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Abstract. Let / be a continuous map of the circle into itself of degree one. We
introduce the notion of rotation algor.thms. One of these algorithms associates each
zeS^ with an interval, the so-called speed interval S(z,f), which is contained in
the rotation interval p(f) of/ In contrast with the rotation set p(z,f), the interval
S(z,f) sometimes allows us to ascertain that p(f) is non-degenerate, by using only
finitely many elements of {f"{z)\n >0}. We further show that all choices for p{z,f)
and S(z,f) occur, for certain zeS\ provided that p(z,f)c S(z,f)cz p(f).

1. Introduction and statement of results
Let End? (S1) be the set of continuous endomorphisms of degree one of the circle.
For an /e End? (S1) a lift F is a continuous map on IR such that/° n = v ° F, where
w:R->S1 is the natural projection, Tr(t) = e2n". So a lift is determined uniquely up
to shifts by integers. Since / is of degree one we have

F{x + \) = F(x) + \ forallxeR.

If/is monotone, i.e. x<y implies F(x)< F(y), then the limit of (F"(x)-x)/n for
n -» oc exists for all x e U and it is independent of x, cf. [10]. So to a monotone map
/ we can assign a number, unique modulo one, the so-called rotation number p(f)
of/

In the general case of endomorphisms the above limit may not exist and if it
exists it may be dependent on x. For that reason the concept of the rotation set
was introduced, cf. [9].

The rotation set p(z,f) of z under/ is given by

f \F"(x)-x)
p(z,f) = \ limit points of \ > with TT-(X) = z

I I n J nal

and the rotation interval p(f) of/ is defined by

p(f) = i limit points of
F"(x)-x

xel

Note that these sets are again uniquely determined up to shifts by integers. The
choice for x from Tt~\z) does not influence the rotation set p(z,f). Both sets form
an interval and in [7] it is shown that each ae p(f) is realized as rotation number
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18 /. Barkmeijer

of some point z £ S1:

hm = a, TT(X) = Z.
n^cc ft

An endomorphisms with non-degenerate rotation interval also has various periodic
points. A period point z of/ is a point such that/"(z) = z, for some n > 1. The least
integer for which this is the case is called the period of z. Because f(z) = z, there
exists an integer m such that Fn(x) = x+m, TT(X) = Z. Then p{z,f)= p/q is the
rotation number of z, where p/q = m/n and(p, q) = l.Theset{/'(z)|i = 0 , . . . , n-1}
is called a periodic orbit of/ with rotation number p/q and period n.

THEOREM A (see [8]). Letfe End? (S1). Ifk/n e int p(f) then f has a periodic point
of period n.

Given a rotation interval p(f) the set P(f) = {n \f has a periodic point of period n{
is determined in [8], [2]. Further [4] gives a complete description of all rotation
sets p(z,f) in terms of the rotation interval p(f):

THEOREM B. If / e End? (S1) then:
(i) p(z,f) is a closed subinterval of p(f) for all z e S1;

(ii) given [a, ft] <= p(f), a < /3, f/iere exists z 6 S1 SMC/I f/jaf p{z,f) = [a, j3].

So in contrast with monotone maps where each point on S1 has the same asymptotic
progression, it may occur in the general case that the asymptotic progression of a
point never settles down to a limit value. Some difficulties arise in deciding whether
a map / exhibits this dynamics or equivalently in determining whether p(f) is
non-degenerate. For if one starts computing p(z,f) the complete orbit orb (x, F) =
{F"(x) | n = 0,1,. . .}, where x e 7r~'(z), is needed.

Yet we want to analyse the dynamics of/by studying the progression in orb (x, F).
It will appear that although a finite part of orb (x, F) does not say anything about
p(z,f) it may give information about p(f).

In § 2 we present some algorithms which sometimes make it possible to conclude
that p(f) is non-degenerate with only a finite part of orb (x, F) for some xeU.
More precisely, if for a finite part of an orbit such an algorithm yields an interval
/ then I c p(f). One of the algorithms we give, associates each ze S' with an interval
S(z, /)c p(f), the speed interval of z under / The interval S(z,f) is a topological
invariant: if h : S1 -» S1 is an orientation preserving homeomorphism, then

S(z,f) = S(h(z),hfh-1).

The main result we shall prove is that p(z,f) and S(z,f) are in a sense independent:

THEOREM. Letfe End? (S1). For every two closed intervals Iand J, possibly degenerate,
such that Ic / c p(f) there exists ze S1 with

(i) p(z,f) = Iand
(ii) S(z,f) = J.

In §§ 3 and 4 we derive some ingredients essential in proving the theorem. Finally
the proof of the theorem is given in § 5.
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2. Rotation algorithms
Before we give an example of a rotation algorithm we first explain the concept of
such an algorithm.

A rotation algorithm A is defined in terms of two other algorithms, which we
denote by A~ and A+ in the sequel. Both these algorithms A~ and A+ assign to an
orbit interval a real number.

