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Drop impact experiments allow the modelling of a wide variety of natural processes, from
raindrop impacts to planetary impact craters. In particular, interpreting the consequences
of planetary impacts requires an accurate description of the flow associated with the
cratering process. In our experiments, we release a liquid drop above a deep liquid
pool to investigate simultaneously the dynamics of the cavity and the velocity field
produced around the air–liquid interface. Using particle image velocimetry, we analyse
quantitatively the velocity field using a shifted Legendre polynomial decomposition. We
show that the velocity field is more complex than considered in previous models, in
relation to the non-hemispherical shape of the crater. In particular, the velocity field is
dominated by degrees 0 and 1, with contributions from degree 2, and is independent of the
Froude and the Weber numbers when these numbers are large enough. We then derive
a semi-analytical model based on the Legendre polynomial expansion of an unsteady
Bernoulli equation coupled with a kinematic boundary condition at the crater boundary.
This model explains the experimental observations and can predict the time evolution of
both the velocity field and the shape of the crater, including the initiation of the central jet.

Key words: drops

1. Introduction

When a raindrop splashes on the surface of a pond, it takes less than the blink of an eye
for a crater to form beneath the surface, throwing a fluid crown into the air, and for it
to collapse, propelling upwards a fluid jet. These are the key features of the splashing
regime, which occurs within a specific range of drop radius, impact velocity, impact
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angle and physical properties of the fluids such as surface tension, density and viscosity
(Rein 1993). Worthington (1908) was the first to report these features using pioneering
high-speed photography methods. The splashing regime was then extensively investigated,
regarding, in particular, the time evolution of the transient crater following the impact (e.g.
Engel 1967; Morton, Rudman & Jong-Leng 2000; Bisighini et al. 2010) and the scaling
of the maximum crater radius (e.g. Engel 1966; Macklin & Metaxas 1976; Lherm et al.
2022). The formation, evolution and fragmentation of the fluid crown (e.g. Allen 1975;
Krechetnikov & Homsy 2009; Zhang et al. 2010; Agbaglah, Josserand & Zaleski 2013)
and of the central jet (e.g. Fedorchenko & Wang 2004; Ray, Biswas & Sharma 2015; van
Rijn et al. 2021) have also been examined.

Drop impact processes cover a wide variety of applications. These include engineering
applications such as the water entry of projectiles (Clanet, Hersen & Bocquet 2004) or
spray painting (Hines 1966). They also include Earth sciences applications such as the
production of oily marine aerosol by raindrops (Murphy et al. 2015), spray generation
from raindrop impacts on seawater and soil (Zhou et al. 2020) and planetary impact
craters (Melosh 1989; Landeau et al. 2021; Lherm et al. 2021, 2022). Planetary impacts
occur on terrestrial planets from the early stages of accretion to modern meteorite impacts.
During planetary formation, thermal and chemical partitioning between the core and the
mantle is influenced by the physical mechanisms of segregation between the metal of the
impactors’ cores and the silicates of the growing planet (Stevenson 1990; Rubie, Nimmo &
Melosh 2015; Lherm & Deguen 2018), with major implications for the chemical, thermal
and magnetic evolution of the planet (Fischer et al. 2015; Badro et al. 2018; Olson,
Sharp & Garai 2022). In particular, the cratering process is responsible for the initial
dispersion and mixing of the impactors’ cores (Landeau et al. 2021; Lherm et al. 2022).
In planetary science, impact craters are also a tool for sampling the shallow interior of
planets and satellites by combining observations of planetary surfaces with excavation and
ejecta deposition models (Maxwell 1977; Barnhart & Nimmo 2011; Kurosawa & Takada
2019). Therefore, understanding the implications of these planetary impacts requires the
modelling of the velocity field produced during the formation of the craters.

In the splashing regime, the fate of the crater, the fluid crown and the central jet is
directly related to the velocity field produced around the crater boundary. The dynamics
of the crater is indeed closely related to the velocity field in the ambient fluid, in particular
regarding the evolution of the shape of the cavity. The formation of the fluid crown is also
related to the ambient velocity field through the mass flux distribution across the initial
water surface. Finally, the production of the central jet is associated with a convergent
velocity field, resulting from the collapse of the crater due in part to buoyancy forces.

The velocity field associated with crater evolution in the splashing regime has been
investigated both experimentally and numerically in previous studies. Engel (1962) was
the first to examine the velocity field around a crater by seeding the flow with particles
in order to visualise the flow streamlines. These observations allowed the determination
of the velocity field configuration associated with the crater expansion and its subsequent
collapse. More recently, the velocity field was investigated using modern particle image
velocimetry (PIV) methods. These velocity field measurements have been used to
investigate the origin of vortex rings beneath a crater (Liow & Cole 2009), the formation
of the central jet (van Rijn et al. 2021) or solutocapillary flows following the impact of
drops on salted water (Musunuri et al. 2017). Numerical simulations have also focused
on the crater velocity field, regarding in particular the entrapment of air bubbles when
the crater collapses and the formation of the central jet (Morton et al. 2000; Ray et al.
2015).
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Figure 1. Schematic view of the drop impact experimental set-up.

