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Abstract. We construct three p-adic L-functions attached to the symmetric
square of a modular elliptic curve. Following a calculation of Perrin-Riou for one of
these functions, we compute the derivative of the p-adic L-function associated to the
square of the non-unit root of Frobenius at p. This generalises Greenberg’s notion
of L-invariant to these three-dimensional Galois representions.
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0. Introduction. The study of adjoint modular forms has proven to be a fruitful
area of number theory. Let Sym2E denote the symmetric square of a modular elliptic
curve E defined over the rationals. Central to our understanding of the Iwasawa
theory of Sym2E is a predicted link between certain arithmetic Iwasawa modules (in
the p-ordinary case Selmer groups over the Zp-extension of Q) and the p-adic L-
functions attached to the motive.

Assume that E has good ordinary reduction at a prime p 6¼ 2. Then the local
Euler factor at p is of the form

ð1� �2pX Þð1� pX Þð1� �p
2X Þ;

where �p is a p-adic unit. A conjecture of Perrin-Riou [12] predicts the existence of a
map LpðSym2Eð2ÞÞ interpolating Dirichlet twists of the complex L-function
LðSym2E; sÞ at s ¼ 2; the map is parametrized by removing exactly one of the linear
factors above and so should really be thought of as three p-adic L-functions rather
than just a single one.

In §1–§4 we construct three analytic L-series corresponding to the three com-
ponents of Lp (Existence Theorem, p. 54), except that for the factor ð1� pX Þ our
L-series interpolates the square of the special values. For example, the element
obtained by removing ð1� �2pX Þ is essentially the Iwasawa L-function constructed
by Coates and Schmidt [2]. Whilst we prove the existence of the components of Lp

we cannot prove uniqueness as our p-adic distributions are only 3-admissible.
Two out of the three L-functions vanish at zero even though LðSym2E; 2Þ is

non-zero. Perrin-Riou [13] has calculated the derivative of the Coates-Schmidt
L-function under the assumption that Lp comes from a norm-compatible system. In
§5–§7 we calculate the derivative for the component obtained by removing
ð1� �p

2X Þ (Derivative Theorem, p. 62); the corresponding formula thus generalizes
Greenberg’s notion of L-invariant [8] to the conjugate p-adic measure.
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1. Preliminaries. We begin by recalling some well-known properties of the
symmetric square. Suppose that E denotes a modular elliptic curve defined over Q.
By the symmetric square Sym2E we mean the pure motive over Q whose l-adic reali-
sations are Sym2H1

�eet
ðE;QlÞ. As usual we define its L-series by

LðSym2E; sÞ :¼
Y
p

Dpðp
�sÞ
�1

ðReðsÞ > 2Þ;

with

DpðX Þ :¼ det 1� Frob
�1
p X

�� Sym2H1
�eetðE;QlÞ

� �Ip
� �

for any prime l 6¼ p;

and where we have fixed a decomposition group GQp
with inertial subgroup Ip (note

that this definition is independent of the choice of l ). If � denotes a Dirichlet char-
acter we write LðSym2E; �; sÞ for the twisted series

Q
p Dpð�ðpÞp

�sÞ
�1.

As a consequence of the work of Gelbart and Jacquet [7], Sym2E can be identi-
fied with a cuspidal automorphic representation of GL3 via a base-change lift from
GL2. They prove that for all twists Sym

2E� � the completed L-function

�CðsÞ�Rðs� �ÞLðSym
2E� �; sÞ

has analytic continuation to the whole s-plane and satisfies a functional equation
relating the value at s to the value at 3� s.

Central to our interpolation method is the following result of Sturm. Recall for
an arbitrary Dirichlet character � that its Gauss sum is given by

Gð�Þ :¼
Xcondð�Þ
n¼1

�ðnÞ exp
2�in

condð�Þ

	 

:

We shall write �þE (resp. ��E ) for the real (resp. imaginary) period of a Néron dif-
ferential associated to a minimal Weierstrass equation for E over Z. In [18,19] Sturm
demonstrates that at the critical points the special values

Gð�Þ LðSym2E; �; 1Þ

2�ið Þ
�1�þE�

�
E

and
Gð�Þ2 LðSym2E; �; 2Þ

2�ið Þ�þE�
�
E

are algebraic numbers lying in the field generated over Q by the values of �. Hence
we can consider these values as p-adic numbers via some fixed embedding of Q into
Qp.

Unfortunately the point of symmetry in the functional equation lies between
s ¼ 1 and s ¼ 2, which prevents us from interpolating at both critical points simul-
taneously. However, the properties of the Kubota-Leopoldt p-adic L-functions
enable us to extend our distributions outside of the critical strip and thus check the
admissibility of the associated measures.

For the rest of this article we assume that p 6¼ 2. If Qð�p1Þ denotes the field
obtained by adjoining all p-power roots of unity to Q, then
G1 :¼ GalðQð�p1Þ=QÞ ¼ �
�, where � ffi Zp and � ffi ðZ=pZÞ


; we define Gþ1 :¼
GalðQð�p1Þ

þ=QÞ to be the Galois group of its maximal real subfield.
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Let 
0 be a topological generator of �. We write Zp½½�

 for the Iwasawa algebra
of �, which is isomorphic to the power series ring Zp½½T 

 via the map 
0 7!1þ T.
In general this is too small to contain all p-adic L-functions that arise from inter-
polation problems. For r 2 N let us define

HrðT Þ :¼
n
hðT Þ 2 Qp½½T 

 such that hðT Þ is o

�
logr

pð1þ T Þ
�o
:

Whilst this is not a ring we can easily form one by putting HðT Þ :¼ [rHrðT Þ; we set

HðG1Þ :¼ HðT Þ �Zp½½�

 Zp½½G1

 :

Let Cp denote the Tate field, i.e. the completion of the algebraic closure of Qp. The
group of continuous characters Xp :¼ HomcontðG1;C



p Þ acts naturally on G1 and

this action extends by linearity and continuity to both Zp½½G1

 and HðG1Þ.
We fix once and for all an embedding of Q into Cp. Under this embedding we

can identify Dirichlet characters of p-power conductor with elements of Xtorsp . We
shall denote the pth-cyclotomic character by �; this gives the Galois action on the
p-power roots of unity.

Finally, if X denotes any module with an action of complex conjugation, then
we write Xþ (resp. X�) for the part on which complex conjugation acts by þ1 (resp.
�1).

2. Properties of the map Lp. In the monograph [12] Perrin-Riou outlines a
beautiful theory for the p-adic L-function LpðMÞ associated to a motive M with
good reduction at p. She predicts that such functions originate as norm-compatible
elements in the inverse limits of certain Galois cohomology groups, which can then
be transformed into LpðM Þ via an interpolating homomorphism, LOG1, say.

In particular LpðMÞ is parametrized by a suitable exterior power of the Dieu-
donné module associated to the p-adic representation, and is defined by its special
values on a certain set of Tate twists J � Z. The motive is called ‘‘J-admissible’’ if
this set of twists is large enough to uniquely determine the p-adic L-function. As an
example consider the Tate motive Qð1Þ; the norm-compatible elements are the
cyclotomic units, LpðM Þ is (up to normalisation) the Kubota-Leopoldt p-adic zeta-
function, and the map LOG1 is none other than the power series construction of
Coleman.

