforward way to overcome the complexity of 
the solutions. Moreover, since the work of Poincaré, it was known that the 
perturbative methods previously used in planetary computations could not 
provide good approximations of the solutions over infinite time. 

But numerical integration of the planetary trajectories, since now, has 
always been bounded by the available computer technology. The first nu-
merical long time studies of the solar system were limited to the motion 
of the outer planets, from Jupiter to Pluto (Cohen et α/., 1973; Kinoshita 
and Nakai, 1984). Indeed, the more rapid the orbital movement of a planet, 
the more difficult it is to numerically integrate its motion. To integrate the 
orbit of Jupiter, a step-size of 40 days will suffice, while a step-size of 0.5 
days is required to integrate the motion of the whole solar system using a 
conventional multistep integrator. 

The project LONGSTOP (Carpino et α/., 1987; Nobili et α/., 1989) used 
a C R A Y to integrate the system of outer planets over 100 million years. 
At about the same time, calculations of the same system were carried out 
at MIT over even longer periods, corresponding to times of 210 and 875 
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million years, using a vectorized computer specially designed for the task 

(Applegate et α/., 1986; Sussman and Wisdom, 1988). This latter integra-

tion showed that the motion of Pluto is chaotic, with a Lyapunov exponent 

of 1/20 million years. But since the mass of Pluto is very small (1/130000000 

the mass of the Sun), this does not induce macroscopic instabilities in the 

rest of the solar system, which appeared relatively stable in these numerical 

studies. 

2. Chaos in the Solar System 

My approach was different and more in the spirit of the analytical works 

of Laplace and Le Verrier. Indeed, since these pioneer works, the Bureau 

des Longitudes has traditionally been the place for development of analyt-

ical planetary theories (Brumberg and Chapront, 1973; Bretagnon, 1974; 

Duriez, 1979). All these studies are based on classical perturbation series; 

thus, implicitly, they assume that the motion of the celestial bodies are reg-

ular and quasiperiodic. The methods used are essentially the same which 

were used by Le Verrier, with the additional help of the computers. Indeed, 

such methods can provide very satisfactory approximations of the solutions 

of the planets over a few thousand years, but they will not be able to give 

answers to the question of the stability of the solar system over time span 

comparable to its age. This difficulty which is known since Poincaré is one 

of the reasons which motivated the previously quoted long time numerical 

integrations. Nevertheless, it should be stressed that, until 1991, the only 

numerical integration of a realistic model of the full solar system was the 

ephemeris DE102 of JPL (Newhall et α/., 1983) which spanned only 44 

centuries. 

A first attempt consisted to extend as far as possible the classical an-

alytical planetary theories, but it was realized quite rapidly that this was 

hopeless when considering the whole solar system, because of severe con-

vergence problems encountered in the secular system of the inner planets 

(Laskar, 1984). I thus decided to proceed in two very distinct steps: a first 

one, purely analytical, consisted in the averaging of the equations of motion 

over the rapid angles, that is the motion of the planets along their orbits. 

This process was conducted in a very extensive way, without neglecting any 

term, up to second order with respect to the masses, and through degree 

5 in eccentricity and inclination. The system of equations thus obtained 

comprises some 150000 terms, but it can be considered as a simplified sys-

tem, as its main frequencies are now the precessing frequencies of the orbits 

of the planets, and no longer comprise their orbital periods. The full sys-

tem can thus be numerically integrated with a very large stepsize of about 

500 years. Contributions due to the Moon and to the general relativity are 

added without difficulty. 
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This second step, i.e. the numerical integration, is very efficient because 

of the symmetric shape of the secular system, and was conducted over 200 

millions years in just a few hours on a super computer. The main results of 

this integration was to reveal that the whole solar system, and more partic-

ularly the inner solar system (Mercury, Venus, Earth, and Mars), is chaotic, 

with a Lyapunov exponent of 1/5 million years (Laskar, 1989). An error of 

15 meters in the Earth's initial position gives rise to an error of about 150 

meters after 10 million years; but this same error grows to 150 million km 

after 100 million years. It is thus possible to construct ephemerides over a 

10 million year period, but it becomes practically impossible to predict the 

motion of the planets beyond 100 million years. 