Most of the models involving a prediction of the crater velocity field assume either
an arbitrary velocity field (Maxwell 1977) or an arbitrary velocity potential associated
with an imposed crater geometry, such as a hemispherical crater (Engel 1967; Leng
2001) or a spherical crater able to translate vertically (Bisighini et al. 2010). Since these
models have only been compared with experimental measurements of crater size and/or
shape, a comparison with experimental measurements of the velocity field is thus required
to assess their accuracy. In any event, a new model is required to consistently model
the geometry of the cavity without the use of an arbitrarily imposed velocity field or
potential.

In this paper, we examine simultaneously the dynamics of the cavity and of the
velocity field produced in drop impact experiments. In § 2, we present the experimental
set-up, methods and diagnostics, as well as the set of dimensionless numbers used
in this study. In § 3, we describe the experimental results obtained for the crater
shape and the velocity field. In § 4, we compare the existing velocity field models
with our experimental measurements. In § 5, we finally derive a Legendre polynomial
model based on an unsteady Bernoulli equation coupled with a kinematic boundary
condition.

2. Experiments

2.1. Experimental set-up
In these experiments, we release a liquid drop in the air above a deep liquid pool of the
same liquid (figure 1). We vary the impact velocity Ui by changing the release height of
the drop while keeping the drop radius Ri fixed. We also keep constant the density ρ, the
viscosity μ and the surface tension σ of the fluids.

The liquid pool is contained in a 16 cm × 16 cm × 30 cm glass tank. The pool level is
set at the top of the tank to minimise the thickness of the meniscus on the sides of the tank.
This allows the imaging of a field of view unperturbed by the free-surface meniscus effect.
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We generate the drops using a needle supplied with fluid by a syringe driver. When the
weight of the drop exceeds the surface tension forces, the drop comes off. We use a
nylon plastic needle with an inner diameter of 4.7 mm, generating drops with a radius
Ri = 2.7 mm. We measure the drop size based on a calibration using mass measurements
of dozens of drops and assuming each drop is spherical. We validate this method using
high-speed pictures of the drop prior to impact where we can directly measure the
drop radius. We obtain a relative difference of 1.4 % between mass measurements and
direct measurements. Impact velocities are in the range Ui = 1–5 m s−1. We calculate
the impact velocity for each experiment using a calibrated free-fall model for the drop,
including a quadratic drag. We validate this method using high-speed pictures of the drop
prior to impact where we can directly measure the drop velocity. We obtain a relative
difference of 0.6 % between the velocity model and direct measurements. We use water
both in the drop and in the pool, in a temperature-controlled environment. The density
is ρ = 998 ± 1 kg m−3, measured using an Anton Paar DMA 35 Basic densitometer.
The viscosity is μ = 1 ± 0.01 mPa s (Haynes 2016). The surface tension at the air–water
interface is σ = 72.8 ± 0.4 mJ m−2 (Haynes 2016).

In our experiments, we position the camera at the same height as the water surface. We
record images at 1400 Hz with a 2560 pixel × 1600 pixel resolution (21 μm px−1) and a
12 bits dynamic range, using a high-speed Phantom VEO 640L camera and a Tokina AT-X
M100 PRO D Macro lens.

2.2. Dimensionless numbers
In these experiments, the impact dynamics depends on Ui, Ri, ρ, μ, σ and the
acceleration of gravity g. Since these six parameters contain three fundamental units, the
Vaschy–Buckingham theorem dictates that the impact dynamics depends on a set of three
independent dimensionless numbers. We choose the following set:

Fr = U2
i

gRi
, We = ρU2

i Ri

σ
, Re = ρUiRi

μ
. (2.1a–c)

The Froude number Fr is a measure of the relative importance of impactor inertia and
gravity forces. It can also be interpreted as the ratio of the kinetic energy ρR3

i U2
i of the

impactor to its gravitational potential energy ρgR4
i just before impact. The Weber number

We compares the impactor inertia and interfacial tension at the air–liquid interface. The
Reynolds number Re is the ratio between inertial and viscous forces. In the following,
time, lengths and velocities are made dimensionless using the drop radius and the impact
velocity, i.e. using respectively Ri/Ui, Ri and Ui. These dimensionless quantities are
denoted with a tilde. For example, we use a dimensionless time t̃ = t/(Ri/Ui).

We focus on four cases with Froude numbers, Weber numbers and Reynolds numbers
respectively in the range Fr � 100–1000, We � 100–1000 and Re � 4400–13 600
(table 1). For each case, we conducted three acquisitions, with similar experimental results
regarding both the crater shape (e.g. figure 4) and the velocity field (e.g. figure 11). This
validates the repeatability of the experiments.

