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Abstract

Let A, B be Archimedean vector lattices and let (ui )i∈I , (vi )i∈I be maximal orthogonal systems of A
and B, respectively. In this paper, we prove that if T is a lattice homomorphism from A into B such that
T (λui )= λvi for each λ ∈ R+ and i ∈ I , then T is linear. This generalizes earlier results of Ercan and
Wickstead (Math. Nachr 279 (9–10) (2006), 1024–1027), Lochan and Strauss (J. London Math. Soc. (2)
25 (1982), 379–384), Mena and Roth (Proc. Amer. Math. Soc. 71 (1978), 11–12) and Thanh (Ann. Univ.
Sci. Budapest. Eotvos Sect. Math. 34 (1992), 167–171).
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1. Introduction

In this paper, we give some conditions under which a lattice homomorphism is linear.
Our starting point is a theorem of Mena and Roth [6] (generalized by Thanh [8], by
Lochan and Strauss [4] and recently by Ercan and Wickstead [3]) where T is a lattice
homomorphism of C(X)-spaces and hence via the Kakutani representation theorem,
T acts between two uniformly complete Archimedean vector lattices A and B with
(strong or weak) order units. Perhaps the most general result in this direction is the
work of Ercan and Wickstead [3]. More precisely, they deduced from the theorem
of Mena and Roth and by using the Kakutani representation theorem, that if A and
B are uniformly complete Archimedean vector lattices A and B with weak order
units e1 ∈ A and e2 ∈ B and if T is a lattice homomorphism from A to B, such that
T (λe1)= λe2 for each λ ∈ R, then T is linear. Finally, using the same argument, they
gave a corresponding result for the case where T acts between two uniformly complete
Archimedean vector lattices with disjoint complete systems of projection, for example,
between two σ -Dedekind complete vector lattices. To the best of our knowledge, there
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is no proof, without use of representation theory, of these versions of the Mena–Roth
theorem. The first aim of this paper is to give not only a proof of the theorem of Mena
and Roth, which relies on a new, constructive and intrinsic approach but also it does not
make use of the uniformly completeness of A and B. Finally, we are concerned with
lattice homomorphisms that act between Archimedean vector lattices. More precisely,
we prove that if A, B are Archimedean vector lattices, if (ui )i∈I , (vi )i∈I are maximal
orthogonal systems of A and B, respectively, and if T is a lattice homomorphism from
A into B such that T (λui )= λvi for each λ ∈ R+ and i ∈ I , then T is linear. This
generalizes earlier results of [3, 4, 6] and [8].

We take it for granted that the reader is familiar with the notions of vector lattices
(or Riesz spaces) and operators between them. For terminology, notation and concepts
that are not explained in this paper we refer to the standard monographs [1, 5, 7].

2. Definitions and notations

We assume throughout this paper that all vector lattices (or Riesz spaces) under
consideration are Archimedean.

A map T between vector lattices A and B is called a lattice homomorphism if

T (a ∧ b)= T (a) ∧ T (b) and T (a ∨ b)= T (a) ∨ T (b) for each a, b ∈ A.

A linear lattice homomorphism is called Riesz homomorphism.
Let A be a (real) vector lattice. A vector subspace I of A is called an order ideal

(or o-ideal) whenever |a| ≤ |b| and b ∈ I imply a ∈ I . Every o-ideal is a vector
sublattice of A. The principal o-ideal generated by 0≤ e ∈ A is denoted by Ae and
it is a sublattice of A.