An orbit interval X of F is a set of points of the form {F'(a)}?=0 with F a lift
of/eEnd-JCS1) and 0<«<+oo. If x = {xi}T=0 and Y = {yj}J=0 are orbit intervals
we say X is included in Y, in notation I c F , if and only if there exist natural
numbers n0 and k such that

*, = yno+i + k for i = 0 , . . . , m.

Intuitively one may think of A~(X) or A+(X), X an orbit interval of F, as a kind
of approximation of p~(f) or p+(f) respectively, where p(f) = [p~(f), p+{f)]- We
remark that we do not necessarily have A~(X) £ A+(X).

Next we state some properties which A and A+ at least should satisfy if they
are related to a rotation algorithm.

(Rl) p " ( / ) < A ! X ) and A+(X)<p+( / ) for all orbit intervals X of F.
(R2) If X and Y are orbit intervals of F and X^Y then:

A~{Y)<A~{X) and

(R3) /T (orb (x, F)) < A+(orb (x, F)) for all x e U.

To each zeS' we assign an interval A(z,f) by putting

A{z,f) = [/T(orb (x, F)), A+(orb (x, F))] where TT(X) = z.

Some remarks, (a) The interval A(z,f) is well defined. In principle it may depend
on the choice of the lift F of / For the algorithms we shall consider, A(z,f) is
uniquely determined up to translation by integers.

(b) The interval A(z,f) is finitely determined: if for a finite orbit interval
Ycorb (x, F), n(x) = z, we have [A~( Y), A+( Y)] = I with / non-degenerate then
/c; A{z,f) and further / c p ( / ) ,

(c) The choice of x from TT~X(Z) does not influence A(z,f).

The rotation set is constant on orb (z,/) = {/"(z)| n >0}, i.e. p(z,f) = p(f"{z),f)
for all n >0. For the interval /4(z,/) we have:

LEMMA 2.1. Let fe End? (S1). / /z is a periodic point of f then

A(w,f) = A(z,f) for all we orb (z,/).

/ Choose xe ^"'(w) and j>e TT'^Z). Write X = orb (x, F) and Y = orb (>>, F)
then Xc=y and Y^X. By property (R2) this gives A~(X) = A~(Y) and A
A+( Y), consequently A(w,f) = A(z,f). •
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We shall look at so-called two point rotation algorithms. By this we mean a rotation
algorithm which is based on the information about p{f) obtained from pairs of
elements of an orbit interval. The definition of the rotation set p(z,f) motivates
such a two point algorithm. For convenience we recall it here:

p(z,f) = I lim inf , lim sup:

Let Y = {F"{x)}™=0, 0</V<-i-oo, be an orbit interval. Define Ml and M+
a, aeR,

by
M - , v . . . F'{x)-F'{x) + a
Ma( Y) = inf ;—;

and
F'(x) — F'(x) — a

M*(Y)= sup .
N>J>,>O j-i

We write Ml(z,f) = M;(orb (x, F)) and M+
a(z,f) = M+(orb (x, F)) with TT(X) = z.

In this way M~ and M* define maps on S1 which satisfy a semi-continuity property.
A map g: S1 -» R is called lower- or upper semi continuous if for each t e R, the

set {z E S11 g(z) > t} or {z e S11 g(z) < t} respectively is open in S\

LEMMA 2.2. Letfe End? (S1) and a, teU.
(i) The maps M~ and M+

a are upper- and lower semi-continuous respectively;
(ii) if MZ(z,f)<t or M*(z,f)>t then there is a C°-neighbourhood V of f such

that M~(z,f) < t or Ml(z,f) > ( respectively, forfe V.

Proof, (i) It suffices to show the upper semi continuity of Ma; the other case is
similar. Fix a e i . w e prove that U, = {ze S11 M~(z,f) <t},teU, is open in S'. We
may assume that U, ¥=• 0. For w 6 U, we have, by taking TV sufficiently large,

FJ(x) — Fi(x) + a
inf <t with xe 77 \w).

Because of the continuity of F there exists a neighbourhood W of x such that

Fi(y)-Fi(y) + a
inf — — — <t for^eW.

Hence Ml(z,f) < t for all z E 7r( W). We conclude that U, is open in S1. Statement
(ii) is similar to (i), we omit the analogous proof. •

Since M~r(zJ) < lim inf^oo [F"(x) -x]/n < lim supnJCO [Fn(x) - x ] / n < M*(z,f)
for x e 77 '(z) and r, (e R, we may define the interval Ma(z,f), possibly degenerate,
by Ma(z,f) = [Ma{z,f), M+(z,/)]. Observe that p(z,f)cz Ma(z,f) for all «E1R
and ZE S1. Clearly M a and M* satisfy the properties (R2) and (R3) for all o ER.
The next two lemmas show that indeed M~ and M^ are algorithms related to a
rotation algorithm if and only if a > 1.