2.3. Particle image velocimetry
The velocity field is obtained using PIV. We seed the tank with polyamide particles
(figure 1), the concentration, diameter and density of which being respectively
Cp = 0.26 g L−1, dp = 20 μm and ρp = 1030 kg m−3. We illuminate these particles in
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Case A B C D

Fr 103 444 706 979
We 100 429 682 946
Re 4.41 × 103 9.15 × 103 1.15 × 104 1.36 × 104

Table 1. Dimensionless numbers used in the experiments (see (2.1a–c) for details).

k = 0 k = 1 k = 2
xO

z

r
R(θ, t)

θ

uz

ux

uθ

ur

P

Figure 2. Velocity field resulting from the PIV procedure, superposed on a corresponding experimental raw
image. The solid lines correspond to the shape of the crater obtained from the shifted Legendre polynomial
decomposition (2.2), for degrees k = 0 (blue), k = 1 (orange) and k = 2 (green). The definitions of the
Cartesian (x, y, z) (black) and of the spherical (r, θ, ϕ) (red) coordinate systems are also represented.

suspension with a 1 mm thick laser sheet (532 nm), produced using a continuous 10 W
Nd:YAG laser, together with a diverging cylindrical lens and a telescope. The laser sheet
is verticalised using a 45◦ inclined mirror located below the tank. The laser wavelength is
isolated using a band-pass filter (532 ± 10 nm).

In order to calculate the velocity field, the camera records two images of the field
of view separated by a short time (�t = 200 μs). These two images are divided into
interrogation windows in which a cross-correlation operation allows obtaining the average
particle displacement. This involves a five-stage multi-pass processing with interrogation
windows decreasing in size. The final interrogation window size is a 64 px square with
an overlap of 75 %. In each window, a velocity vector is then calculated, which allows the
construction of the velocity field over the whole field of view. Finally, the velocity field is
spatially calibrated using a sight.

2.4. Experimental diagnostic

2.4.1. Crater shape
The crater shape is directly obtained from the raw images used in the PIV
procedure (figure 2). The crater corresponds to a particle-free area, together with a
high-light-intensity area, explained by reflections at the air–water interface, in particular
at the bottom of the crater. The crater boundary is defined using these image properties,
which allow the delineation of the cavity using background removal, an intensity threshold
method and image binarisation.
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Figure 3. Coefficients R0(t)/Ri (a), R1(t)/R0 (b) and R2(t)/R0 (c) as a function of time t̃. The circles and the
solid lines correspond to the crater shape obtained respectively from the PIV procedure (case B, Fr = 444) and
a similar backlight experiment (Fr = 442).

We fit the crater boundary position R (figure 2), which depends on the polar angle θ and
time t, using a set of shifted Legendre polynomials P̄k up to degree kmax = 2:

R(θ, t) =
kmax∑
k=0

Rk(t)P̄k(cos θ), (2.2)

where Rk(t) are coefficients fitted with a least-squares method. The shifted Legendre
polynomials are an affine transformation of the standard Legendre polynomials P̄k(x) =
Pk(2x − 1), and are orthogonal on [0, 1], i.e. on a half-space. The coefficients Rk(t)
correspond to increasingly small-scale deviations from a hemispherical shape. Coefficient
R0(t) corresponds to the mean crater radius (figure 2, blue line). Coefficient R1(t)
corresponds to a deformation of the crater, linear in cos θ , with respect to an hemisphere
(figure 2, orange line). When R1(t) > 0, the crater is stretched vertically, resulting in a
prolate cavity. When R1(t) < 0, the crater is stretched horizontally, resulting in an oblate
cavity. Finally, R2(t) corresponds to a deformation of the crater, quadratic in cos θ , with
respect to a hemisphere (figure 2, green line).

In order to validate the crater shape determination procedure, we compare the
coefficients Rk(t) obtained from the raw images used in the PIV procedure (e.g. figure 2)
with the coefficients obtained from an experiment under the same conditions, but
illuminated from behind (e.g. figure 13). This backlight experiment (see Lherm et al.
(2022) for experimental details) allows reliable determination of the shape of the crater.
Figure 3 shows that the coefficients are very similar between the two methods, which
validates the crater shape determination procedure from PIV raw images.

2.4.2. Velocity field
We aim to compare the experimental velocity field obtained using the PIV procedure with
velocity models. For that purpose, the velocity field u = (ur, uθ , uϕ) is expressed in a
spherical coordinate system (r, θ, ϕ) defined such that ur and uθ are in the plane of the
laser sheet (figure 2, red coordinates). The origin of this coordinate system is the contact
point between the impacting drop and the target liquid (figure 2, point O).
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We decompose the components of the velocity field on a shifted Legendre polynomial
basis:

ur(r, θ, t) =
+∞∑
l=0

ur,l(r, t)P̄l(cos θ), (2.3)

uθ (r, θ, t) =
+∞∑
l=0

uθ,l(r, t)P̄l(cos θ), (2.4)

where ur,l(r, t) and uθ,l(r, t) are respectively the decomposition coefficients of ur and uθ .
The shifted Legendre polynomials P̄l(cos θ) being orthogonal on half-hemispheres (θ ∈
[0, π/2]), we obtain the ur,l(r, t) and uθ,l(r, t) coefficients using a least-squares inversion
of the experimental velocity components over the separate half-hemispheres θ ≥ 0 and
θ < 0, before averaging the results from the left and right half-hemispheres. Since the
flow is close to axisymmetric (e.g. figure 2), the coefficients obtained by the inversion
over each half-hemisphere are very close to each other. Assuming an axisymmetric flow,
note that ur,0(r, t) is the average of ur over the full hemisphere.