This chaotic behavior essentially originates in the presence of two sec-

ular resonances among the planets: θ = 2 ( # 4 — g%) — ( 5 4 — 5 3 ) , which is 

related to Mars and the Earth, and σ = (gi - g$) — (si - $ 2 ) , related to 

Mercury, Venus, and Jupiter (the gi are the secular frequencies related to 

the perihelions of the planets, while the S{ are the secular frequencies of 

the nodes) (Laskar, 1990). The two corresponding arguments change sev-

eral times from libration to circulation over 200 million years, which is also 

a characteristic of chaotic behavior. When these results were published, 

the only possible comparison was the comparison with the 44 centuries 

ephemeris DE102, which already allowed to be confident on the results 

(Laskar, 1986, 1990). At the time, there was no possibility to obtain similar 

results with direct numerical integration. In fact, partly due to the very 

rapid advances in computer technology, and in particular to the develop-

ment of workstations, only two years later, Quinn et al. (1991) were able 

to publish a numerical integration of the full solar system, including the 

effects of general relativity and the Moon, which spanned 3 million years 

in the past (completed later on by an integration from -3Myrs to +3Myrs) . 

Comparison with the secular solution of (Laskar, 1990) shows very good 

quantitative agreement and confirms the existence of secular resonances in 

the inner solar system (Laskar et al., 1992a). Later on, using a symplectic 

integrator directly adapted towards planetary computations which allowed 

them to use a larger stepsize of 7.2 days, Sussman and Wisdom (1992) made 

an integration of the solar system over 100 million years which confirmed 

the existence of the secular resonances as well as the value of the Lyapunov 

exponent of about 1/5 Myrs for the solar system. 

3. Planetary evolution over M y r 

The planetary eccentricities and inclinations present variations which are 

clearly visible over a few million of years (Fig .1). Indeed, this was known 

since Laplace and LeVerrier (for a detailed account see Laskar 1992b), us-
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Figure 1. The eccentricity of the Earth (a) and Mars (b) during a 6 Myr timespan 
centered at the present. The solid line is the numerical solution from Quinn etat. (1991) 
and the dotted line the integration La90 of the secular equations (Laskar, 1990). For 
clarity, the difference between the two solutions is also plotted (from Laskar, et al.y 

1992). 
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ing the secular equations. Over 1 million years, perturbation methods will 

give a good account of these variations which are mostly due to the linear 

coupling present in the secular equations. These secular variations involve 

the precessional periods of the orbits, ranging from 40 000 years to a few 

million of years. From -200 Myr to +200 Myr, the behavior of the solu-

tions for the outer planets (Jupiter, Saturn, Uranus and Neptune) are very 

similar to the behavior over the first million years and the motion of these 

planets appears to be very regular, which was also shown very precisely by 

mean of frequency analysis (Laskar, 1990). 

For the Earth, over such time span, the chaotic effect will induce a lost of 

predictability for the orbit. The additional change of eccentricity resulting 

from the chaotic diffusion is moderate and may be estimated to about 0.01 

for the Earth (Laskar, 1992a,b). The most perturbed planet is Mercury, the 

effects of its chaotic dynamics being clearly visible over 400 million years 

(Laskar, 1992a,b). 

It should be stressed that the exponential divergence of the orbits re-

vealed by the computation of the Lyapunov exponent result mostly from 

the change from libration to circulation of the resonant precession angles, 

which induce after some time a total indeterminacy of the precessional 

angles of the orbit, that is its orientation in space. The eccentricity and 

inclination (which are action-like variables) variations due to the chaotic 

diffusion is much less rapid, and an important question is to estimate their 

wandering over the time of the life of the solar system. 

4. Planetary evolution on Gyr time scales 

If the motion of the solar system were close to quasiperiodic, that is close 

to a K A M tori, then it could be expected that some bound on the possible 

diffusion of the orbit over 5 Gyr would result from a Nekhoroshev-like 

theorem. In fact, as it was shown in (Laskar, 1990), although the system 

reduced to the outer planets may be considered as close to a K A M tori, the 

full solar system evolves far from a K A M tori of maximal dimension and 

diffusion of the action-like variables (eccentricity and inclination) occurs. 