Before specialising to the case of the symmetric square, we recall from [6] the
definition of the topological GQp

-modules Bcrys and BdR: BdR is a discrete valuation
field with residue field Cp and decreasing filtration Bi

dR for i 2 Z. The subring Bcrys
has in addition a Frobenius operator and a filtration induced from that of BdR. If V
is a finite-dimensional p-adic representation of GQp

, then we define vector spaces by

DcrðV Þ :¼ V� Bcrys
� �GQp and DdRðV Þ :¼ V� BdRð Þ

GQp :

The space V is said to be crystalline (resp. de Rham) if dimQp
DcrðV Þ ¼ dimQp

V (resp.
dimQp

DdRðV Þ ¼ dimQp
V ). Both spaces have decreasing exhaustive filtrations

induced from BdR, and DcrðV Þ has a Frobenius operator we shall denote by ’;
moreover, if V is crystalline, then DcrðV Þ ¼ DdRðV Þ.
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From now on M ¼ Sym2Eð2Þ and V ¼ Sym2TpE�Zp
Qp, where TpE is the p-

adic Tate module of E. If MdR is the de Rham realisation of M, let e denote a base
over Q of the space detMdR and fix a generator 
B of det Sym2H1ðE;ZÞþ

� �
over Z.

Then the complex period �1;!Q
is defined by �1;!Q

e ¼ !Q ^ 
B, where !Q is a
chosen base of Fil0MdR. Multiplying !Q by an element of Q
 if necessary, we shall
assume that

�1;!Q
¼ 2�ið Þ�þE�

�
E :

Analogously there is a p-adic period map

�p;!Q
: ^2DdRðV Þ ! Qp � detMdR

n 7! !Q ^ n:

Whilst �p;!Q
ðnÞ clearly depends on the choice of parameter n 2 ^2DdRðV Þ, the

complex period �1;!Q
is fixed.

Formula VAL.SP ðM; �Þ—[12]. Assume that E has good reduction at p 6¼ 2.
There should exist a map Lp ¼ LpðMÞ in Homð^2DcrðV Þ;HðG

þ
1ÞÞ satisfying

^2ð’Þ�m���1 Lpð Þe ¼
Gð�Þ2 LðSym2E; �; 2Þ

�1;!Q

�p;!Q

for all non-trivial even characters � 2 Xtorsp of conductor pm� , with constant term

ð1� p�1’�1Þ1 Lpð Þe ¼
LfpgðSym

2E; 2Þ

�1;!Q

ð1� ’Þ�p;!Q
:

In down-to-earth terms, the above formulae predict how the Euler factor at p should
be modified in order to yield admissible p-adic functions. Thus the dimension of
^2DcrðV Þ reflects the number of (linearly-independent) L-functions that can be
interpolated by hand.

Remark. The Frobenius ^2ð’Þ acts on ^2DcrðV Þ while �
�1 should be viewed as

a specialisation from HðGþ1Þ to Qp. In fact the formula at the trivial character 1 was
omitted from [12] because p�1 is an eigenvalue of ’ on DcrðV Þ, so that the operator
ð1� ’Þ is not invertible. (Note that the action of ’ on f 2 HomQp

ðDcrðV Þ;QpÞ is
given by ’ð f ÞðxÞ ¼ p�1fð’�1xÞ.)

It should be pointed out that by itself VAL.SPðM; �Þ does not determine these
functions uniquely; in fact we need to establish analogous formulae VAL.SPðM; ��j Þ

for a J-admissible subset of Z. At present we are unable to do this due to the lack of
an algebraicity result at non-critical Tate twists. In order to construct a function
satisfying VAL.SPðM; �Þ it is sufficient to find p-adic L-functions corresponding to a
suitably chosen eigenbasis for ^2ð’Þ on ^2DcrðV Þ.

From now on we assume that E has good ordinary reduction at p 6¼ 2. Factorizing
the characteristic polynomial of Frobenius at p by
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X2 � apXþ p ¼ ðX� �pÞðX� �pÞ

we suppose that �p 2 Z
p as in the introduction. If U ¼ TpE�Zp
Qp then pick

generators u0 2 DcrðUÞ
’¼��1p , u�1 2 DcrðUÞ

’¼��1p and assume Fil0DcrðUÞ
¼ Qpðu0 þ �u�1Þ with � 6¼ 0 (so that U does not split). We can then define bases
e0 ¼ u20 for DcrðV Þ

’¼��2p , e�1 ¼ u0u�1 for DcrðV Þ
’¼p�1 and e�2 ¼ u2�1 for DcrðV Þ

’¼��2p ,
respectively; moreover e�1 is uniquely determined if we specify that u0 ^ u�1 equals 1
in DcrðQpð1ÞÞ ¼ Qp. For the same reasons

e ¼ e0 ^ e�1 ^ e�2

is independent of the choice of fu0; u�1g and generates detDcrðV Þ.
Finally, we have a ’-eigenbasis n�2 ¼ e�1 ^ e�2, np ¼ e0 ^ e�2 and n�2 ¼ e0 ^ e�1

for the space ^2DcrðV Þ that we shall use to parametrize the map Lp. Each basis ele-
ment corresponds to choosing a root of DpðX Þ when p-adically interpolating
LðSym2E; �; 2Þ.

3. p-adic distributions on the cyclotomic extension. We begin by fixing some

notations; let H denote the upper half plane. For any 
 ¼
a b
c d

	 

2 GL2ðRÞ the

action 
z :¼ azþb
czþd defines an automorphism of H [ R [ f1g. If g : H! C is any

function we write the (weight 2) action of 
 on g as

gj
ð ÞðzÞ :¼ ðdet 
Þ
1
2ðczþ dÞ�2gð
zÞ:

If g; f are continuous functions on H with transform like modular forms of weight 2
and character � under the action of the congruence modular group �0ðC Þ, then we
normalise the Petersson inner product via



g; f

�
C
:¼

Z
�0ðC ÞnH

gðzÞfðzÞ d ImðzÞ d ReðzÞ:

Now suppose that g is an eigenform of weight 2, exact level pC and nebentypus
character � such that 4jC, ðp;C Þ ¼ 1 and ðcondð�Þ;C Þ ¼ 1. If g has the q-expansionP

n�1 �nq
n with q ¼ e2�iz, then we define the Hecke operator Up and the involution #

via

gjUp :¼
X
n�1

�npq
n and g# :¼

X
n�1

�nq
n; respectively:

In particular gjUp ¼ �pg and g#jUp ¼ �pg
# with �p 6¼ 0.

It is perhaps easier to phrase everything in terms of p-adic measures. By a p-adic
distribution d� on Z
p with values in a ring R we mean a finitely additive function
from the compact open subsets of Z
p whose image lies in R. Recall that G1 ffi Z
p
via the cyclotomic character �, and so we may interchange these two groups as we
please.