3. Experimental results

3.1. Crater shape
Figure 4 shows the fitted coefficients of the shifted Legendre decomposition of the crater
boundary (2.2) as a function of time, for all experimental cases. We normalise the fitted
coefficients R1(t) and R2(t) by R0(t), i.e. the mean crater radius. Using this normalisation,
we quantify the deviation of the crater geometry from a hemisphere. We also normalise
time by the opening time scale of the crater (Lherm et al. 2022):

t̃max = 1
2

(
8
3

)1/8

B
(

1
2
,

5
8

)
Φ1/8ξ1/2Fr5/8, (3.1)

where Φ and ξ are respectively energy partitioning and kinetic energy correction
coefficients, and B is the beta function. This scaling is obtained by using an energy
conservation equation where the sum of the potential energy of the crater and of the kinetic
energy of the crater, corrected by ξ , is equal at any instant of time to the kinetic energy
of the impacting drop, corrected by Φ. Assuming that the kinetic energy of the crater
vanishes when the cavity reaches its maximum size (Lherm et al. 2022), the maximum
crater radius scales as

R̃max =
(

8
3

)1/4
Φ1/4Fr1/4. (3.2)

Using this Fr1/4 scaling law, the energy conservation equation is integrated between t̃ = 0
and t̃ = t̃max to obtain the opening time scale of the crater given by (3.1). More details can
be found in Lherm et al. (2022). With our experimental range of Froude number, we use
Φ = Fr−0.156 and ξ = 0.34 (Lherm et al. 2022). This normalisation allows us to collapse
our experiments on the same time scale.

In figure 4, the crater shape evolution of case A is markedly different from that of
cases B, C and D. Thus, we describe this case separately. We first deal with the high-We
experiments (cases B, C and D), where surface tension effects are negligible in comparison
with the impactor inertia (e.g. Pumphrey & Elmore 1990; Morton et al. 2000; Leng 2001;
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Figure 4. Coefficients R0(t)/Ri (a), R1(t)/R0(t) (b) and R2(t)/R0(t) (c) as a function of time normalised by
the opening time scale of the crater t̃/t̃max, in the four cases. Inset: maximum mean crater radius R0max/Ri
as a function of the Froude number Fr. For each case, the different types of markers correspond to different
experiments.

Ray et al. 2015). The crater size increases with the Froude number (figure 4, inset) in a
way that is compatible with a Fr1/4 scaling law for the maximum mean crater radius R0max
(Engel 1966; Leng 2001; Lherm et al. 2022). Furthermore, the evolution of the crater
shape relative to the mean crater size is independent of the Froude number, with similar
evolution of R1(t)/R0(t) and R2(t)/R0(t) (figure 4b,c).

At early times of the crater opening stage (t̃/t̃max � 0.25), the mean radius of the crater
R0(t) increases (figure 4a) as the cavity opens. The crater has a flat-bottomed oblate shape
(e.g. figure 5i) as a result of the spread of the drop on the surface of the pool, with negative
R1(t) (figure 4b). The flat-bottomed oblate cavity gradually becomes hemispherical as a
result of the overpressure produced at the contact point between the impacting drop and
the surface (e.g. figure 5ii). The magnitude of R1(t)/R0(t) indeed decreases with time
during this stage (figure 4b). The crater is also deformed at higher degrees with mostly
negative R2(t)/R0(t) (figure 4c). This corresponds to second-order deviations from the
hemispherical shape, with a flattened crater boundary close to the surface (e.g. figure 5i).

At intermediate times of the crater opening stage (0.25 � t̃/t̃max � 0.5), the crater
continues to open (figure 4a). The cavity is still stretched vertically, which leads to
increasingly positive R1(t)/R0(t) (figure 4b), i.e. a prolate cavity (figure 5iii). The crater
reaches a maximum prolate deformation when t̃/t̃max � 0.5, with R1(t)/R0(t) � 0.08
(figure 4b). The crater is also deformed at higher degrees, with positive R2(t)/R0(t)
(figure 4c). This corresponds to a vertical crater boundary close to the surface (figure 5iii).

At late times of the crater opening phase (0.5 � t̃/t̃max � 1), the mean crater radius
still increases (figure 4a) but the crater starts to flatten with decreasing R1(t)/R0(t)
(figure 4b). As the opening velocity of the crater decreases, buoyancy forces become
significant, resulting in the horizontal stretching of the cavity. The crater flattens to give
an approximately hemispherical crater at t̃/t̃max � 1 (figure 5v).