LEMMA 2.3. Let a £ R. If one of the following statements
(a) M:(z,/)<p+(/)or

holds for every fe End? (S1) and all zeS1 then a > 1.
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Proof. Assume statement (a) holds for every fe End? (S1) and all z e S1. In the proof
we make use of a one-parameter family {Fs}SE(o, D of maps on U. For se (0,1) we
define a map Fs on [0,1] as follows:

FJ(0) = 0, Fs(s) = s + 1, Fs[(s + l)/2] = s + 2, Fs(l) = l

and on the intervals [0, s], [s, (s+ l)/2] and [(s + l) /2,1] the map Fs is linear. By
putting Fs(x + n) = Fs(x) + n for neZ and x e [ 0 , 1 ] , the map FS is denned on U.
Then F, induces a circle map / , s End? (S1). We claim that p+( / s ) = 1 for s e (0,1).

In showing this we introduce a map F*, se (0,1) by

F s | [ o , s ] = •? + 1 , F s | [ j , ( j + i ) / 2 ] = F s a n d F s [ ( s + 1 ) / 2 ) i ] = s + 2 ,

and further F^(x + n) = F*(x) + n for neZ and xe[0,1]. The map Fj~ defines a
monotonic /TeEnd?(S') and Fs<Fl so we have p+(/s)<p(/?). As Fs

fc(5) =
(F+)k(s), fc > 0, and p(/T) = 1 for all s e (0,1) we conclude that p+(/s) = 1 for all
se (0,1). This proves the claim.

Now we finish the proof of the lemma. Because fe End? (S1), se (0,1), we have
by hypothesis

±! (£±!)i±!_a S l forall,e(0,1).
a

This forces a > 1.
The proof of the other case is analogous. So the lemma is proved. D

LEMMA 2.4. Letfe End? (S1), tfien:
(i) a < /8 imp/ies Ma{z,f) => Mp(z,f) for all z e S1.
(ii) M,(z,/)czp(/) /or allzeS'.

Proof. The first statement is obvious. In case (ii) assume, by contradiction, there
exists z = TT(X) e S1 with M\(z,f) > p+(/) . Taking an iterate Fk(x) of x if necessary,
we may assume that for certain neM:

F"(x)-x-\
W >P+(/)-

There also exists y such that F"(j>)-_y< np+(f). So, by continuity of F, there is y
for which F"(y) - y = k, with k an integer and k e (np+(f), «p+(/)) +1]. Then TT(^)
is a periodic point of/ with rotation number equal to k/n>p+(f). Here we reach
a contradiction.

Similarly one shows that M7(z, /)>p"(/) for all zeS\ This proves the lemma.

•
We point out that neither M~ nor M+ need be constant on every orbit of an
fe End? (S1). For instance choose / in such a way that a lift F satisfies

F(0)=i F(l) = 2 and F(£) = 1.

Then, by identifying *e[0,1) with its projection onto S\ we have

I = M+(i/) > M+(/(i),/) = M+(0,/) -1 .
By this same example it is also clear that M~(X) is not necessarily smaller than
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Mt(X), X an orbit interval of F. For let X = {0, \, 1} then

M-a{X)=\+a/2>M+
a{X)=\-a/2 fora>l.

Notice that M;(orb (0, F)) = M+(orb (0, F))=\.
We relate the numbers Ma(X) and M+

a{X) to Ma(X): if M~(X) < M+
a(X) we

put Ma(X) = [M~(X), Mt(X)]. For l < a < / 8 we would rather use the rotation
algorithm Ma than M^, see lemma 2.4(i). We formalize this by ordering the rotation
algorithms with the relation <.

Let A and B be two rotation algorithms. We say A is better than B, in notation
A<B, if and only if A~(X)< B(X) and B+(X)<A+(X) for each orbit interval
X and there exists an orbit interval for which one of the inequalities is strict.

Note that the relation < does not define a total ordering: there exist algorithms
A and B for which neither A< B nor B < A. We have M, < Ma for all a > 1. In
view of lemma 2.3 one may wonder whether there is a better algorithm than M = Mx.
In fact there is such an algorithm. This algorithm 5, which we define below, is
clearly the best two point rotation algorithm.

As before we begin by defining S~ and S+. Let Y = {F"(x)}^=obean orbit interval,
then S~{ Y) and S+( Y) are given by

r , M . f [F(x)F
S (Y) = inf

N>j>i>0 J — I

and

c + r v , [FJ(x)-F\x)]
S (Y)= sup ;—; .

N>j>i>0 J~l

Remark. Here [a], a eR, denotes the largest integer n such that n < a.

Arguing in a similar way as we did in the case of the algorithm M, we conclude
that S~ and S+ satisfy the properties (Rl), (R2) and (R3). For Y = orb (x, F) with
TT(X) = z we let

The interval 5(z,/)<=p(/) is called the speed interval of z under/ The numbers
S~(z,f) and S+(z,f) can be regarded as a modified minimum and maximum mean
speed in orb (x, F), z = TT(X). Note that S ( Z , / ) is a topological invariant: if h : S'-> S1

is an orientation preserving homeomorphism then

Let Horn0 (S1) be the set of continuous orientation preserving homeomorphisms of
the circle.