CONJUGATE MEASURES OF Sym2E 49

https://doi.org/10.1017/S0017089502010029 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502010029


Now assume d� takes values in Cp. We say that d� is a bounded measure if�����
Z

aþpnZp

d�

�����
p

is bounded independently of a and n;

for all n 2 N and ða; pÞ ¼ 1. Let h be a positive integer and let xp denote the inclusion
Zp,!Cp. We recall from [20] that the p-adic distributions xr

pd� extend to an h-
admissible measure if�����

Z
aþpnZp

ðx� aÞrp d�

�����
p

¼

�����Xr

j¼0

r

j

	 

ð�aÞr�j

Z
aþpnZp

xj
p d�

�����
p

is of o pnðh�rÞ
� �

for all n 2 N, ða; pÞ ¼ 1 and r ¼ 0; :::; h� 1. Equivalently the Mellin transform

Mel� :¼

Z
x2Z
p

ð1þ T Þx d�

is a function of type o
�
logh

pð1þ T Þ
�
on the unit disc. In particular, Mel� is uniquely

determined by its special values at �xr
p for all Dirichlet characters � of p-power

conductor and all integers r ¼ 0; :::; h� 1.

Definition. Let d�ðgÞ denote the p-adic distribution satisfyingZ
Z
p

� d�ðgÞ ¼
Gð�Þ

ð�2pÞ
m�

condð��Þcondð�Þ

Gð��Þ



ð1� �ðpÞ��2p pÞð1� ��ðpÞÞ

ð1� ��ðpÞp�1Þ

LðSym2
ðgÞ; �; 2Þ

�3


g; g

�
pC

for all Dirichlet characters � of conductor pm� , with �� :¼ ��ð Þprim.

KeyLemma. The distribution d�ðgÞ extends to an even
�
½2ordp�p
 þ 1

�
-admissible

measure. Furthermore, if �p is a p-adic unit, then d�ðgÞ is an even bounded measure.

Proof. A similar type of result was proven in [3] and so we briefly sketch the
argument—the major difference here is that p now divides the level of g and may
also divide the conductor of �. We stick to our previous notation (which was ori-
ginally developed by Panchishkin in [11]).

Choose integers M;M0 2 pN such that p condð�Þ
��M, p2condð�Þ2

��M0 and pM0 is a
square. Then, for all s 2 C and Dirichlet characters � such that �ð�1Þ ¼ ð�1Þ� with
� 2 f0; 1g we define the complex-valued distribution Ds;Mð�Þ by

Ds;Mð�Þ :¼
Gð�Þ condð�Þs�1

�
2m�
p

1� �ðpÞ��2p ps�1
� �

L�ðSym2
ðgÞ; �; sÞ :

Here the superscript � indicates that the Euler factors at bad primes l such that ljC,
�l ¼ 0 have been removed. Of course at the end we shall have to remember to put
them back in!
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Now Ds;Mð�Þ can be written as a Rankin convolution of g with a theta-series,
and this convolution has a useful representation as a scalar product. Skipping some
tedious algebra which can be found in [3, §2.2] we deduce the identity

ð4�Þ�
sþ�
2ð Þ�

sþ �

2

� �
Ds;Mð�Þ ¼

i� pCM0ð Þ
2s�1
4

�
1þordpM0

p

�pCð2s� 2; �2�2Þ




D
g#
��VC ; �

ð�Þð�M Þ
��W4pCM0 Eðz; sþ �� 2Þ

E
4C2pM0

:

Here g#
��VC ¼

P
n�1 �nq

nC, the operator W� denotes the Atkin-Lehner involution
acting on modular forms of level 4pCM0 and half-integral weight, and �M is the
Dirichlet character modulo M induced from �. The theta-series defined by

�ð�Þð�M Þ :¼
X
n�1

�MðnÞn
�qn2

has weight �þ 1
2 and character � �1

�

� ��
, where �

�

� �
denotes the Jacobi symbol. As in

[16], define the automorphic factor of half-integral weight by

j�ð
; zÞ :¼
c

d

� �
��1d ðczþ d Þ

1
2;

where 
 ¼
a b
c d

	 

2 �0ð4Þ and �d ¼

1 if d � 1ð4Þ;
i if d � 3ð4Þ:

�
On putting � :¼ �� �1

�

� �� C
�

� �
, the Eisenstein series Eðz; s; 3�2�

2 ; �; 4C2pM0Þ is given
by

Eðz; sÞ :¼ ImðzÞ
s
2

X

2Stab1n�0ð4C2pM0Þ

�ðd
Þj�ð
; zÞ
�ð3�2�Þ

��j�ð
; zÞ���2s1 ;

which is of weight 3�2�
2 , character �, level 4C2pM0 and is absolutely convergent for

ReðsÞ > �þ 1
2. Let us define gamma factors �

�ðs; �Þ by

�þðs; �Þ :¼
2i1���ðs� 1Þ�ðsÞ

ð2�Þ2s�1
cos

�ðsþ �� 2Þ

2

	 

and ��ðs; �Þ :¼

�ðsÞ

ð2�Þs
:

If we normalise distributions via D�s;Mð�Þ :¼ �
�ðs; �Þ Ds;Mð�Þ

g;gh ipC

, then applying the
trace map from X0ð4C

2pM0Þ to X0ð4C
2pÞ we find that

D�s;Mð�Þ ¼ C�
2s�1
4ð Þ


ðM0Þ

g; g

�
pC




D
g#
��VC; �

ð�Þð�M Þ
��VC � G

�ðz; sþ �� 2
� ���UordpM

0

p W4C2p

E
4C2p

with 
ðM0Þ :¼ 2i�C
2�þ1
4

�
1þordpM0

p

. Here the Eisenstein series G�ðz; sÞ are (up to a normalisation)

the functions considered by Shimura in [17] who went on to calculate their Fourier
expansions.
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Remark. The series �ð�Þð�M Þ
��VC � G

�ðz; sþ �� 2Þ
� �

are only real analytic mod-
ular forms but we can compute their holomorphic projections. Firstly, if s ¼ 1 then
G�ðz; sþ �� 2Þ has bounded growth. If Hol denotes the operator of holomorphic
projection, then one can prove that

Hol �ð�Þð�M Þ
��VC � G

�ðz; sþ �� 2Þ
� �

ðs ¼ 1Þ

is a cusp form of weight 2 and character �. Similarly, if s ¼ 2 and �2 6¼ 1, then
Gþðz; sþ �� 2Þ also has bounded growth and hence

Hol �ð�Þð�M Þ
��VC � G

þðz; sþ �� 2Þ
� �

ðs ¼ 2; �2 6¼ 1Þ

is again a cusp form of weight 2 and character �. In the exceptional case �2 ¼ 1 we
can only say that Hol �ð Þ is a holomorphic modular form.