After the crater has reached its maximum size (t̃/t̃max � 1), the mean crater radius starts
to decrease (figure 4a). The value of R1(t)/R0(t) decreases at a rate higher than in the
opening stage of the crater (figure 4b). Horizontal stretching of the crater is accelerated,
as expected since buoyancy forces are now prevailing. This leads to the formation of an
increasingly oblate cavity (figure 5vi–vii). When t̃/t̃max � 1.5, higher degrees eventually
deviate from zero with positive R2(t)/R0(t) (figure 4c). In addition to the negative value
of R1(t)/R0(t), this corresponds to the formation of the central jet (figure 5viii–ix).
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Figure 5. Time evolution of the velocity |u| = (u2
x + u2

z )
1/2 for case B. The vector field corresponds to

the experimental velocity field, normalised by its maximum value in each snapshot. The solid green line
corresponds to the crater boundary determined using the Legendre polynomial decomposition (2.2).

We now deal with the moderate-We experiment (case A), where surface tension effects
are significant in comparison with the impactor inertia (e.g. Pumphrey & Elmore 1990;
Morton et al. 2000; Leng 2001; Ray et al. 2015). In this case, a downward-propagating
capillary wave develops at the cavity interface and drives the crater deformation, often
leading to the entrapment of a bubble due to the pinching of the cavity (e.g. Oguz &
Prosperetti 1990; Pumphrey & Elmore 1990; Prosperetti & Oguz 1993; Elmore, Chahine
& Oguz 2001). This mechanism is typically expected at moderate We, i.e. We � 30–140
(figure 6 in Pumphrey & Elmore 1990). During crater opening, this explains why the
maximum prolate deformation occurs later than in the other cases, at t̃/t̃max � 0.8, and
why the prolate deformation is larger, with R1(t)/R0(t) � 0.2 (figure 4b). During crater
closing, the evolution of R1(t)/R0(t) and R2(t)/R0(t) is markedly different from that of
the other cases due to the convergence of the capillary wave at the bottom of the crater.

3.2. Velocity field

3.2.1. Velocity maps
Figure 5 shows the evolution of the norm of the velocity |u| = (u2

x + u2
z )

1/2 as a function
of time, for case B. During the opening stage of the crater, the velocity around the
crater gradually decreases due to the deceleration of the crater boundary (figure 5i–iv).
The maximum velocity is �1.1 m s−1 at time 1.3 ms after contact (figure 5i), which
corresponds to 32 % of the impact velocity. When t̃/t̃max � 0.1, the norm of the velocity
decreases radially around the crater (figure 5ii–iv), whereas, when t̃/t̃max � 0.1, the
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velocity decreases at a higher rate on the side of the crater. This may be explained by
the initial oblate shape of the crater, related to the spread of the drop on the water
surface upon impact, which leads to a higher velocity beneath the crater as it becomes
gradually hemispherical. The velocity field is composed of a dominant radial component
and of a polar component responsible for an upward flow across the initial water surface
(figure 5i–iv). The polar component is thus responsible for the formation of the liquid
crown above the water surface (e.g. Rein 1993; Fedorchenko & Wang 2004; Zhang et al.
2010).

When the crater reaches its maximum size (figure 5v), the cavity is nearly hemispherical
and the velocity field seems to vanish simultaneously in the entire flow, consistent with the
observations of Engel (1966), which were subsequently used in several velocity models
(e.g. Engel 1967; Prosperetti & Oguz 1993). However, this first-order assumption on the
simultaneous vanishing velocity field does not hold when the flow is examined in detail.
Beneath the cavity, the velocity gradually decreases and eventually vanishes just before the
crater reaches its maximum size. The velocity is directed downwards due to the expansion
of the crater. The velocity then increases again but is directed upwards due to the collapse
of the crater. On the side of the cavity, close to the surface, the velocity does not vanish
when the crater reaches its maximum size. The collapse of the crater takes over its initial
expansion, which allows the retention of outward velocities on the side of the crater.

When the crater collapses (figure 5vi–ix), a convergent flow forms towards the centre of
the cavity. This leads to the formation of the central jet.

Figure 6 shows the evolution of the vorticity ωy = ∂ux/∂z − ∂uz/∂x as a function of
time, for case B. The vorticity produced by the impact around the crater is confined
close to the air–water boundary, in particular when the crater is strongly deformed, at the
beginning of the crater opening (figure 6i–ii) and when it collapses (figure 6vi–ix). This
suggests that the flow is mostly irrotational, which supports the potential flow assumption
used in previous models (§ 4). Furthermore, some of the vorticity observed around the
crater boundary may be an artefact related to spurious velocity measurements produced
by cross-correlations on reflections at the air–water interface, and not on PIV particles.
This assumption is supported by the estimated diffusion length of the vorticity (0.3 mm in
100 ms) which is significantly smaller than the typical size of the vorticity band.