The natural question is thus to estimate this diffusion. Let us remind that 

contrarily to two degrees of freedom systems, where the diffusion may be 

bounded, in such many degrees of freedom system (15 independent degrees 

of freedom for the secular system), there exist no results on the existence 

on invariant set which will bound the evolution of the system on infinite 

time span. 

One may be tempted to try to integrate the motion of the solar system 

over 5 Gyr, that is over its expecting time life. For direct numerical integra-

tions, this can be considered as an interesting challenge as it is still out of 
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Figure 2. Numerical integration of the averaged equations of motion of the solar system 
10 Gyr backward and 15 Gyr forward. For each planet, the maximum value obtained 
over intervals of 10 Myr for the eccentricity (a) and inclination (in degrees) from the 
fixed ecliptic J2000 (b) are plotted versus time. For clarity of the figures, Mercury, Venus 
and the Earth are plotted separately from Mars, Jupiter, Saturn, Uranus and Neptune. 
The large planets behavior is so regular that all the curves of maximum eccentricity and 
inclination appear as straight lines. On the contrary, the corresponding curves of the 
inner planets show very large and irregular variations, which attest to their diffusion in 
the chaotic zone.(Laskar, 1994) 
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reach of present computer technology, but it should be stressed, that by no 

means it can be considered as the description of the evolution of the solar 

system over 5 Gyr. Indeed, because of the exponential divergence with a 

Lyapunov time of 5Myr, after about 100 Myr the computed solution will 

be very different from the real solution followed by the actual solar system. 

Such a solution still present some interest, as it gives one of the possible 

behavior of the solar system, but it is much more important to obtain some 

description of the chaotic zone where the solar system evolves. In particu-

lar, it is more interesting to estimate the speed of diffusion in this chaotic 

zone. For such a goal, an integration of the solar system over 5 Gyr can be 

used, but will not be sufficient. Quite surprisingly, we can use integrations 

over even longer time span, which will act as scout exploring this chaotic 

zone. We can also send multiple of these explorers with very close initial 

conditions, in order to reach a larger portion of the phase space which can 

be attained by the solar system in 5 Gyr. 

In order to achieve this task, it becomes quite obvious that we need to be 

able to integrate very rapidly the motion of the solar system, and the secular 

system of equations was even more simplified (Laskar, 1994), retaining only 

50 000 terms and conserving the symmetries of the equations. Doing that, 

only about 6000 terms really need to be computed during the evaluation 

of the second hand member of the equations and the computations could 

be achieved on an IBM RS6000/370 workstation at a rate of about 1 day 

of CPU time per Gyr, without any loss in the precision. 

As we want to understand the dynamics of this secular system, it is 

actually necessary to make the integration with great accuracy. The sec-

ular system is an approximation of the real equations of motion, but by 

understanding completely the global dynamical behavior of this system, we 

will obtain a lot of information on the original system. 

Some first integrations were conduced over 25 Gyr (-lOGyr to + 15 Gyr) 

(Fig.2). It may seem strange to try to track the orbit of the solar system 

over such an extended time, longer than the age of the solar system, but one 

should understand that it is done in order to explore the chaotic zone where 

the solar system evolves and, after 100 Myr, can give only an indication 

of what can happen. On the other hand, if there is a sudden increase of 

eccentricity for one planet after 10 Gyr, this still tells us that such an event 

could probably also occur over a much shorter time, for example in less 

than 5 Gyr. In the same way, what happens in negative time can happen 

as well in positive time. 

In order to follow the diffusion of the orbits in the chaotic zone, one needs 

quantities which behave like action variables, that is quantities which will 

be constant for a regular (quasiperiodic) solution of the system. Such quan-

tities are given here by the maximum eccentricity and inclination attained 
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by each planet during intervals of 10 Myr (Fig. 2) . 

The behavior of the large planets is so regular that all the corresponding 

curves appear as straight lines (Fig. 2) . On the contrary, the maxima of ec-

centricity and inclination of the inner planets show very large and irregular 

variations, which attest to their diffusion in the chaotic zone. The diffusion 

of the eccentricity of the Earth and Venus is moderate, but still amounts 

to about 0.02 for both planets. The diffusion of the eccentricity of Mars is 

large and reaches more than 0.12, leading to values higher than 0.2 for the 

eccentricity of Mars. For Mercury, the chaotic zone is so large (more than 

0.4 ) that it reaches values larger than 0.5 at some time. The behavior of 

the inclination is very similar. 