Putting F�ðz; s; �Þ :¼ C�
2s�1
4ð Þ Hol �ð�Þð�M Þ

��VC � G
�ðz; sþ �� 2Þ

� �
, at the two cri-

tical points we have

D�1;Mð�Þ ¼ 
ðM0Þ ‘g F�ðz; 1; �Þ
��UordpM

0

p W4C2p

� �
and

Dþ2;Mð�Þ ¼ 
ðM0Þ ‘g Fþðz; 2; �Þ
��UordpM

0

p W4C2p

� �
;

where Hida’s linear functional ‘g sends a modular form h (of weight 2, level 4C2p

and character �) to the algebraic number



g#
��VC;h

�
4C2p


g;g
�
pC

. Note that the non-holomorphic

part of �ð�Þð�M Þ
��VC � G

�ðz; sþ �� 2Þ
� �

is killed off by the operator ‘g !W4C2p !

U
ordpM

0

p !Hol.
For the moment we focus on the value at s ¼ 2; under our embedding Q,!Cp

define the p-adic distribution dDþ byZ
Z
p

� dDþ :¼
condð��Þ

Gð��Þ

1� ��ðpÞ

1� ��ðpÞp�1

 Dþ2;Mð�Þ :

By Atkin-Lehner theory the functional ‘g degenerates into a finite Q-linear combina-
tion of the Fourier coefficients of Fþðz; 2; �Þ

��UordpM
0

p , and so to prove that dDþ extends
to an h-admissible measure (with h ¼ ½2ordp�p
 þ 1) it is enough to establish the h-
admissibility of each Fourier coefficient separately (the notation x j

p dDþ will be used
for the corresponding distributions). We now give a description of these coefficients.

Definition. For s ¼ 2; 3; 4; . . . and n 2 N0 define algebraic numbers

vþðM0n; s; �Þ :¼
X

M0n¼Cn2
1
þn2

p n1
n1 ;n22N

�ðn1Þ n
�
1 M0n� Cn21
� �s���1

2 �ðn2; s� 1; "n2�Þ



Gð"n2Þ

Gð�Þ

C�
2s�1
4ð Þ

�
condð"n2 Þ

condð�Þ

� �
:
condð"n2 Þ

condð�Þ

� �s�1
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(
condð"n2�Þ

s�1

Gð"n2�Þ

1� "n2�ðpÞp
s�2

1� "n2�ðpÞp
�ðs�1Þ



2i1���ðs� 1Þ

ð2�Þs�1
cos

�ðsþ �� 2Þ

2

	 

�pCðs� 1; "n2�Þ

)
;

where "n2ð � Þ :¼
�Cn2
�

� �
�ð � Þ

� �
prim

and

�ðn2; s� 1; "n2�Þ :¼
X
a;b2N

ða;pC Þ¼ðb;pC Þ¼1
abjm

�ðaÞ "n2�ðaÞ
�
"n2�

�2
ðbÞ a1�s b3�2s

with m denoting the largest integer such that n2
�
m2 2 N.

The reason behind this (painful!) definition of the vþðM0n; s; �Þ’s is that at s ¼ 2
they turn up in the q-expansion of Fþðz; 2; �Þ

��UordpM
0

p . Specifically we already calcu-
lated in [3, p. 593] that

condð��Þ

Gð��Þ

1� ��ðpÞ

1� ��ðpÞp�1

 Fþðz; 2; �Þ

���UordpM
0

p

� �
¼
X

n

vþðM0n; 2; �Þ qn ;

unless �� is a real quadratic character, in which case we should modify vþðM0n; 2; �Þ

by a term of type O
���M0n��12

p

�
(which we ignore as it does not affect admissibility).

The observant reader will have spotted that the
�
�
�
-expression above is none

other than the special value

Z
Z

�
cn2

Z

� �


 Z
p

�xs�1
p : d�ð�pÞ � "n2 ;

where cn2 is the prime-to-p-part of condð"n2 Þ and d�ð�pÞ denotes the bounded pseudo-
measure associated to the Kubota-Leopoldt p-adic zeta-function interpolating
�Cðs� 1; �Þ for s� 1 2 N. (We actually avoid its pole because "n2� is never trivial.)

Examining the precise form of the Fourier coefficients, we see that vþðM0n; s; �Þ
is congruent (modulo M0) to a linear combination of terms like

�ðuÞus�1 


Z
Z

�
cn2

Z

� �


 Z
p

�xs�1
p : d�ð�pÞ � "n2 ; for various u 2 Z
p \Q:

Combining this fact with the degeneracy of the functional ‘g, in order to bound the
integralZ

aþMZp

ðx� aÞs�2p dDþ ¼
Xs�2
j¼0

s� 2

j

	 

ð�aÞs�2�j

�ðMÞ

X
� mod M

��1ðaÞ

Z
Z
p

�xj
p dDþ;

for s ¼ 2; 3; 4; ::: and ða; pÞ ¼ 1, it is enough to bound the expressions
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Xs�2
j¼0

s� 2

j

	 

ð�aÞs�2�j

�ðM Þ

X
� mod M

��1ðaÞ : 
ðM0Þ

Z
x2Z
p

�ðuxÞðuxpÞ
jþ1 : d�ð�pÞ � "n2

¼ 
ðM0Þ us�1

Z
x�au�1 ðmod M Þ

ðx� au�1Þs�2p : xp d�ð�pÞ � "n2 :

This last term has O j
ðM0ÞjpjMj
s�2
p

� �
, as d�ð�pÞ is bounded and so choosing

M0 ¼ pM2 yields a bound of type O jMj
s�2�½2ordp�p

p

� �
from the definition of 
ðM0Þ.

Consequently dDþ extends to an h-admissible measure (resp. a bounded measure if
ordp�p ¼ 0). Moreover it is an even measure since the xp d�ð�pÞ � "n2

� �
’s are even.

One can play the same game at s ¼ 1 using the p-adic distribution dD� defined
by

R
Z
p
� dD� :¼ D�1;Mð�Þ. An identical argument to the one above shows that dD�

extends to an even h-admissible (resp. bounded if ordp�p ¼ 0) measure, except that
the Fourier coefficients of F�ðz; 1; �Þ

��UordpM
0

p are now combinations of p-adic zeta-
functions interpolating ‘‘�Cðs� 1; �Þ’’ for s ¼ 1; 0;�1; . . . instead.

Finally, we must replace the missing Euler factors in L�ðSym2
ðgÞ; �; sÞ whilst

retaining our admissibility conditions. The (imprimitive) functional equation
between L�ðSym2

ðgÞ; �; 2Þ and L�ðSym2
ðgÞ; �; 1Þ means that the distributions dDþ

and dD� are contragredient and so it is enough to prove that the Euler factors we
are replacing are coprime to the corresponding dual Euler factors as elements of
Zp½½T 

½�
. This can be accomplished by applying theWeiestrass Preparation Theorem
and showing that as functions on the open disc

T 2 Cp

�� jTjp < 1
� �

their zeros are disjoint. (See [3, p. 603].)
The proof of our lemma is therefore complete.

4. Existence of the map Lp. We now give the main result of this article. We state
the result only in terms of the motive Sym2Eð2Þ although one can easily formulate
the corresponding version of this theorem for Sym2Eð1Þ via the functional equation.