3.2.2. Velocity coefficients
Figure 7 shows the coefficients ur,l(r, t) and uθ,l(r, t) (equations (2.3)–(2.4)) as a function
of the radial coordinate at a given time t̃ = 15.4 (t̃/t̃max = 0.43) during the crater opening
stage of case B. During this stage, the velocity field is dominated by the degrees l = 0
and l = 1, the higher degrees l ≥ 2 being much smaller. When r � 1.2R0, we observe a
decrease in the slope of the coefficients. This may be related to the deviation of the crater
from a hemisphere. The coefficients indeed sample points located at varying distances
from the actual crater boundary, including artefacts located into the crater, which may
influence the radial dependency of these coefficients close to the crater boundary. In
figure 7, we identify this misleading trend by using dashed lines when the radius is smaller
than max{R(θ)} (r ≤ 1.11R0 in figure 7).

Figures 8 and 9 compare the time evolution of the coefficients ur,l(r, t) and uθ,l(r, t)
(equations (2.3)–(2.4)) between the cases, for l ≤ 2. Except for the different normalisation,
figure 7 is thus similar to a radial slice of these coefficient maps, for case B, at t̃/t̃max =
0.43. As for the crater shape, the moderate-We case A is different from the high-We cases
B, C and D, for both the radial (figure 8) and the polar (figure 9) components of the velocity
field. We thus deal with this case separately.
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Figure 6. Time evolution of the vorticity ωy = ∂ux/∂z − ∂uz/∂x for case B. The vector field corresponds
to the experimental velocity field, normalised by its maximum value in each snapshot. The solid green line
corresponds to the crater boundary determined using the Legendre polynomial decomposition (2.2).
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Figure 7. Coefficients ur,l(r, t) and uθ,l(r, t) normalised by the mean crater velocity Ṙ0(t), as a function of the
radial coordinate r, normalised by the mean crater radius R0(t), up to degree l = 5. Dashed lines correspond to
regions where the coefficients sample velocity artefacts located in the crater. The coefficients are calculated at
t̃ = 15.4 (t̃/t̃max = 0.43) for case B.
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Figure 8. Time evolution of the coefficient ur,l(r, t) (l ∈ {0, 1, 2}) normalised by the impact velocity Ui, as
a function of the radial coordinate r normalised by the drop radius Ri, for case B. Time is normalised by the
opening time scale of the crater t̃max.

We first deal with the high-We experiments (cases B, C and D), where both components
of the velocity field are similar among cases, regardless of the degree in question. The
velocity field is mostly dominated by the degrees l = 0 and l = 1, during both the opening
and the closing stage of the crater, in agreement with figure 7.

During the crater opening stage (t̃/t̃max � 1), the dominant degrees of the radial
component ur,0(r, t) and ur,1(r, t) are positive (figure 8). This corresponds to the strong
radial velocity field related to the expansion of the cavity. The dominant degrees of
the polar component uθ,0(r, t) and uθ,1(r, t) are concomitantly positive and negative,
respectively (figure 9), with a lower magnitude. This corresponds to a polar perturbation of
the dominant radial velocity field, related to the mass flux across the surface z = 0 which
produces the fluid crown. The positive coefficient uθ,0(r, t) indeed corresponds to a flow
towards the surface, while the negative coefficient uθ,1(r, t) corresponds to a degree l = 1
perturbation, linear in cos θ . The degree l = 2 also contributes to the velocity field of both
components, in particular when the crater is strongly deformed due to the spread of the
drop at the surface of the pool, at the beginning of the opening stage (t̃/t̃max � 0.25).

When the crater reaches its maximum size (t̃/t̃max � 1), the dominant degrees of both
components change signs as the crater starts to collapse. In detail, ur,0(r, t) vanishes later
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Figure 9. Time evolution of the coefficient uθ,l(r, t) (l ∈ {0, 1, 2}) normalised by the impact velocity Ui, as
a function of the radial coordinate r normalised by the drop radius Ri, for case B. Time is normalised by the
opening time scale of the crater t̃max.

(t̃/t̃max � 1) than ur,1(r, t) (t̃/t̃max � 0.6) (figure 8) and uθ,0(r, t) (t̃/t̃max � 0.8) (figure 9).
This is in agreement with the observations of figure 5 at t̃/t̃max � 1, where the velocity
vanishes beneath the crater but not on the sides.

During the crater closing stage (t̃/t̃max � 1), ur,0(r, t) and ur,1(r, t) are both negative
(figure 8) and uθ,0(r, t) is negative (figure 9). This corresponds to the development of the
convergent flow related to the collapse of the crater and the formation of the central jet.
As at the beginning of the opening stage, the degree l = 2 of both components contributes
significantly to the velocity field at the end of the closing stage (t̃/t̃max � 1.5), in relation
to the strongly deformed crater boundary.