LEMMA 2.5. Letfe End? (S1), then for all z e Sl:
(i) S~(z,f) = inf,eHom°(sl) M-(h(z), hfh^);

(ii) S+(ZJ) = SUPfc.HorrAs') M + (b(z), V*"')

Proo/ We only prove (i); the proof of (ii) is analogous. For xe TT~\Z) there exist
two sequences {i(n)}n>0 and {j(n)}ns.o of positive integers such that

-=S"(z,/) | S~(z,f) asn^oo.
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For convenience we write r(n)=j(n)-i{n). If {r(n)}nsl is an unbounded sequence
then S~(z,f) = M~(z,f). We now consider the case {r(n)}ns0 is a bounded sequence.
For he Horn0 (S1) we have S~(z,f)< M~(h(z), fc/TT1). Given l > e > 0 we shall
construct hc e Horn0 (S1) such that

M^K(z),hjh;i)ss-(z,f) + s.

With this the proof of the lemma will be completed.
Because S~(z,f) I S~(z,f) as M-»OO, there exists n0 such that

S-(z,f)<S-(z,f) + e/2 for«>n0.

Suppose FJ{m)(x) = F*m)(x) + k(m) for some m>n0, where k{m) =
[Fi(m)(x)-Fi(m\x)] and TT(X) = z. Then z is a periodic point of/ with rotation
n u m b e r p(z,f) equa l t o k(m)/r(m) a n d S ^ ( z , / ) = p{z,f) + {l/r(m)). S ince
{r(n)}n»o is a bounded sequence and p(z,/)c: S(z,f), we conclude that

F^n\x)^Fi{n\x) + k{n) for some n> no-

Assume Fj("\x)>Fi(n)(x) + k{n) and thus

Fl(n)(x) < FJ("\x) -k(n)< FHn)(x) + 1.

Define a map He on R as follows:
Choose He(F

an)(x)) arbitrarily and let

He(F
i(n)(x) + m) = HE(Fl(n)(jc) + m

and

Hc{Fiin\x) - k(n) + m) = He(F
i{"\x) + e/2+m

for all m e Z. Further HE is piecewise linear.
Then the map //e induces hc e Horn0 (S1) with the desired properties. For we have

k(n)
r(n) " '

The case F-/(n)(x) < F'(n)(x) + k(n) can be handled in a similar way. So we are done.
D

3. Interpolation maps
Let F be a lift of fe End? (S1). In [8] the following maps on R are introduced (see
also figure 3.1):

F"(x)=inf F(y) and F+(x) = sup F(y).

Both maps F~ and F+ are continuous and induce monotone circle maps of degree
one, / " and / + respectively. The map F~ may be characterized as the largest
non-decreasing map less than or equal to F. Likewise F+ may be characterized as
the smallest non-decreasing map greater than or equal to F. Since / " and / + are
monotone their rotation number is properly defined and we have the following
known result, cf. [8], [5].
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LEMMA 3.1. Letfe End? (S1) then p(f~) = p"(/) and p(f+) = p+{f).

Proof. We first prove that p(f~) = p~(f). As F~(x)<F(x) for all xeR and F~ is
non-decreasing, we have (F")"(x)<F"(x) for all XGR and all «>0. This implies
that p ( / " )<p" ( / ) . Assume p( / " )<p"( / ) , then there exists a rational p/<j such
that p(/~) <p/ q< P (/) and consequently F9(x)> x + p for all x6R. Now choose

and define a sequence {j>,-}?=i by

In that case F l^ i + 1 ) = F(^j+1) = y,-, 0 < i < q - l , and thus (F-)q(yq) = Fq(yq)>
yq+p. So p(f~)s^p/q and we have a contradiction. Hence p(/~) = p~(f); the proof
that p(/+) = p(/) is similar. D

The construction of a homotopy from F~ to F+, as given in [5], can be generalized,
resulting in a continuous homotopy for arbitrary fe End? (S1), (see also [6] where
a homotopy is given similar to that we present below). We shall define for fe
End?(5') a continuous family {'J'̂ l̂ efo,i] of continuous non-decreasing maps on
U such that $o= F~ a nd *i = F+. This family {$M}M£[01] we then employ in defining
a two-parameter family. For each interval /<= p(f), possibly degenerate to a point,
there belongs a map to this family such that the corresponding endomorphism of
the circle has a rotation interval equal to /. Such a map we shall call an interpolation
map.

In defining {^^[o,!] we first consider the case /eEnd?(S') has two critical
points. At a critical point/is not locally a homeomorphism. The set of critical points
of/ we denote by C(f).