Let A be a vector lattice, let 0≤ v ∈ A, the sequence {an,n = 1, 2, . . .} in A is
called (v) relatively uniformly convergent to a ∈ A if, for every real number ε > 0,
there exists a natural number nε such that |an − a| ≤ εv for all n ≥ nε. This will
be denoted by an→ a (v). If an→ a (v) for some 0≤ v ∈ A, then the sequence
{an, n = 1, 2, . . .} is called (relatively) uniformly convergent to a, which is denoted by
an→ a (r.u.). The notion of (v) relatively uniformly Cauchy sequence is defined in the
obvious way. Relatively uniformly limits are unique in Archimedean vector lattices,
see [5, Theorem 63.2]. A vector lattice A is called relatively uniformly complete
whenever every relatively uniformly Cauchy sequence in A has a unique limit. Every
relatively uniformly complete vector lattice is Archimedean. Let A be a vector lattice
(or Riesz space). A subset S of the positive cone A+ is called an orthogonal system of
A if 0 /∈ S and if u ∧ v = 0 for each pair (u, v) of distinct elements of S. It is clear from
Zorn’s lemma that every orthogonal system of A is contained in a maximal orthogonal
system. An element e of a vector lattice A is called weak order unit (strong order
unit) of A whenever {e} is a maximal orthogonal system of A (respectively, Ae = A).
An `-algebra A is called an f-algebra if A verifies the property that a ∧ b = 0 and
c ≥ 0 imply ac ∧ b = ca ∧ b = 0. Any f -algebra is automatically commutative and
has positive squares.
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3. The main results

Our main goal is to establish the result corresponding to the Mena–Roth theorem
for lattice homomorphisms on vector lattice with (strong and weak) order units. The
following proposition is an essential ingredient for our main results.

Before continuing with the next result, we recall the following notion.
Let A be a vector lattice and let 0≤ a ∈ A. An element 0≤ e ∈ A is called a

component of a if e ∧ (a − e)= 0.

PROPOSITION 1. Let A be a Dedekind complete vector lattice with strong order unit
e, let e1, e2, . . . , en be components of e and let B be a vector lattice. If T is a
lattice homomorphism from A into B such that T (λe)= λT (e) for each λ ∈ R+, then
T satisfies the following property:

T

( n∑
i=1

λi ei

)
=

n∑
i=1

λi T (ei ) ∀λi ∈ R+ (1≤ i ≤ n).

PROOF. Step 1. We show first that T (λe1)= λT (e1) for each λ ∈ R+. Let us denote
ec

i = e − ei , for all 1≤ i ≤ n. Since ec
1 + e1 = ec

1 ∨ e1 = e, ec
1 ∧ e1 = 0 and since T is

a lattice homomorphism, then T (ec
1) ∧ T (e1)= 0. It follows that

T (λe) = T (λ(ec
1 ∨ e1))

= T (λec
1 ∨ λe1)

= T (λec
1) ∨ T (λe1)

= T (λec
1)+ T (λe1) ∀λ ∈ R+.

By the fact that

T (λe) = λT (e)

= λT (ec
1 + e1)

= λT (ec
1 ∨ e1)

= λT (ec
1) ∨ λT (e1)

= λT (ec
1)+ λT (e1) ∀λ ∈ R+,

we deduce that

T (λec
1)− λT (ec

1)= λT (e1)− T (λe1) ∀λ ∈ R+.

Moreover, since λec
1 ∧ e1 = ec

1 ∧ λe1 = 0, for each λ ∈ R+ and since T is a lattice
homomorphism, we have

T (λec
1) ∧ T (e1)= λT (ec

1) ∧ T (e1)= 0 ∀λ ∈ R+.

Hence,
|T (λec

1)− λT (ec
1)| ∧ λT (e1)= 0 ∀λ ∈ R+.
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Using the same argument, we have

|T (λec
1)− λT (ec

1)| ∧ T (λe1)= 0 ∀λ ∈ R+.

Therefore

|T (λec
1)− λT (ec

1)| ∧ |λT (e1)− T (λe1)| = 0 ∀λ ∈ R+.

Hence,
T (λec

1)− λT (ec
1)= λT (e1)− T (λe1)= 0 ∀λ ∈ R+.