We now deal with the moderate-We experiment (case A). Although the degree l = 0 of
both components is similar to that of the high-We cases, the degrees l = 1 and l = 2 of
case A are significantly larger than their counterparts of cases B, C and D. Furthermore,
the time at which ur,1(r, t) and uθ,0(r, t) vanish is significantly modified. This may also
be a consequence of significant surface tension effects in this moderate-We experiment,
related to vigorous deformations of the crater boundary by the propagation of a capillary
wave towards the bottom of the crater.
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/Ṙ

0

u θ
,0

/Ṙ
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Figure 10. Coefficients ur,0(r, t) (a), ur,1(r, t) (b), uθ,0(r, t) (c) and uθ,1(r, t) (d) normalised by the mean
crater velocity Ṙ0(t), as a function of the radial coordinate r, normalised by the mean crater radius R0(t). The
circles correspond to case B at t̃/t̃max = 0.24. The dash-dotted lines correspond to the models of Engel (1967),
Maxwell (1977), Leng (2001) and Bisighini et al. (2010). The solid line corresponds to the solution of the
predictive model, using the simplified equation system (5.13) with the reference set of initial conditions (5.14).

4. Comparison with existing velocity models

In this section, we review the velocity models proposed by Engel (1967), Maxwell
(1977), Leng (2001) and Bisighini et al. (2010), and compare their predictions with our
observations. Since most of these models have been designed to understand the crater
opening stage, we compare these models with our experimental velocity measurements by
focusing on a typical snapshot of this initial stage. For that purpose, figure 10 shows the
dominant coefficients ur,0(r, t), ur,1(r, t), uθ,0(r, t) and uθ,1(r, t) of case B as a function
of the radial coordinate at t̃/t̃max = 0.24, as well as the predictions of the models.

4.1. The model of Engel (1967)
The model of Engel (1967) assumes an energy balance where the potential energy of the
crater, the potential energy of a cylindrical wave developing above the surface, the surface
tension energy of the produced interface, the kinetic energy of the flow around the crater,
the kinetic energy of the cylindrical wave and viscous dissipation are equal at any time to
half of the kinetic energy of the impacting drop. Among the assumptions of such a model,
Engel (1967) assumes a hemispherical crater with a radius R0(t) and a potential flow with a
velocity potential φ satisfying the boundary conditions on the velocity |u|(r = +∞) = 0
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and |u|[r = R0(t)] = Ṙ0(t). The velocity potential used in the model is

φ = − Ṙ0R2
0 cos θ

r
. (4.1)

The radial component ur and the polar component uθ of the velocity field, obtained by
deriving the velocity potential, are written as

ur = Ṙ0R2
0 cos θ

r2 ,

uθ = Ṙ0R2
0 sin θ

r2 .

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

This model allows one to capture the evolution of the mean crater radius (e.g. Engel
1967, figure 3). The velocity field has l = 0 (figure 10a) and l = 1 (figure 10b) radial
components and l = 0 (figure 10c) and l = 1 (figure 10d) polar components. This allows
one to obtain a velocity field qualitatively similar to that of the experiments, including in
particular a degree l = 1 of the radial component, and a polar component. However, the
slopes of the velocity components are smaller than the experimental slopes, in particular
the 1/r2 slope of ur,0(r, t). The main limitations of the model of Engel (1967) are the fixed
hemispherical geometry of the crater and the arbitrary velocity potential defined to fit
experimental observations of the velocity field. More importantly, this velocity potential
(4.1) corresponds to the flow around an expanding cylinder (with r being the distance
from the cylinder axis and θ the angular position around this axis) rather than around
an expanding sphere, as incorrectly assumed in Engel (1967). It is not a solution of the
Laplace equation in spherical coordinates and has a non-zero divergence.

4.2. The model of Maxwell (1977)
The model of Maxwell (1977) assumes an empirical form of the velocity field based
on planetary cratering observations. The model assumes that the radial component ur is
independent of θ and that its radial dependency is a power Z of the radius r. Component
uθ is then calculated using fluid incompressibility. The velocity field is thus written as

ur = α(t)
rZ ,

uθ = (Z − 2)
sin θ

1 + cos θ

α(t)
rZ ,

⎫⎪⎪⎬
⎪⎪⎭ (4.3)

where α(t) is an arbitrary coefficient corresponding to the time-dependent flow intensity.
According to Maxwell (1977) and Melosh (1989), the value Z = 3 gives a velocity field
consistent with numerical simulations of explosion and planetary impacts.

This model allows the prediction of the experimental ur,0(r, t) (figure 10a), uθ,0(r, t)
(figure 10c) and uθ,1(r, t) (figure 10d) using Z = 3 and α(t) = 1. In particular, the slopes
predicted by the model are very close to the experimental slopes. However, this model
does not allow a degree l = 1 of the radial velocity component. The main limitations of
the model of Maxwell (1977) are the arbitrary choice for the model time dependency, with
α(t), the fact that Z could depend on θ , which would yield a degree l = 1 for ur, and
the fact that Maxwell’s flow is not potential, which is inconsistent with the experimental
results (figure 6).
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4.3. The model of Leng (2001)
The model of Leng (2001) is similar to that of Engel (1967) since it uses a hemispherical
crater with a radius R0(t) and a potential flow. The velocity potential φ is written as

φ = − Ṙ0R2
0

r
, (4.4)

which allows one to obtain the velocity components ur and uθ of the velocity field:

ur = Ṙ0R2
0

r2 ,

uθ = 0.