Let F assume a local minimum at m. The remaining extremum of F in (m, m +1),
where^F has a local maximum, we denote by M. We make use of the continuous
map F+ given by

F+(x)= sup F(v) for x e [m, m + \], see figure 3.2.
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Further let f(/n), fx e [0,1], be the smallest value in [m, M] for which

25

Then the family {(Jv}/x£[o,i] is defined on [m, m + 1] as follows:

fmaxtF(r(M))-l, *
"W l for M e [0,1].

m r(/i) M m + 1

FIGURE 3.2

For /wi th # C ( / ) = 2 it is easily verified that <l>o= F^ and $>x = F + on [m, m + 1].
We point out that 3 ^ is defined in such a way as to makejthe definition easily
adaptable to general circle maps. If # C ( / ) = 2, replacing F + by F in the above
formula results in the same ^ for all p. ^

Before an example is given where we really need F + , we explain how to interpret
the definition of 4>M for a general circle map / We only have to make some minor
adjustments. Again let m and M be extrema of F but such that F has a local
minimum at m with F(m) = F(m) and F assumes its maximum on [m, m + 1] at
M where M is chosen minimal. The rest as defined above remains unaltered. See
figure 3.3 for an illustration of this procedure in the general case. Notice the role
of F+ in making $M a non-decreasing map.

F(t(fi))-\ •

t(fi) M m + 1

FIGURE 3.3
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As *„ (» !+ 1) = max [F(r ( / i ) ) ,F-(m + l)] = max [F( / ( / i ) ) ,F(m) + l] = *„(»!) + 1 ,
we may extend 4>M to a map on R, which we also denote by <I>M, by the identity

<tM(x + w) = 4>,i(x) + n fo r a l l neZ and xe[m, m + 1].

The map <J>M induces a circle map <pM. In listing some properties of these maps we
use the following notion:

Let G:R-»R. An open and maximal interval on which G is constant is called a
plateau of G. The union of all plateaus of G is denoted by P1(G).

LEMMA 3.2. (i) The family {4>^}^E[0,i] is continuous, <pM e End? (S1) and ip^ is
monotonic for M e [0,1].

(ii) 7 / 0 < a < f e < l f/ien <J>a<$ft. Further * 0 = F ~ and 3>, = F + .
(ii) Let Wbe an interval such that WnPl (O / 1 ) = 0 then <J>M = Fon W, /u. e [0,1].

Proof, (i) We first consider the continuity of {OM}M £ [ 0 1 ] . Fix /AOE [0,1]. For a given
e < 1 there exists a neighbourhood Vc[0 ,1 ] of Mo such that | F ( K M O ) ) - F ( K M ) ) I < e
for all (xeV. For a /x e V different from Mo we may assume that KMO)< t(fj.); in
case t(fjio)> t(fx.) the proof is analogous. It is a direct consequence of the definition
of <t>M that

The same inequality holds for xe[((jn0), t(fi)]. One easily checks that F+(t(n)) =
F(f(/x,)) for / i e [0 ,1 ] and thus F + ( x ) > F(t(/j,0)) for xe[(( / i o ) , m + 1]. Further

) > F(t(n)) -1 because e < 1, so we have

If x E [m, /(^a)] then F~(x) < F(x) < F(t(/ji)) and thus

We conclude that maxxeR |<&M(x)-4>M(x)|< e for all /x e V. Since e < 1 was arbitrary,
we thus have proved the continuity of {3>M}M£[0,i]-

Since limxTm+1 ^ ( x ) = l imx i m <PIJ,(x) +1 it suffices, in proving the continuity of
<pM, to establish the continuity of 3>M on [w, m + 1]. We have F+(f(/x)) = F(t(fj.))
and F"(((/i,)) < F ( I ( A O ) , SO the map ^ is continuous at KM)- The continuity on
[m, K M ) ] o r [ K M ) . "> + I] is clearly guaranteed. Therefore ¥>M

 e End? (51) and the
monotonicity of <pM follows immediately from the properties of F + and F".

(ii) L e t O < a < f t < l be given. In that case t(a)<t{b) and F ( / ( a ) )< F(K^))- So
we have

If x e [ K a ) , m + 1] then F+(x)>F(t(a)) and thus

d>o(x) = max [F ( r (a» , F ( x ) ] < max_[F(r(fl)),

< F+(x) < max

We conclude that 4>a <<!>(, on [m, m + 1] and consequently <J>a<<t>6 on R. Further
<t>o=F' and <J>! = F + because t(0) = m and
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(iii) Fix /u.e[0,1]. As <&M(x+l) = <I>M(x) + l for all xeR, we may assume that
We [m, m + 1]. Let xe W and suppose that x e [w, f(/u,)]. Since x£ PI ($M) we have
that <I>M(x) = F+(x). Assume that F(x) < F+(x), then there exists j with m < y < x
and a neighbourhood L/ of x such that F + = F(j) on U. Here we reach a contradic-
tion and thus <J>M(x) = F(x). In a similar way one proves that $M(x) = F(x) for
xe[f(/i,), m + l ] n W. This finishes the proof of the lemma. •

Now we have a smooth homotopy {^M}Me[o,i] from F~ to F + , we proceed with the
construction of the so-called interpolation maps of/ In what follows we define for
any given interval / c p(f), possibly degenerate, a map H which equals F except
for a set of intervals where it is constant and which induces a circle map h e End? (S1)
with p{h) = I.