Strong correlations between the different curves appear in figure 2. In-

deed, as the solar system wanders in the chaotic zone, it is dominated by the 

linear coupling among the proper modes of the averaged equations (Laskar, 

1990), which induces a very similar behavior for the maximum eccentricity 

and inclination of Venus and the Earth. This coupling is also noticeable in 

the solution of Mars. On the other hand, an angular momentum integral 

exists in the averaged equations and explains why when Mercury's eccen-

tricity and inclination increase, the similar quantities for Venus, the Earth 

and Mars decrease. Thus it appears that, despite the small values of the in-

ner planets' masses, the conservation of angular momentum plays a decisive 

role in limiting their excursions in the chaotic zone. 

5. E scap ing p lanets 

At some time, Mercury suffered a large increase in eccentricity (Fig. 2) 

rising up to 0.5. But this is not sufficient to cross the orbit of Venus. The 

question then arises whether it is possible for Mercury to escape from the 

solar system in a time comparable to its age. A first attempt to answer this 

was made by slightly changing the initial conditions for the planets. Indeed, 

because of the chaotic behavior, very small changes in the initial conditions 

lead to completely different solutions after 100 Myr. Using this, I decided 

to change only one coordinate in the position of the Earth, amounting 

to a physical change of about 150 meters ( 10~ 9 in eccentricity). The full 

system was integrated with several of these modified solutions, but this led 

to similar (although different) solutions. In fact, it should not be too easy 

to get rid of Mercury, otherwise it would be difficult to explain its presence 

in the solar system. 

I thus decided to guide Mercury somewhat towards the exit. A first 

experiment was done for negative time: for 2 Gyr, the solution is left un-

changed, then, 4 different solutions are computed for 500 Myr, in each of 

which the position of the Earth is shifted by 150 meters, in a different di-
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rection (due to the exponential divergence, this corresponds to a change 

smaller than Planck's length in the original initial conditions). 

The solution which leads to the maximum value of Mercury's eccentric-

ity is retained up to the nearest entire Myr, and is started again. In 18 of 

such steps, Mercury attains eccentricity values close to 1 at about - 6 Gyr 

(Fig 2) when the solution enters a zone of greater chaos, with Lyapunov 

time « 1 Myr, giving rise to much stronger variations of the orbital elements 

of the inner planets. A second solution was also computed in positive time, 

with changes in initial condition of only 15 meters instead of 150 meters. 

As anticipated, this led to a similar increase in Mercury's eccentricity, this 

time in only 13 steps and about 3.5 Gyr (Fig 2) . 

While the eccentricity increases, the inclination of Mercury can change 

very much but the computation of the relative positions of the intersection 

of the orbits of Mercury and Venus with their line of nodes demonstrated 

that the orbits effectively intersect at about 3.5 Gyr. At this time, the two 

planets can experience a close encounter which can lead to the escape of 

Mercury or to collision. 

For very high eccentricity of Mercury, the model used here no longer 

gives a very good approximation to the motion of Mercury, but it is very 

important to know that in this approximation, the chaotic zone allows 

the escape of a planet from the solar system in a time smaller than the 

expected life of the solar system, due to diffusion in the chaotic zone. Even 

more, in this averaged system, the degrees of freedom corresponding to 

semi major axes and mean longitudes are removed, but in the real system 

the addition of these extra degrees of freedom will probably lead to even 

stronger chaotic behavior, as in general, addition of degrees of freedom 

increases the stochasticity of the motion. 

Similar computations were made for Mars and the Earth, but did not 

lead up to now to an escaping solution. For the Earth, the maximum ec-

centricity reached after 5 Gyr is about 0.1, while for Mars, the eccentricity 

attained 0.25 after 5 Gyr. With such a high eccentricity, Mars comes very 

close to the Earth, and it may be possible to find some escaping solution 

for Mars when considering the complete equations, but this probably needs 

the next generations of computers. 