Step 2. We show that T (αe1 + βe2)= αT (e1)+ βT (e2) for each α, β ∈ R+. To this
end, we remark that Ae = A can be seen as an f -algebra with e as unit (where its
f -algebra multiplication is denoted by juxtaposition; see [2, Remark 19.5]). In order
to reach our aim, we first show that T (λe1e2)= λT (e1e2) and T (λec

1ec
2)= λT (ec

1ec
2)

for each λ ∈ R+. To this end, let λ ∈ R+. Since

λe = λe2

= λ(ec
1 + e1)(e

c
2 + e2)

= λe1e2 + λe1ec
2 + λec

1e2 + λec
1ec

2.

We point out that λe1e2, λe1ec
2, λec

1e2 and λec
1ec

2 are mutually disjoint. Then by using
the fact that T is a lattice homomorphism, we obtain

T (λe) = T (λe1e2 + λe1ec
2 + λec

1e2 + λec
1ec

2)

= T (λe1e2 ∨ λe1ec
2 ∨ λec

1e2 ∨ λec
1ec

2)

= T (λe1e2) ∨ T (λe1ec
2) ∨ T (λec

1e2) ∨ T (λec
1ec

2)

= T (λe1e2)+ T (λe1ec
2)+ T (λec

1e2)+ T (λec
1ec

2).

As

T (λe) = λT (e)

= λT (e1e2 + e1ec
2 + ec

1e2 + ec
1ec

2)

= λT (e1e2 ∨ e1ec
2 ∨ ec

1e2 ∨ ec
1ec

2)

= λ(T (e1e2) ∨ T (e1ec
2) ∨ T (ec

1e2) ∨ T (ec
1ec

2))

= λ(T (e1e2)+ T (e1ec
2)+ T (ec

1e2)+ T (ec
1ec

2))

= λT (e1e2)+ λT (e1ec
2)+ λT (ec

1e2)+ λT (ec
1ec

2).

Thus,

T (λe1e2)− λT (e1e2) = λT (e1ec
2)+ λT (ec

1e2)+ λT (ec
1ec

2)

− (T (λe1ec
2)+ T (λec

1e2)+ T (λec
1ec

2)).
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Let
X = |T (λe1e2)− λT (e1e2)|

and let

Y = |λT (e1ec
2)+ λT (ec

1e2)+ λT (ec
1ec

2)− (T (λe1ec
2)+ T (λec

1e2)+ T (λec
1ec

2))|.

Since λe1e2 ∧ λe1ec
2 = λe1e2 ∧ e1ec

2 = 0 and since T is a lattice homomorphism, it
follows that

T (λe1e2) ∧ λT (e1ec
2)= T (λe1e2) ∧ T (λe1ec

2)= 0

and
λT (e1e2) ∧ λT (e1ec

2)= λT (e1e2) ∧ T (λe1ec
2)= 0.

Hence,
|λT (e1ec

2)− T (λe1ec
2)| ∧ T (λe1e2)= 0

and
|λT (e1ec

2)− T (λe1ec
2)| ∧ λT (e1e2)= 0.

Therefore,
|λT (e1ec

2)− T (λe1ec
2)| ∧ X = 0.

Using the same argument

|λT (ec
1e2)− T (λec

1e2)| ∧ X = 0

and
|λT (ec

1ec
2)− T (λec

1ec
2)| ∧ X = 0.

As a conclusion X ∧ Y = 0. It follows that

T (λe1e2)− λT (e1e2) = λT (e1ec
2)+ λT (ec

1e2)+ λT (ec
1ec

2)

− (T (λe1ec
2)+ T (λec

1e2)+ T (λec
1ec

2))

= 0. (3.1)

By using the same argument, we obtain

λT (e1ec
2)= T (λe1ec

2) (3.2)

λT (ec
1e2)= T (λec

1e2) (3.3)

λT (ec
1ec

2)= T (λec
1ec

2). (3.4)