Since {<pM}M€E[o,i] is a continuous family of monotone maps, <pM admits a rotation
number p((pM) and p((pM) depends continuously on /JL, cf. [3]. So given an interval
I^pif) there exist according to lemma 3.1 and lemma 3.2(ii) numbers a and b,
0 < a < b < 1, such that

We remark that instead of using lemma 3.1 here, it suffices to observe that p(/~) ^

In case / is a singleton we define H = Ha equal to <$>a.
If / is non-degenerate then <5a and <I>b are not identical. By lemma 3.2(iii) there

exists a set {Sj}jeJ of disjunct open intervals so that on each interval Sj both <&„
and 4>fc are constant. The intervals S, are chosen maximal. We now define H = Hab

as follows (see also figure 3.4):
(i) on R\Uj Sj the map Hab is equal to F.

Write Sj = [a,, fo,],; e J, and define

ft = max {xeS, | F(x) = F(a,)}

and

qj = min {x e [ft, fej |F(x) = F(£>,•)}•

(ii) On [ft, q,-], ; s /, the map Hab is also equal to F.
(iii) On an interval K =(u, v) where H a b is not yet defined, Hab is constant:

Hab = Ha,b(u) on K.

ft

FIGURE 3.4
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A map Hah with 0 < o < i ) < l as defined above is called an interpolation map of/
Observe that hab e End? (S1). We also have p(hab) = I according to the next lemma.

L E M M A 3.3. The map Hab satisfies H~h = <$>a and H a b = 4>b.

Proof. Because of the construction of Hab we have 4>a s Habs<£>b and thus
(J>a-#a,b--tfa,b-3>h- We prove that Hab = <$>a. Assume, by contradiction, that
there exists p such that H~h(p) > <&„(/>). Let V be the maximal interval containing
p on which H~b><t>a. This interval is bounded and we write V = (c, d). Then
<$>a{c)<<$>a{d) since both 4>a and H~b are non-decreasing maps. So there is an
interval W = [u, v] contained in V such that <£a = Hab on W and thus

tf-6(u) = inf Ha,b(x) < Ha>b(M) = *„(«) .

Here we reach a contradiction and we conclude that H~b = <t>a. The proof that
Ha ;, = <&(, is similar. D

Remark. One can easily think of an example for which HOi is not equal to F (see
figure 3.5).

I

1 / • I
/ ' \ .

; \ .

/

m M m + \

FIGURE 3.5

LEMMA 3.4. Let Hab be an interpolation map off. If xe PI (Hah) then xe PI (<!>,) for
all s e [a, b].

Proof. Suppose x £ P l ( $ s ) for some se[a, b]. We may assume that x e [m, m + l].

Since x ^ P l ( $ s ) there exists an interval U with xeU such that t / n P l (<t>s) = 0 .

We can choose U so small that / ( s ) g i n t t/. If t(s) is on the left side of U then

[ / n P I (<!>„) = 0 . So we have x£P\(Hab). The same conclusion follows if t(s) is

on the right side of U. For in that case U n PI (4>b) = 0 . This proves the lemma.

•
4. Linking of sequences
The family {O^l^eici] enables us to prove, in an easy way, the existence of
particularly simple periodic orbits. The periodic orbits which we are aiming at, are
usually referred to as twist periodic orbits, cf. [1].

Let 5 be a periodic orbit o f / e E n d ° ( S ' ) with rotation number p/q, {p, q)= 1.
The orbit S is called a twist periodic orbit o f / i f / is strictly monotone on S, i.e.
x < y implies F(x) < F(y) for all x,yeir~\S).
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LEMMA 4.1 Let S be a twist periodic orbit offe End? (S!) with rotation number p/q,
^ > 1 , and TT~1(S) = {x,}ieZ where x, <x,+1 for all i, then:

(i) the orbit S has period q;
(ii) F(Xi) = xi+pfor all i.

Proof. Since S has rotation number p/q with (p, q) = \ and ? > 1 , the period of S
is a multiple of q, say mg with m > 1. This implies that xj+fcm, = x, + fc for all i, fc e Z.
Moreover S is a twist periodic orbit and F on n~1(S) is one-to-one, so we have
F(x,) = xj+r for some r e Z and all i. From this we conclude that

x,. + mp = Fmq(Xi) = xi+rmq = x, + r.

Hence r=mp and Fq(xi) = xi+pmq = x{+ p. As 5 is not the union of several orbits,
S has period q and F(x,) = x,+p for all i. •

Twist periodic orbits just characterize the notion of a simple orbit: the order of a
twist periodic orbit with rotation number p/q around the circle is the same as that
of an orbit of a monotone circle map with rotation number p/q. The next lemma
assures the existence of twist periodic orbits. The same result was obtained in [1],
but in a different way; see also [6].