6. Marginal stability of the solar system 

The existence of an escaping orbit for Mercury does not mean that this 

escape is very likely to occur. In fact, the solution computed here which 

lead to an escape was very carefully tailored, by selecting at each step 

one solution among 4 equivalent ones. The result is the existence for an 

escaping orbit, but does not tell us the probability for this escape to occur. 
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The computation of an estimate of this probability would require to take 

into account the full equations in order to be accurate. From the present 

computation, it can be thought that this probability is small, but not null, 

which is compatible with the present existence of Mercury. 

Even without speaking of escaping orbits, the very large diffusion of 

the inner planets orbits is very striking. Even after the discovery of the 

chaotic behavior of the solar system, and despite the results of (Laskar, 

1990), many assumed that the chaotic diffusion in the solar system was 

very small. Here is clearly demonstrated that for the inner planets, it is 

not the case. More, for the inner planets, the excursion of the eccentricity 

and inclination variables seems to be essentially constrained by the angular 

momentum conservation. This is quite surprising, when considering that 

the essential part of the angular momentum comes from the outer planets. 

In fact, the outer planets system is very regular, and practically no dif-

fusion will take place among the degrees of freedom related to the outer 

planets. Thus, exchanges of angular momentum among the proper modes 

related to the inner planets result from the chaotic diffusion. This explains 

that when the maximum eccentricity of Mercury increases, the maximum 

eccentricity of Venus, the Earth and Mars decreases. One can also notice 

that the eccentricity curves of Venus and the Earth are very similar. This 

is due to the strong linear coupling between the proper modes of these two 

planets. 

On figure 2, it is evident that the less massive planets are subject to the 

largest variation of eccentricity. This becomes obvious when considering 

that these variations are essentially bounded by the angular momentum 

conservation, which for each planets is proportional to my/a, where m is 

the mass of the planet, and a its semi major axis. 

If, for each planet, we consider the maximum diffusion of the eccentricity 

over 5 Gyr (Fig. 3) we find that Mercury's eccentricity can go sufficiently 

high to allow Mercury's orbit to cross the orbit of Venus, Venus and the 

Earth's eccentricity can go up to 0.1, and Mars as high as 0.25. Apart 

from some small place in between Venus and the Earth, or the Earth and 

Mars, all the inner solar system is swept by the planetary orbits, and the 

small planets (Mercury and Mars) are the planets which present the largest 

excursions. Practically, we can conclude that the inner solar system is full. 

That is there is no room for any extra planet. Indeed, even if there are some 

place which seems not to be possibly reached in 5 Gyr, the additional planet 

orbit will present some eccentricity variations, and thus most probably will 

intersect with one of the already existing orbits. If we add a large planet, of 

the size of the Earth or Venus, its orbital elements will not vary much but 

it will induce strong short periods perturbations. On the contrary, a small 

object will suffer large orbital variations, as it will not be much constrained 
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Figure 3. Estimates of the zones possibly occupied by the inner planets of the solar 
system over 5 Gyr. The circular orbits correspond to the bold lines, and the zones visited 
by each planet resulting from the possible increase of eccentricity are the shaded zones. 
In the case of Mercury and Venus, these shaded zones overlap. Mars can go as far as 1.9 
A U , which roughly corresponds to the inner limit of the asteroid belt (Laskar, 1995). 

by the angular momentum conservation. In this case, encounters with the 

already existing planets is very probable. It could be said that the variations 

which are plotted in fig 3 are the maximum variations possible over 5 Gyr, 

and not the most probable variations. This is true, but the addition of 

an extra planet will most probably increase very much the diffusion by 

increasing the numbers of degrees of freedom, and these maximum possible 

variations can probably be considered as the probable variations over 5 

Gyr in the eventuality of the addition of an extra planet in the inner solar 

system. It becomes thus interesting to speak of marginal stability when 

considering the solar system. Maybe there was some extra planet at the 

early stage of formation of the solar system, and in particular in the inner 

solar system, but this lead to so much instability that one of the planets 

(probably among the smallest ones, of the size of Mercury or Mars) suffers 

a close encounter, or a collision with the other ones. This lead eventually to 

the escape of this planet and the remaining system gets more stable. In this 

case, at each stage, the system should have a time of stability comparable 

with its age, which is roughly what is achieved now, when ones finds that 

escape of one of the planets (Mercury) can occur within 5Gyr. 
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7. Conclusions 