Now let α, β ∈ R+. Since

αe1 + βe2 = αe1e + βe2e

= αe1(e
c
2 + e2)+ βe2(e

c
1 + e1)

= αe1ec
2 + αe1e2 + βe2ec

1 + βe2e1

= (α + β)e1e2 + αe1ec
2 + βe2ec

1.
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A simple combination between the fact that (α + β)e1e2, αe1ec
2 and βe2ec

1 are
mutually disjoint and the fact that T is a lattice homomorphism, we get by using the
equalities (3.1), (3.2), (3.3) and (3.4)

T (αe1 + βe2) = T ((α + β)e1e2 + αe1ec
2 + βe2ec

1)

= T ((α + β)e1e2 ∨ αe1ec
2 ∨ βe2ec

1)

= T ((α + β)e1e2) ∨ T (αe1ec
2) ∨ T (βe2ec

1)

= T ((α + β)e1e2)+ T (αe1ec
2)+ T (βe2ec

1)

= (α + β)T (e1e2)+ αT (e1ec
2)+ βT (e2ec

1)

= αT (e1e2)+ αT (e1ec
2)+ βT (e1e2)+ βT (e2ec

1)

= αT (e1e2) ∨ αT (e1ec
2)+ βT (e1e2) ∨ βT (e2ec

1)

= αT ((e1e2) ∨ (e1ec
2))+ βT ((e1e2) ∨ (e2ec

1))

= αT (e1)+ βT (e2).

A simple combination between the two previous steps gives the desired result. 2

The following proposition is a surprising and interesting consequence of the above
result.

PROPOSITION 2. Let A be a Dedekind complete vector lattice with a strong order unit
e and let B be a vector lattice. If T is a lattice homomorphism from A into B such that
T (λe)= λT (e) for each λ ∈ R+, then T satisfies the following properties:

(1) T (a + b)= T (a)+ T (b) for each a, b ∈ A+;
(2) T (λa)= λT (a) for each λ ∈ R+.

PROOF. Let a, b ∈ A+, let λ ∈ R+ and let

L =

{
kn∈ A;kn =

i=n∑
i=1

αi ei , αi∈R+, ei is a component of e, n = 1, 2, . . .
}
.

By using the Freudenthal spectral theorem [5, Theorem 40.2], there exist two
sequences (kn)n , (ln)n such that kn, ln ∈ L , kn ↗ a (r.u.) and ln ↗ b (r.u.). It follows
that there exists n0 ∈ N∗ such that, for all n ≥ n0, we have

0≤ a − kn ≤ e/n and 0≤ b − ln ≤ e/n.

It follows that
0≤ a ≤ (e/n)+ kn and 0≤ b ≤ (e/n)+ ln

for all n ≥ n0. Then
0≤ a + b ≤ 2(e/n)+ kn + ln. (3.5)

By applying the lattice homomorphism T , we deduce that

0≤ T (a)≤ T ((e/n)+ kn) 0≤ T (λa)≤ T (λ(e/n)+ λkn)
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and
0≤ T (b)≤ T ((e/n)+ ln).

By using the previous proposition,

T ((e/n)+ kn)= T (e/n)+ T (kn)= (1/n)T (e)+ T (kn)

T (λ(e/n)+ λkn)= T (λ(e/n))+ T (λkn)= λ(1/n)T (e)+ λT (kn)

and
T ((e/n)+ ln)= T (e/n)+ T (ln)= (1/n)T (e)+ T (ln).

Therefore

T (kn)↗ T (a) (r.u.), T (λkn)↗ T (λa) (r.u.) and T (ln)↗ T (b) (r.u.).

Again, by the previous proposition, we have T (λkn)= λT (kn). Then

T (λa)= λT (a).

Moreover, by the previous proposition, we obtain T (kn)+ T (ln)= T (kn + ln).
Since T (kn)+ T (ln)↗ T (a)+ T (b) (r.u.) and since kn + ln ↗ a + b (r.u.) and by
applying the map T to the inequality (3.5), we find that T (kn + ln)↗ T (a + b) (r.u.).
Then T (a)+ T (b)= T (a + b) and we are done. 2

The following is essential to prove the first main result.