ExistenceTheorem. Assume that E has good ordinary reduction at p 6¼ 2.
(a) There exists a unique element Lpðn�2 Þ 2 Zp½½G

þ
1

 �Q satisfying

��1 Lpðn�2Þð Þ ¼
Gð�Þ2condð�Þ

ð�2pÞ
m�

LðSym2E; �; 2Þ

2�ið Þ�þE�
�
E

for all non-trivial characters � 2 Xtorsp , with a trivial zero at 1.
(b) There exists an element Lpðn�2 Þ 2 HðG

þ
1Þ of type Oðlog2pÞ satisfying

��1 Lpðn�2Þ
� �

¼
Gð�Þ2condð�Þ

ð�2pÞ
m�

LðSym2E; �; 2Þ

2�ið Þ�þE�
�
E

for all non-trivial characters � 2 Xtorsp , with a trivial zero at 1.
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(c) There exists an element gLpðnpÞLpðnpÞ 2 HðG
þ
1Þ of type Oðlog2pÞ satisfying

��1 gLpðnpÞLpðnpÞ

� �
¼

Gð�Þ2condð�Þ

ðpÞm�

LðSym2E; �; 2Þ

2�ið Þ�þE�
�
E

	 
2

for all non-trivial characters � 2 Xtorsp , with leading term

1 gLpðnpÞLpðnpÞ

� �
¼

 
1�

1

p

	 

1�

�p

�p

	 

1�

�p

�p

	 

LðSym2E; 2Þ

2�ið Þ�þE�
�
E

!2

:

Remark. Unfortunately only Lpðn�2 Þ is uniquely determined by this data, both
Lpðn�2Þ and

gLpðnpÞLpðnpÞ requiring further information at an extra two Tate twists. The
notation gLpðnpÞLpðnpÞ indicates that this should be related to the square of the true com-
ponent LpðnpÞ of type OðlogpÞ(?) predicted by Formula VAL.SPðM; �Þ.

Proof. Nothing changes if we twist Sym2E by the quadratic character of con-
ductor 4 and so without loss of generality we may assume that NE is divisible by 4
(where NE denotes the conductor of E).

Let fE denote the newform associated to a strong Weil parametrization of E. We
put gðzÞ ¼ fEðzÞ � �pfEðpzÞ; which is an eigenform of weight 2, level pNE and trivial
character � ¼1; in particular

LðSym2
ðgÞ; sÞ ¼ 1� �2pp

�s
� �

1� p1�s
� �

LðSym2E; sÞ:

Consequently the distribution
�3hg;gipNE

2�ið Þ�þ
E
��

E

d�ðgÞ is bounded by our Key Lemma since

ordp�p ¼ 0. Taking Mellin transforms, this measure corresponds to a bounded
power series Lpðn�2Þ. Moreover Sturm’s algebraicity result at s ¼ 2 and the evenness
of d�ðgÞ implies that the element Lpðn�2 Þ lies in Zp½½G

þ
1

 �Q, so that part (a) is

proved.

The proof of (b) is identical except that we use instead the conjugate newform
g#ðzÞ ¼ fEðzÞ � �pfEðpzÞ so that

LðSym2
ðg#Þ; sÞ ¼ 1� �2pp

�s
� �

1� p1�s
� �

LðSym2E; sÞ :

This time our Key Lemma implies that the distribution
�3hg#;g#ipNE

2�ið Þ�þ
E
��

E

d�ðg#Þ extends to

an h#-admissible measure, where h# ¼ ½2ordp�p
 þ 1 ¼ 3. Its Mellin transform
Lpðn�2Þ will thus be of type oðlog3pÞ or more accurately Oðlog2pÞ.

Finally, the product of Lpðn�2 Þ and L
pðn�2Þ yields a power series, G say, of

type Oðlog2pÞ, which has the same special values at non-trivial � 2 Xtorsp as the
element predicted in part (c); (this follows from the identity �2p�

2
p ¼ p2). However

G has at least a double zero at 1 because both Lpðn�2Þ and L
pðn�2Þ have trivial

zeros. Fortunately Hð�Þ contains some very useful elements; for example the
function logð
0Þ


0�1
, which is zero on the whole of Xtorsp except at the trivial character

where it equals 1. This allows us to modify the value of G at 1 as we please
whilst preserving the Oðlog2pÞ condition. In particular this implies the existence ofgLpðnpÞLpðnpÞ.
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Remark. The method even works at bad primes. If we assume that E has
potential good ordinary reduction at p > 3 and E is not the quadratic twist of a
curve with good reduction, then there exists a character  of � such that the new-
form g ¼ fE �  has level eNN ¼ p�1NE. Consequently we can use our Key Lemma

to produce measures
�3hg;gi ~NN
2�ið Þ�þ

E
��

E

d�ðgÞ �  2 (resp.
�3hg#;g#i ~NN
2�ið Þ�þ

E
��

E

d�ðg#Þ �  �2) which are

the analogues of Lpðn�2Þ (resp. L
pðn�2Þ) in the bad reduction case.

Taking the Mellin transform of the convolution of these two measures and then
computing its special values, we prove the following result.

Theorem. Assume that E has potential good ordinary reduction at p > 3.

Then there exists an element gLpð?ÞLpð?Þ 2 HðGþ1Þ of type Oðlog2pÞ satisfying

��1 gLpð?ÞLpð?Þ
� �

¼
Gð�Þ2condð�Þ

ðpÞm�

LðSym2E; �; 2Þ

2�ið Þ�þE�
�
E

	 
2

for all Dirichlet characters � 6¼ 1;  2;  �2 of conductor pm� .

5. Local Iwasawa theory. In the next three sections we use Perrin-Riou’s local
Iwasawa theory to obtain a formula for the derivative of Lpðn�2 Þ. The calculation for
the component Lpðn�2Þ has already been done in [13, §2.3] but we include it as it is
very interesting to compare the two. All these formulae rely upon the hypothesis
that there exists a norm-compatible family in the global Galois cohomology that
yields the map Lp.

For this section V will denote any crystalline representation of GQp
. If K is a

field and i 2 N0, then we write HiðK; � Þ for the Galois cohomology groups
Hi
contðGK; � Þ defined using continuous cochains. Recall that Bloch and Kato [1]

define subspaces of H1ðQp;V Þ by

H1
f ðQp;V Þ :¼ Ker H1ðQp;V Þ�!H1ðQp;V� BcrysÞ

� �
;

H1
gðQp;V Þ :¼ Ker H1ðQp;V Þ�!H1ðQp;V� BdRÞ

� �
;

and an exponential map

expf;V : DcrðV Þ
�
Fil0�!H1

f ðQp;V Þ:

In particular, if DcrðV Þ
’¼1
¼ 0, then expf;V is an isomorphism and we denote the

inverse map by logf;V. Under the cup product pairing the quotient map expf=e;V$ð1Þ :
DcrðV

$ð1ÞÞ
�
ð1� ’Þ ! H1

f=eðQp;V
$ð1ÞÞ induces a dual exponential map

exp$V : H
1
gðQp;V Þ�!DcrðV Þ

’¼p�1

with H1
f ðQp;V Þ as the kernel.