LEMMA 4.2. Let fe End, (S1). For p/qe p(f) with (p,q) = l, there exists a twist
periodic orbit of f with rotation number p/q.

Proof. Clearly every fixed point of/ is a twist periodic orbit of/ so we may assume
that <7>2. We make use of the family {<pM}Meto,i] of monotone circle maps. Since
p/qepif) we have p(<pti)= p/q for some fi e [0,1]. The map (pM has a periodic
point z with rotation number p/q. If orb (x, <J>M) with x G TT~X{Z) avoids PI ((pM) we
are done, see lemma 3.2(iii). Suppose on the contrary that there exists x0 e orb (x, <J>M)
such that x0 belongs to a plateau V of <fM. Let V=(a, b) and thus <$>q

l(a)> a+ p
and <J>*(b) < b + p. Define y as follows:

y = min{u\<$>q(u) = u+p}.

Since ^ M eEnd?(S ' ) the point y is well defined and y£ PI (<&*). So we have
orb (y, <I>M)nPl (4>M) = 0 and ir(y) is a period point of /with rotation number p/q.
This proves the lemma. •

We showed the existence of a twist periodic orbit, say S, by means of the map
<J> = <5 .̂ Next we construct, for a given NeN, closed subsets K c R such that
{f'(z)}?L0, with ze TT(K), is ordered around the circle in the same way as 5.

Let N e N be given. Suppose S has rotation number p/q with q>2. We write
7r~'(S) = {x,},eZ, where x,<x j + 1 for all i. In defining K we need two consecutive
elements of w~\S); we may take x0 and x, for these. Since $ m [x 0 , x j ) = [xmp, xmp+i]
for m>0 and 7r^'(S)nPl (O) = 0 there exists K^[x0, x j for which:

(a) <J>''(K)nPI(*) = 0 for i = 0 , . . . , J V - l ;
(b) <
(c) < p p

Then K has the desired properties. We also have F\K) = &(K) = H^b{K) for
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i = 0,...,N and 0 < a < / A < b < l , see lemma 3.2(iii) and lemma 3.4. Let K'=
F'(K). The sequence {K'}*L0 is said to be related to the twist periodic orbit S. If
confusion is unlikely we sometimes write {U'}fto~(r/ s) where r/s is the rotation
number of the twist periodic orbit to which {U'}fi0 is related. Note that for a given
twist periodic orbit there are several sequences {/£'},10 related to it.

LEMMA 4.3. Let {K'}?=0 be a sequence related to a twist periodic orbit S off e End? (S1)
with rotation number p/q. Given e>0, there exists no> 0 such that ifyeK0 and
N>n0 then

Fm(y)-y P
m

<e with n0 s m < N.

Proof. Let K°cz [x0, x,] with x0 and x, two consecutive elements of IT \S). Since
5 has rotation number p/q there exists a natural number n0 such that

F"(xo)-xo p
n q

E
for n > n0.

We may assume that n0 is chosen so large that 2/no< e/2. Then we have

Fm(y)-y p
am m

2
<—h

m
Fm(x0)-x0p

m
<e

for no< m < N and y e K°. •
LEMMA 4.4. Let fe End?(S'). Given meN and e > 0 there exists n0 such that for all

F"+k{x)-x F"(x)-x
n + k

Proof. (See [4].)

< e for allxeR, where 0 < k < m.

In the last part of this section we discuss the possibility to transit from one sequence
to another. By linking the appropriate sequences, a procedure which we make precise
below, we are able to select ze Sl with the proper rotation interval and speed interval.

Suppose we have a sequence {U'}l~=0 which is related to a twist periodic orbit S
with rotation number pj q. Let T be another twist periodic orbit with rotation number
r/s. If s> q there exist two consecutive elements x and y of TT~'(S) for which the
set [x, y]n ir~l(T) contains at least two elements. There exists V°c if for which
the sequence {V'}fl0 is related to S and such that tr{ VM) = ir{[x, y]). Notice that
M can be chosen arbitrarily large. Then by choosing a suitable W°<^ V° we get a
sequence {W"'}"0 such that W <= V' for i = 0 , . . . , M and {W}*LM is related to T.
We say that {V'}^0 is linked to a sequence which is related to T.

Remark. In its turn {W}|l0 can be linked to a sequence which is related to a twist
periodic orbit R provided R has period t with t > r.
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5. Proof of the theorem
We first assume that / is non-degenerate. Since / c / w e thus have I = [a, /?], a < fi,
and J = [c, d], c<d. Choose {p, = />j/g,},eN and {cr, = rr/s,},EN such that:

(a) a<pi<p with (p,, qt) = 1 and c<at<d with {rt, s,) =1 for i > l ;
(b) limt-0O p2k+l = a and lim^,*, p2k = /3;
(c) lim^̂ oo cr2k+1 = c and lim^.,^ <T2fc = d;
(d) 2 < qt < st < qi+l for i > 1.