The analysis of the possible diffusion of the planetary orbits over 5 Gyr 

gives new insight on several question on the formation and evolution of 

the solar system. First of all, the existence of an escaping orbit for Mercury 

demonstrates that the the solar system in not stable, even when considering 

the strongest meaning of this word. On the contrary, although the solar sys-

tem is not stable, it can be considered as marginally stable, that is. strong 

instabilities (collision or escape) can only occur on a time scale comparable 

to its age, that is about 5 Gyr. Some extra inner planets may have existed, 

but their existence gave rise to a much more unstable system, leading to the 

escape or collision of one of the planets. The organization of the inner plan-

etary system is thus most probably due to its long run orbital evolution, 

and not uniquely to its rapid (less than 100 million years) formation pro-

cess. This result is important for the understanding of the formation of the 

solar system, as it tells us that the solar system at the end of its formation 

process may have been significantly different from the present one, and has 

then evolved towards the present configuration because of the gravitational 

instabilities. It should be said that the outer system is very stable, but 

the long time recent numerical integrations (Gladman and Duncan, 1990; 

Holman and Wisdom, 1993; Levison and Duncan, 1993) also demonstrate 

that the outer solar system is full, that is most of the objects introduced in 

this system will escape on time scale much shorter than 5 Gyr. Apart from 

some special locations, stable zones only begins at about 40 AU, where 

some objects were recently founded. The inner solar system is also full, 

from the 0 AU to about 2 AU, which coincide with the beginning of the as-

teroidal belt. It should be interesting to investigate this point further using 

simulations with the addition of an extra planets, but many features have 

already been deduced here from the present computations. In particular, in 

the repartition of the inner planets, which can be thought as the so called 

Titius-Bode law, it is very striking that the spacing between the planets 

does not seem to be related to their masses. Indeed, when considering the 

most direct perturbation, that is the short-period perturbations, the zone 

depleted by a planet should increase with its mass, due to the overlap of 

the mean motion resonances. This seems to be primordial for the outer 

planets system (although more complicated combination of resonance may 

be present involving also secular resonances, as for the asteroid dynamics), 

but does not work for the inner planets system, where the short-period 

perturbation are not very important. In this case, as was presented above, 

the smallest a planet is, the largest will be its diffusion due to the chaotic 

behavior of the secular system. There will thus be an equilibrium between 

the short term perturbations which increases with the mass of the planet, 
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and the long time diffusion of the orbital eccentricity and inclination, which 

is larger for the small planets. These competing effects could end up with 

an apparent rapartition which does not depend any longer on the masses. 

In any case, the marginal stability of the solar system revealed by the anal-

ysis of its long time behavior over 5 Gyr is an indication that its present 

organization results from its dynamical evolution. 

In particular, one may be now tempted to answer to the question of 

what will be a generic planetary system ? 

Considering the present results on our solar system, I would think that 

a generic planetary system will always be in a state of marginal stability, 

resulting from its gravitational interactions. If the formation process is such 

that there exists some large outer planets and some small inner planets, af-

ter 5 Gyr, the inner planets will therefore be subject to some instabilities 

similar to the present ones, and thus so will be their obliquities (Laskar 

and Robutel, 1993), with all the climate implications (Laskar, 1993; Laskar 

et al 1993). In particular, a planetary system with only one or two planets 

should be excluded, or, if it does exist, would be crowded with asteroids ev-

erywhere which would be the original remaining planetesimals, not ejected 

by planetary perturbations. 

Most of the results presented here rely on the analysis of the secular 

equations of the solar system and not on the complete equations. This was 

the price to pay for allowing a more global approach on the problem of the 

stability and long time evolution of the solar system. It is quite obvious that 

some integrations of the full equations are still needed, but it is doubtful 

that these future integrations will change much the global landscape of the 

dynamics of the solar system portrayed here. 