Let � denote a generator of the Tate module Zpð1Þ, and fix a positive integer h
such that Fil�hDcrðV Þ ¼ DcrðV Þ. It is the main result of [14] that there exists a unique
HðG1Þ-homomorphism
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��V;h : HðG1Þ �DcrðV Þ ! HðG1Þ � lim
 

H1ðQpð�pnÞ;TÞ=TGK1

such that for all integers j satisfying hþ j � 1 and DcrðV Þ
’¼p�j

¼ 0, we have

expf;Vð j Þ ð1� p�j�1’�1Þð1� p j’Þ�1� jðgÞ
� �

¼ ð�1Þ j �ðhþ jÞ �0 �
�
V;hðgÞ � �

�j
� �

for all g 2 HðG1Þ �DcrðV Þ. Here T is a Galois-stable lattice in V and �0 is the
natural projection from lim

 
H1ðQpð�pn Þ;Tð jÞÞ to H1ðQp;Vð jÞÞ.

The map ��V;h depends on the choice of h and � but, if h0 > h are sufficiently
large then

��V;h ¼
Yh0�1
j¼h

j�
logp 
0

logp �ð
0Þ

 !�1
��V;h0 :

Definition. For h � 1 define LOG1 : lim
 

H1ðQpð�pnÞ;TÞ ! Frac HðG1Þð Þ�

DcrðV Þ by

LOG1ðxÞ :¼
Yh�1
j¼0

j�
logp 
0

logp �ð
0Þ

 !
��V;h
� ��1

ðxÞ :

Let lim
 

H1ðQpð�pn Þ;TÞf (resp. lim
 

H1ðQpð�pnÞ;TÞg) denote all the elements in

lim
 

H1ðQpð�pn Þ;TÞ that lie in H1
f ðQp;V Þ (resp. H1

gðQp;V Þ) under the map �0.

Proposition. [13] There exists a section S� from DcrðV Þ
’¼p�1

� Frac HðG1Þð Þ

onto lim
 

H1ðQpð�pnÞ;TÞg � Frac HðG1Þð Þ such that if either one of DcrðV Þ
’¼p�1 or

Fil0DcrðV Þ is non-zero, then

ð1� p�1’�1Þð1� ’Þ�1@LOG1ðxÞ � logg;V �0ðxÞ mod Fil
0DcrðV Þ;

where

logg;VðyÞ :¼ logf;V y� �0ðS
�ðexp$VðyÞÞÞ

� �
for y 2 H1

gðQp;V Þ

and @ denotes the differential operator lims!0
d�s

ds

�
�
�
.

The section S� is designed to split the sequence

0! lim
 

H1ðQpð�pnÞ;TÞf ! lim
 

H1ðQpð�pn Þ;TÞg ! DcrðV Þ
’¼p�1

after tensoring with Frac HðG1Þð Þ. The construction of S� depends upon an embed-
ding of the field Bst into BdR which in terms of Iwasawa theory, is equivalent to
picking a branch of the logarithm satisfying logp p ¼ 0. In fact logg;Qpð1Þ equals logp

upon identifying H1ðQp;Qpð1ÞÞ with the completed tensor product GmðQpÞb��Qp ¼

lim
 

Q
p =ðQ


p Þ

pn
� �

�Zp
Qp via Kummer theory.
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We also mention that the proof of the above proposition requires the explicit
reciprocity laws recently proved (independently) by Benois, Colmez and Kato-Tsuji-
Kurihara. (See [13, §1.3] for details of the construction of S�.)

6. L-invariants via Selmer groups. From now on T ¼ Sym2TpE and
V ¼ T�Zp

Qp. We shall apply the proposition of the last section to calculate the
value of @LOG1ðxÞ in terms of the dual exponential map exp$V : H

1ðQp;V Þ�!
DcrðV Þ

’¼p�1 . We want formulae of the type

@LOG1ðxÞ ^ n ¼ ðEuler factorÞ 
 ðL-invariantÞ : e0 ^ exp
$
Vð�0ðxÞÞ ^ e�2;

where x 2 lim
 

H1ðQð�pnÞ;TÞþ �Qp, and the ‘‘L-invariant’’ is a p-adic number
depending on the GQ-representation V and the parameter n 2 ^2DcrðV Þ. In order to
define the L-invariants we must choose coordinates ð�0; �1; �2Þ on the cohomology
group H1ðQp;V Þ (remember that dimQp

H1ðQp;V Þ ¼ 3). Since H1ðQp;V Þ ¼
H1

gðQp;V Þ we use the map logg;V of the previous section to aid us.
We assumed E had good ordinary reduction at p, so that as a GQp

-representa-
tion V has the ordinary filtration

0 � F2V � F1V � V; where Ip acts on gr
iðV Þ via �i

with DcrðF
2V Þ ¼ Qpe�2 and DcrðF

1V Þ ¼ Qpe�2 &Qpe�1. The short exact sequence

0! F2V!
j
F1V!

�
Qpð1Þ ! 0 induces an exact sequence on cohomology

0! H1ðQp;F
2V Þ !

j
H1ðQp;V Þ !

�
H1ðQp;Qpð1ÞÞ

since H0ðQp;Qpð1ÞÞ ¼ 0 and H1ðQp;F
1V Þ ¼ H1ðQp;V Þ. In fact this sequence must

be right-exact because dimQp
H1ðQp;F

2V Þ ¼ 1 and dimQp
H1ðQp;Qpð1ÞÞ ¼ 2.

Remark. If Pr�2 denotes the natural projection DcrðV Þ !! DcrðV Þ
’¼��2p then we

have a well-defined section

.� :¼ expf;V ! Pr�2 ! logg;V

from H1ðQp;V Þ onto H1ðQp;F
2V Þ, because the space DcrðV Þ

’¼��2p is isomorphic to
H1ðQp;F

2V Þ ¼ H1
f ðQp;F

2V Þ via expf;V. Clearly .
� depends on the choice of � as

logg;V is constructed using the section S�.
We thus get our first coordinate �2 : H

1ðQp;V Þ !! Qp given by

�2ð � Þe�2 :¼ logf;V ! .
�ð � Þ ¼ Pr�2 ! logg;Vð � Þ :

To define the other two coordinates �0; �1 we use a little Kummer theory. To begin
with

H1ðQp;Qpð1ÞÞ ¼ GmðQpÞb��Qp !
'

Qp &Qp

q 7! logp q& ordp q :

58 DANIEL DELBOURGO

https://doi.org/10.1017/S0017089502010029 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502010029


Now H1
f ðQp;F

1V Þ ¼ H1
f ðQp;V Þ implies that Imðlogg;VÞ ¼ Imðlogf;VÞ ¼ DcrðF

1V Þ;
moreover, under the projection map Pr�1 : DcrðV Þ !! DcrðV Þ

’¼p�1 we have

Pr�1 ! logg;V ¼ logg;Qpð1Þ ! �
� �

e�1 ¼ logp ! �
� �

e�1 :

Consequently ordp ! � maps the kernel of logg;V bijectively onto Qp. The function
ordp ! � is closely related to the dual exponential map. In fact

exp$V ¼ ordp ! �
� �

e�1 as elements of DcrðV Þ
’¼p�1 ;

because exp$Qpð1Þ
is simply the valuation map on GmðQpÞb��Qp. In view of this we

define �0; �1 : H
1ðQp;V Þ !! Qp by

�0 :¼ ordp ! � and �1 :¼ logp ! � :

Summarizing, we have the commutative diagram

with exact rows and exact columns. We have proved the following result.