We include (d) so that linking is possible. Let {£j},eN be a sequence of positive real
numbers such that

[ p.-- e,-, Pi+ £,-]<= [a, 0] and [cr,- e,]c [c, d] for i>l .

In the following we shall construct, by induction, for each i e N a sequence
X,= {KrC'=0, where {KT}"-=Mi~(Pi) and M,=0. Then z e ^ O , , , ^ ^ S 1 will
satisfy p(z,/) = [a, 0] and S(z,/) = [c, </].

Suppose X, is given for some i > 1. In determining Xi+1 we successively construct
Xit with /= 1, 2. Here XK, is obtained by linking Xy_, to a certain sequence and
X,o is equal to X,. Notice that we assume that Xtl is suitable for linking. We remark
that this assumption can be fulfilled inductively. In defining XI+1 we distinguish
two steps:

Step I. Link X, to a sequence which is related to a twist periodic orbit with rotation
number <r,. This results in a sequence X,, =
which should satisfy the following property

where

(A,)

According to lemma 4.3 this can be achieved.

Step II. Link XM to a sequence which is related to a twist periodic orbit with
rotation number p,+1. If the sequence X,2 = {X™2}m=o thus obtained is sufficiently
long then there exists according to lemma 4.3 an integer j ' 1 + 1 such that

(B,)
Fm(y)-y

m
<e,+ 1 for y € and

Note that we can choose JVj arbitrarily large without altering the construction of
Xl2 essentially. Put J1+1 = MI + 1+jI + 1. We assume that TV, was chosen in such a
way that

(C.)
k(x)-x

for xe K\2 and

From lemma 4.3 and lemma 4.4 we deduce that this condition can be satisfied for
Nj sufficiently large. Lastly we define Xi+l equal to X,2 and we write Xi+I = {K™}m'+'o.

For i>3 and odd, the construction of Xi + ] may be sketched as in figure 5.1.
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Mi N, 

Number of iterations 

F I G U R E 5.1. Sequences which are linked successively in the construction of where ¿2 :3 is odd, 
are displayed by a horizontal. The corresponding rotation number is indicated. 

W e n o w finish t h e p r o o f o f t h e t h e o r e m . S i n c e K° is a n o n - e m p t y c l o s e d set a n d 

<= K° for i > 1, w e h a v e t h a t K = f l , > i 0 . W e c l a i m t h a t S(z,f) = S(z, ha,b) 

for z e ir(K). H e r e / i a b e E n d ° ( S 1 ) w i t h p{hab) = [c, d] is a c i rc le m a p i n d u c e d by 

a n i n t e r p o l a t i o n m a p Hab. B e c a u s e of t h e w a y w e c o n s t r u c t e d K° ( see a l so § 4) we 

h a v e F"(K°i) = / f " ] ( ) ( K ° ) for i, n > 1. F r o m th i s o b s e r v a t i o n t h e c l a i m fo l lows . S ince 

z e f l t e i K° w e c o n c l u d e t h a t ( A , ) h o l d s for al l i > l w i t h x £ 7 i - " ' ( z ) . So [c, d]<= 

S(z,f) a n d f u r t h e r S(z, hab)c p(hab) = [c , d ] . H e n c e ze K sat isfies S(z,f) = [c, d]. 

It r e m a i n s t o p r o v e t h a t p(z,f) = [a, /3 ] . As 

l im 
k - » o c 

' 0 0 • 
-= a 

for x e 7 r ' ' ( z ) , it suffices t o s h o w t h a t a £ ( F m ( x ) - x ) / m < /3 for m > N , . Let 

w 5: Nt. T h e r e ex is t s i > 1 s u c h t h a t TV, < m < JV.-+,. T h e ca se t h a t N f =£ m < is 

d e a l t w i t h b y u s i n g ( C , ) . N o w let m = Mi+, + k w i t h 7',+, < fc < JV,-+1 - M i + 1 , t h e n 

a n d l im 
FN»>(x)-x 

(x)-x)/m 

Fm(x)-x Fk{FM^(x))-FM-+>(x) 
• + 

M ( x ) - x 

«1 M j + 1 

w h i c h is a c o n v e x c o m b i n a t i o n o f t w o n u m b e r s b o t h b e l o n g i n g to [ a , /3]: by (B,) 

t h e first o n e is in a n e i + 1 - n e i g h b o u r h o o d o f p 1 + 1 a n d t h e s e c o n d o n e b e l o n g s to an 

e , - n e i g h b o u r h o o d o f p , a c c o r d i n g to ( C , ) . W e c o n c l u d e t h a t p(z,f) = [ a , /3]. By 

a d a p t i n g t h e p r o o f in a n o b v i o u s m a n n e r o n e m a y c o n s i d e r t h e d e g e n e r a t e cases 

as se t t l ed a s we l l . W i t h th i s t h e p r o o f o f t h e t h e o r e m is c o m p l e t e d . • 
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