References 

Applegate, J.H., Douglas, M.R. , Gursel, Y . , Sussman, G.J. and Wisdom, J.: 1986, 'The 
solar system for 200 million years,' Astron. J. 92 , 176-194 

Bretagnon, P.: 1974, Termes à longue périodes dans le système solaire, Astron. Astrophys 

3 0 341-362 
Brumberg, V . A . , Chapront, J.: 1973, Construction of a general planetary theory of the 

first order, Cel. Mech. 8 335-355 
Carpino, M. , Milani, A. and Nobili, A . M . : 1987, Long-term numerical integrations and 

synthetic theories for the motion of the outer planets, Astron. Astrophys 181 182-194 
Cohen, C.J., Hubbard, E.C., Oes ter winter, C : 1973, , Astron. Papers Am. Ephemeris 

X X I I 1 
Duriez, L.: 1979, 'Approche d'une théorie générale planétaire en variable elliptiques 

héliocentriques, thèse Lille 
Gladman, B., Duncan, M.: 1990, On the fates of minor bodies in the outer solar system 

Astron. 1 0 0 ( 5 ) 
Holman, M.J., Wisdom, J.: 1993, Dynamical stability in the outer solar system and the 

delivery of short period comets Astron. 1 0 5 ( 5 ) 

https://doi.org/10.1017/S0074180900127160 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900127160


88 JACQUES LASKAR 

Kinoshita, H., Nakai, H.: 1984, Motions of the perihelion of Neptune and Pluto, Cel. 

Mech. 3 4 203 
Laskar, J.: 1984, Thesis, Observatoire de Paris 
Laskar, J.: 1986, Secular terms of classical planetary theories using the results of general 

theory,, Astron. Astrophys. 1 5 7 59-70 
Laskar, J.: 1989, A numerical experiment on the chaotic behaviour of the Solar System 

Nature, 3 3 8 , 237-238 
Laskar, J.: 1990, The chaotic motion of the solar system. A numerical estimate of the 

size of the chaotic zones, Icarus, 88 , 266-291 
Laskar, J.: 1992a, A few points on the stability of the solar system, in Symposium I A U 

152, S. Ferraz-Mello ed., 1-16, Kluwer, Dordrecht 
Laskar, J.: 1992b, La stabilité du Système Solaire, in Chaos et Déteminisme, A . Dahan 

et al., eds., Seuil, Paris 
Laskar, J.: 1993, La Lune et l'origine de l'homme, Pour La Science, 186 , avril 1993 
Laskar, J.: 1994, Large scale chaos in the solar system, Astron. Astrophys. 2 8 7 L9-L12 
Laskar, J.: 1995, Large scale chaos and Marginal stability of the solar system, Xlème 

Colloque ICMP, Paris July, 1994, International Press, p. 75-120 
Laskar, J., Quinn, T. , Tremaine, S.: 1992a, Confirmation of Resonant Structure in the 

Solar System, Icarus, 05,148-152 
Laskar, J. Robutel, P.: 1993, The chaotic obliquity of the planets, Nature, 3 6 1 , 608-612 
Laskar, J., Joutel, F., Robutel, P.: 1993, Stabilization of the Earth's obliquity by the 

Moon, Nature, 3 6 1 , 615-617 
Levison, H.F., Duncan, M.J.: 1993, The gravitational sculpting of the Kuiper belt, As-

trophys. J. Lett, 4 0 6 , L35-L38 
Newhall, Χ . X . , Standish, Ε. M. , Williams, J. G.: 1983, DE102: a numerically integrated 

ephemeris of the Moon and planets spanning forty-four centuries, Astron. Astrophys. 
1 2 5 150-167 

Nobili, A . M . , Milani, A . and Carpino, M.: 1989, Fundamental frequencies and small 
divisors in the orbits of the outer planets, Astron. Astrophys. 2 1 0 313-336 

Quinn, T.R. , Tremaine, S., Duncan, M.: 1991, Ά three million year integration of the 
Earth's orbit,' Astron. J. 1 0 1 , 2287-2305 ^ 

Sussman, G.J., and Wisdom, J.: 1988, 'Numerical evidence that the motion of Pluto is 
chaotic' Science 2 4 1 , 433-437 

Sussman, G.J., and Wisdom, J.: 1992, 'Chaotic evolution of the solar system', Science 
2 5 7 , 56-62 

https://doi.org/10.1017/S0074180900127160 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900127160