Lemma. There is a (non-canonical) isomorphism of Qp-vector spaces given by

�0 & �1 & �2 : H
1ðQp;V Þ �!

'
Qp &Qp &Qp :

The (weak) Selmer group attached to the representation V is defined by

S
0
ðV=QÞ :¼ Ker H1ðQ;V Þ�!

M
l 6¼p

H1ðIl;V Þ

 !
;

where Il is the inertia subgroup in GQl
and the maps above denote restriction. Flach,

Wiles and Diamond [5,21,4] have shown under various hypotheses that the Bloch-
Kato Selmer group
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H1
f;SpecZðQ;V Þ :¼ Ker S

0
ðV=QÞ�!

H1ðQp;V Þ

H1
f ðQp;V Þ

 !

is zero; (e.g. if Ep is an absolutely irreducible GQ-module then H1
f;SpecZðQ;V Þ ¼ 0 by

[4]).
Assuming the triviality of H1

f;SpecZðQ;V Þ, the weak Leopoldt conjecture for V
and Vð�1Þ holds, and so the space S0ðV=QÞ is one-dimensional over Qp. Let s0

denote the image of a generator of S0ðV=QÞ in H1ðQp;V Þ.

Definition. Assume that H1
f;SpecZðQ;V Þ is zero and exp$Vðs

0Þ 6¼ 0. Define L-
invariants by

L
Gr :¼

�1ðs
0Þ

�0ðs
0Þ

and L
conj :¼

�1ðs
0Þ

�0ðs
0Þ
�
2

�

�2ðs
0Þ

�0ðs
0Þ
;

with Fil0DcrðU Þ ¼ Qpðu0 þ �u�1Þ, � 6¼ 0; as before.

The quantity LGr ¼
logp �ðs

0Þð Þ

ordp �ðs
0Þð Þ
is none other than Greenberg’s L-invariant in [8];

the number Lconj can thus be viewed as a generalization of this to the conjugate
measure.

A priori it is not clear that these really are invariant under the choices made.
First of all exp$Vðs

0Þ is non-zero if and only if ordp �ðs
0Þð Þ is non-zero, so at least we

are not dividing by zero! Now changing s0 by an element of Q
p will not affect the
ratios �1

�0
and �2

�0
by the previous lemma and so it remains to show independence from

our given basis of DcrðV Þ.
Recalling that e ¼ e0 ^ e�1 ^ e�2 set !e :¼

1
2� e0 þ e�1 þ

�
2 e�2 (which generates

Fil0DcrðV Þ). Since
�1ðs

0Þ

�0ðs
0Þ
does not depend on fe0; e�1; e�2g it suffices to demonstrate

the same of 2
�
�2ðs

0Þ

�0ðs
0Þ
. Observing that Pr�2ð!Þ is proportional to Pr�1ð!Þ as we vary

generators ! of Fil0DcrðV Þ, clearly
2
�
�2ðs

0Þ

�0ðs
0Þ
is well-defined if and only if the ratio

‘‘2�
�2ðs

0Þ

�0ðs
0Þ
: Pr�2ð!eÞ
Pr�1ð!eÞ

’’ is too. However 2
�Pr�2ð!eÞ ¼ e�2 and Pr�1ð!eÞ ¼ e�1, so that

2

�

�2ðs
0Þ

�0ðs
0Þ
:
Pr�2ð!eÞ

Pr�1ð!eÞ
¼

�2ðs
0Þe�2

�0ðs
0Þe�1

¼
logf;V .

�ðs0Þð Þ

exp$Vðs
0Þ

which is independent of our original choice of fe0; e�1; e�2g.

Proposition. Assume that E has good ordinary reduction at p 6¼ 2,
H1

f;SpecZðQ;V Þ is zero and exp$Vðs
0Þ is non-zero. If x 2 lim

 
H1ðQð�pn Þ;TÞþ �Qp

then

ð1� p�1’�1Þð1� ’Þ�1@LOG1ðxÞ ^ n�2 ¼ �
1

2�

	 

L
Gr : e0 ^ exp

$
Vð�0ðxÞÞ ^ e�2

and

ð1� p�1’�1Þð1� ’Þ�1@LOG1ðxÞ ^ n�2 ¼ �
�

2

	 

L
conj : e0 ^ exp

$
Vð�0ðxÞÞ ^ e�2 :
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Proof. Let us assume that exp$Vð�0ðxÞÞ is non-trivial; we begin by proving
the second statement. Put d ¼ ð1� p�1’�1Þð1� ’Þ�1@LOG1ðxÞ which lies in
Qpe0 &Qpe�2. Then

d ^ e�1 ^ e0 ¼ d ^ !e ^ e0 ¼ logg;Vð�0ðxÞÞ ^ !e ^ e0

by the proposition of the previous section. However logg;Vð�0ðxÞÞ�1ð�0ðxÞÞe�1
&�2ð�0ðxÞÞe�2, which implies that

d ^ e�1 ^ e0 ¼ �1ð�0ðxÞÞe�1 ^ !e ^ e0 & �2ð�0ðxÞÞe�2 ^ !e ^ e0

¼
�

2

	 

�1ð�0ðxÞÞe0 ^ e�1 ^ e�2 & ��2ð�0ðxÞÞe0 ^ e�1 ^ e�2 :

Moreover n�2 ¼ � e�1 ^ e0ð Þ and exp$Vð�0ðxÞÞ ¼ �0ð�0ðxÞÞe�1 6¼ 0. Hence

d ^ n�2 ¼ �
�

2

	 

�1ð�0ðxÞÞ �

2
� �2ð�0ðxÞÞ

�0ð�0ðxÞÞ
: e0 ^ exp

$
Vð�0ðxÞÞ ^ e�2 :

Thus the second assertion follows upon observing that

Qp�0ðxÞ ¼ �0 lim
 

H1ðQð�pnÞ;TÞþ �Qp

� �
¼ resp S

0
ðV=QÞð Þ ¼ Qps

0;

where resp : H
1ðQ;V Þ ! H1ðQp;V Þ, as we then have

�1ð�0ðxÞÞ �
2
� �2ð�0ðxÞÞ

�0ð�0ðxÞÞ
¼
�1ðs

0Þ

�0ðs
0Þ
�
2

�

�2ðs
0Þ

�0ðs
0Þ
¼ L

conj :

The proof of the first assertion is very similar. We just remark that

d ^ e�1 ^ e�2 ¼ logg;Vð�0ðxÞÞ ^ !e ^ e�2 ¼ �
1

2�

	 

�1ð�0ðxÞÞe0 ^ e�1 ^ e�2

and then proceed as above.