PROPOSITION 3. Let A be a vector lattice, let Aδ be its Dedekind completion and let
B be a Dedekind complete vector lattice. If T is a lattice homomorphism from A into
B, then T/A+ has an extension to a lattice homomorphism of (Aδ)+ into B.

PROOF. Let x ∈ (Aδ)+\A+ and let M = {(x ∨ a) ∧ b, a, b ∈ A+}. It is clear that M
is the sublattice of (Aδ)+ generated by x and A+. Let us define

T1(x)= sup{T (z), z ≤ x, z ∈ A+}.

Thus, we can define T ′ : M→ B by

T ′((x ∨ a) ∧ b)= (T1(x) ∨ T (a)) ∧ T (b) (a, b ∈ A+).

Clearly T ′ is a lattice homomorphism of M into B. By Zorn’s lemma, T ′ has
a maximal extension to a lattice homomorphism T ∗ of a sublattice N of (Aδ)+
into B. We prove that N = (Aδ)+. Suppose that there exists y ∈ (Aδ)+\N . Let
P = {(y ∨ a) ∧ b, a, b ∈ N }. Then P is the sublattice of (Aδ)+ generated by y and N .
Let us define

T ∗1 (y)= sup{T (z), z ≤ y, z ∈ N }.

Then we can define T ] : P→ B by

T ]((y ∨ a) ∧ b)= (T ∗1 (y) ∨ T ∗(a)) ∧ T ∗(b) (a, b ∈ N ).

Therefore, T ] is a lattice homomorphism of P into B. This contradicts maximality of
T ∗ and so N = (Aδ)+, as required. 2
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We are now in position to give a generalized version of the Mena–Roth theorem
for lattice homomorphisms on vector lattices with strong order units. The proof is
identical in concept to [3, Lemma 1].

THEOREM 4. Let A be a vector lattice with a strong order unit e and let B be a vector
lattice. If T is a lattice homomorphism from A into B such that T (λe)= λT (e) for
each λ ∈ R+, then T is linear.

PROOF. It is shown in the previous proposition that T/A+ has an extension to a
lattice homomorphism of (Aδ)+ into the vector lattice Dedekind completion Bδ of B.
According to Proposition 2, T is additive from (Aδ)+ into the Dedekind completion
of B and so on A+. It is well known, by [1, Theorem 1.7] that T extends uniquely to
a positive operator T ′ from A to B. Hence,

T ′(x)= T (x+)− T (x−).

Since T is a lattice homomorphism,

(T (x))− = (−T (x)) ∨ 0=−(T (x) ∧ 0)=−T (x ∧ 0)=−T (−x−)= T (x−).

Hence,
T ′(x)= T (x+)− T (x−)= (T (x))+ − (T (x))− = T (x).

Therefore, T = T ′. 2

The next corollary improves earlier results of [3, 4, 6] and [8] which assumed
uniform completeness.

COROLLARY 5. Let A be a vector lattice with a strong order unit e and let B be a
vector lattice. If T is a lattice homomorphism from A into B such that T (λe)= λT (e)
for each λ ∈ R, then T is linear.

The following results are a consequence of the above theorem.

COROLLARY 6. Let A be a vector lattice with a weak order unit e and let B be a
vector lattice with a weak order unit f . If T is a lattice homomorphism from A into B
such that T (λe)= λ f for each λ ∈ R+, then T is linear.