7. Norm-compatible families. To make any further progress we must now
assume that the function Lp is the image of a norm-compatible element under the
map LOG1; c.f. [12, Conjecture 4.4.3]. Implicit in this assumption is that there
should be some trick for relating the non-Iwasawa components LpðnpÞ and L

pðn�2Þ to
the complex L-values at s ¼ 3; 4.

Hypothesis (ES).
There exists an element z1 in lim

 
H1ðQð�pnÞ;TÞþ �Qp satisfying

ðAÞ LpðnÞe ¼ LOG1ðz1Þ ^ n for all n 2 ^2DcrðV Þ;

ðBÞ exp$Vð�0ðz1ÞÞ ¼ � 1�
�p

�p

	 

1�

�p

�p

	 

LðSym2E; 2Þ

�1;!Q

Pr�1ð!QÞ:
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The value exp$Vð�0ðz1ÞÞ is automatically non-zero since the complex function
LðSym2E; sÞ does not vanish at s ¼ 2; in particular if (ES) holds then

1 LpðnpÞ
� �

e ¼ 1�
1

p

	 

1�

�p

�p

	 

1�

�p

�p

	 

LðSym2E; 2Þ

�1;!Q

�p;!Q
ðnpÞ

as predicted by Formula VAL.SPðM; �Þ. Theoretically the dual exponential map
should contain the congruence L-values as, for example, with the Kato-Beilinson
Euler system.

Derivative Theorem. Assume that E has good ordinary reduction at p 6¼ 2,
the Selmer group H1

f;SpecZðQ;V Þ is zero and there exists an element z1 satisfying
Hypothesis (ES). Then

ðaÞ @Lpðn�2 Þ ¼ L
Gr 1� ��2p

� �
1� p��2p

� �LðSym2E; 2Þ

2�ið Þ�þE�
�
E

;

ðbÞ @Lpðn�2 Þ ¼ L
conj 1� ��2p

� �
1� p��2p

� �LðSym2E; 2Þ

2�ið Þ�þE�
�
E

:

Proof. We start with part (a). Clearly all the conditions of the proposition in §6
are satisfied, since exp$Vð�0ðz1ÞÞ 6¼ 0; hence (ES) implies that

1� p�1�2p

� �
1� ��2p

� ��1
@Lpðn�2Þ e

¼
1

2�

	 

L
Gr 1�

�p

�p

	 

1�

�p

�p

	 

LðSym2E; 2Þ

�1;!Q

e0 ^ Pr�1ð!QÞ ^ e�2 :

Choosing u 6¼ 0; so that !Q ¼ u!e and Pr�1ð!QÞ ¼ ue�1, we obtain

�p;!Q
ðn�2 Þ ¼ !Q ^ e�1 ^ e�2 ¼

u

2�

� �
e :

Combining these two equations we find that

@Lpðn�2 Þ e ¼ L
Gr 1� ��2p

� �
1� p��2p

� �LðSym2E; 2Þ

�1;!Q

�p;!Q
ðn�2 Þ;

and so (a) is proved. The proof of (b) follows identical lines.
An obvious question to ask is whether LGr and Lconj are non-zero. In unpub-

lished work, Greenberg and Tilouine have shown that when pjjNE the analogue of
(a) above is true with LGr ¼

logp qE

ordpqE
(qE being the Tate period of E). Furthermore, the

fact that logp qE 6¼ 0 was recently proved by Barré-Sirieix, Diaz, Gramain and
Philibert.

To establish a similar result in the good ordinary case we need three things.
(i) An explicit construction of a generator s0 of the space resp S

0
ðV=QÞð Þ.

(ii) An analytic description of the map logf;V : H
1
f ðQp;F

2V Þ �!
'
DcrðF

2V Þ.
(iii) The calculation of the image of s0 under logf;V ! .

� and logp ! �.
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Addressing (i) first, Flach [5] constructs via K-theory elements cðlÞ 2 H1ðQ;TÞ,
lj-pNE which are unramified outside p and l, but unfortunately for us have trivial
image in H1

=fðQp;TÞ. As Kato suggested, a better place to look for such a generator
might be in KMil3 X0ðNEÞ 
 X0ðNEÞ � Z

 
1

NE

!� �
, where this is Milnor K-theory of the

rational functions on X0ðNEÞ 
 X0ðNEÞ (the tricky part is the right choice of divisors
for the modular units occuring in the cup-product).

Turning our attention to (ii), the space F2V is none other than the representa-
tion associated to the Tate module of the formal group of E=Zp

tensored with itself.
It is tempting to hope that F2V has an associated p-divisible group, but Tate has
shown that such a representation must have Hodge-Tate weights in f0; 1g yet
F2V�Qp

Cp ¼ Cpð2Þ.
All may not be lost—under our assumptions the Abelian surface E
 E has

good ordinary reduction over Qp. Consequently the formal group attached to the
Néron model for E
 E over Zp has height 2 ¼ dimðE
 EÞ. We write LogE
E for the
extension to E
 E of the formal group logarithm, so that

LogE
E :
�
E
 E

�
ðQpÞb��Qp �! tangent space of E
 E

�
Qp:

Now H1
f ðQp;F

2V Þ is contained in H1
f ðQp;V Þ which is itself a direct summand of

H1
f Qp;H

2
�eetðE
 E;Qpð2ÞÞ

� �
ffi
�
E
 E

�
ðQpÞb��Qp ;

this last isomorphism coming from Bloch-Kato [1]. Identifying DcrðF
2V Þ within the

tangent space of E
 E, the map logf;V will then coincide with the restriction of
LogE
E to H1

f ðQp;F
2V Þ. Interestingly this description of Lconj mixes up the loga-

rithm map on a formal group of height 1 (i.e. Gm) with the logarithm map on a
formal group of height 2.

Finally, we have no idea at all how to attack (iii). Essentially we need to know ‘‘the
shape’’ of resp S

0
ðV=QÞð Þ inside H1ðQp;V Þ. In the bad multiplicative case it turns out

that qE is a universal norm for the Zp-extension ofQp cut out by the image of the map

H1ðQp; Sym
2TpE Þ �! H1ðQp;ZpÞ ¼ HomZp

ðGalðF1=QpÞ;ZpÞ ffi Z2
p

induced by quotienting Sym2TpE by its sublattice of strictly positive Hodge-Tate
weight; (here F1 is the compositum of all the Zp-extensions of Qp). However in the
good ordinary case there is no such easy local description for s0.
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3. A. Dçcabrowski and D. Delbourgo, S-adic L-functions attached to the symmetric
square of a newform, Proc. London Math. Soc. (3) 74 (1997), 559–611.

4. F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144 (1996), 137–
166.

5. M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent.
Math. 109 (1992), 307–327.

6. J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois
d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. 115 (1982), 529–
577.

7. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2)
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