PROOF. Let a, b ∈ A and let g = |a| + |b| and let β ∈ R+. According to the previous
theorem, T is linear on Ae and since g ∧ ne, e ∈ Ae,

T (βg) = sup(T (βg) ∧ n f )

= sup(T (βg) ∧ βn f )

= sup(T (βg) ∧ βT (ne))

= sup(T (βg ∧ βne))

= β sup(T (g ∧ ne))
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for each β ∈ R+. Moreover,

βT (g) = sup(βT (g) ∧ n f )

= sup(βT (g) ∧ βn f )

= sup(βT (g) ∧ βT (ne))

= β sup(T (g) ∧ T (ne))

= β sup(T (g ∧ ne))

for each β ∈ R+. Therefore, T (βg)= βT (g), for each β ∈ R+. Again by the fact that
T is linear on Ae, we have

βT (g)+ βT (e) = T (βg)+ T (βe)

= sup(T (βg ∧ ne))+ T (βe)

= sup(T (βg ∧ ne)+ T (βe))

= sup(T (βg ∧ ne + βe))

= sup(T ((βg + βe) ∧ (n + β)e))

= sup(T (βg + βe) ∧ (n + β) f )

= sup(T (βg + βe) ∧ n f )

= T (βg + βe)

for each β ∈ R+. Therefore, T/Ag+e : Ag+e→ B is a lattice homomorphism
which satisfies T (βg + βe)= T (βg)+ T (βe)= βT (g)+ T (βe) for each β ∈ R+.
According to the previous results, T/Ag+e is linear. Since a + λb ∈ Ag+e, for each
λ ∈ R, it follows that T (a + λb)= T (a)+ λT (b), for each λ ∈ R, which gives the
desired result. 2

As a consequence, we deduce a result of Ercan and Wickstead [3, Lemma 1].

COROLLARY 7. Let A be a uniformly complete vector lattice with a weak order unit e
and let B be a vector lattice with a weak order unit f . If T is a lattice homomorphism
from A into B such that T (λe)= λ f for each λ ∈ R, then T is linear.

Next, we broach the problem of finding a sufficient condition for a lattice homo-
morphism of vector lattices, which do not have a weak order unit, to be linear. This will
culminate in a second version of the Mena–Roth theorem and the Ercan–Wickstead
theorem.

THEOREM 8. Let A, B be vector lattices and let (ui )i∈I , (vi )i∈I be maximal
orthogonal systems of A and B, respectively. If T is a lattice homomorphism from
A into B such that T (λui )= λvi for each λ ∈ R+ and i ∈ I , then T is linear.
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PROOF. It is shown in Proposition 3, that T/A+ has an extension to a lattice
homomorphism of (Aδ)+ into the vector lattice Dedekind completion Bδ of B.
According to Proposition 2, T is additive on (Aδ)+. Let x, y ∈ A+ and λ ∈ R+. Then

T (x) = sup
H,n

(∑
i∈H

(T (x) ∧ nT (ui ))

)
= sup

H,n

(∑
i∈H

T (x ∧ nui )

)
= sup

H

(∑
i∈H

T (xi )

)
where xi is the projection component of x in the order band generated ui in Aδ

(denoted by Bui ) and H is a finite subset of I . Hence,

T (λx)= sup
H

(∑
i∈H

T (λxi )

)
.

By Corollary 6, T/Bui
is linear, then T (λxi )= λT (xi ). Hence, T (λx)= λT (x).

Moreover,

T (x + y) = sup
H

(∑
i∈H

T ((x + y)i )

)
= sup

H

(∑
i∈H

T (xi + yi )

)
= sup

H

(∑
i∈H

(T (xi )+ T (yi ))

)
= sup

H

(∑
i∈H

T (xi )

)
+ sup

H

(∑
i∈H

T (yi )

)
= T (x)+ T (y).

To complete the proof, it is sufficient to use [1, Theorem 1.7], as in the previous
theorem. 2

We finish this paper with the following remark.

REMARK 9. We note that, in the results of Mena and Roth [6], Thanh [8], Lochan
and Strauss [4] and Ercan and Wickstead [3], the assumption that A is a uniformly
complete vector lattice is superfluous, as shown in the previous results.
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