⎫⎪⎬
⎪⎭ (4.5)

This velocity potential satisfies the boundary conditions and is a solution of the Laplace
equation in spherical coordinates.

This model allows, in particular, the capturing of the evolution of the mean crater
radius using an energy balance, although it requires one to multiply the kinetic energy
and the total energy by empirical correction factors (e.g. Lherm et al. 2022). However,
the velocity field has only a degree l = 0 (figure 10a) on the radial component and no
polar component. As for the model of Engel (1967), the 1/r2 slope of ur,0(r, t) is smaller
than the experimental slope. The main limitations of the model of Leng (2001) are the
hemispherical geometry and the oversimplified velocity potential which prevents a polar
dependency of the radial component and a polar component of the velocity field.

4.4. The model of Bisighini et al. (2010)
The model of Bisighini et al. (2010) assumes an expanding spherical crater able to
translate vertically over time, with a radius R0(t) and a vertical position of the crater
barycentre zc(t). This allows the definition of a velocity potential φ which corresponds to
the superposition between the radial expansion of the crater and the flow past a translating
sphere. This potential satisfies the boundary conditions and the Laplace equation in
spherical coordinates. In the moving sphere coordinate system (r′, θ ′), it is written

φ = − Ṙ0R2
0

r′ − żcr′
(

1 − R3
0

2r′3

)
cos θ ′, (4.6)

with components ur and uθ of the velocity field:

ur = Ṙ0R2
0

r′2 −
(

1 − R3
0

r′3

)
żc cos θ ′,

uθ =
(

1 + R3
0

2r′3

)
żc sin θ ′.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.7)

Bisighini et al. (2010) then use an unsteady Bernoulli equation to determine the evolution
of the sphere radius and position over time. To compare the model of Bisighini et al. (2010)
with our experimental data, we need to calculate the corresponding velocity field in the
fixed frame of reference by adding the velocity of the crater barycentre żc(cos θ, − sin θ)

to (4.7), and expressing r′ and θ ′ as functions of r and θ (r′ = √
r2 + z2

c − 2zcr cos θ ,
cos θ ′ = (r cos θ − zc)/r′, sin θ ′ = r sin θ/r′).
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The velocity field has an l = 0 (figure 10a) and an l = 1 (figure 10b) radial component,
as well as an l = 0 (figure 10c) and an l = 1 (figure 10d) polar component. The coefficients
are calculated using zc = 0 and żc = 0.2Ui, which correspond to typical values during
crater opening (e.g. figure 5). This model explains relatively well the shape of the
crater (e.g. Bisighini et al. 2010, figure 17), and the key tendencies of the experimental
components of the velocity field. However, the model of Bisighini et al. (2010) strongly
constrains the geometry of the crater, as well as the related velocity potential definition.
As in the models of Engel (1967) and Leng (2001), the 1/r2 slope of ur,0 is smaller than
the experimental slope.

4.5. Towards a new model
In all models, either the geometry of the velocity field (Engel 1967; Maxwell 1977; Leng
2001) or the shape of the cavity (Engel 1967; Leng 2001; Bisighini et al. 2010) is imposed.
This leads in particular to an incorrect radial dependency of ur, with an exponent much
larger in the experiments than in the models, except for the model of Maxwell (1977) model
where the radial dependency is arbitrarily imposed by the parameter Z. The experimental
observation that the radial velocity field decreases with r faster than 1/r2 is unexpected
since it suggests that the flow component associated with an isotropic expansion of the
cavity (∝ 1/r2) is not dominant. New models are thus required to explain the geometry
of the experimental velocity field, as well as the evolution of the non-hemispherical
shape of the cavity. In the following section, we develop a semi-analytical model based
on a Legendre polynomial expansion of an unsteady Bernoulli equation, coupled with a
kinematic boundary condition at the crater boundary.

5. Legendre polynomial model

In this model, we assume that the fluid is inviscid (i.e. μ = 0), incompressible (i.e. ∇ · u =
0) and that the flow is irrotational (i.e. ∇ × u = 0). This means that the flow is potential
and satisfies the Laplace equation ∇2φ = 0, where φ is the velocity potential defined as
u = ∇φ. In the spherical coordinate system (r, θ, ϕ), assuming an axisymmetric flow, the
solution of the Laplace equation is written as

φ(r, θ, t) =
+∞∑
n=0

φn(t)
rn+1 Pn(cos θ), (5.1)

where φn(t) are time-dependent coefficients and Pn(x) are the standard Legendre
polynomials, orthogonal on [−1, 1]. The components ur and uθ of the velocity field are
then

ur(r, θ, t) = ∂φ

∂r
=

+∞∑
n=0

−(n + 1)
φn(t)
rn+2 Pn(cos θ),

uθ (r, θ, t) = 1
r

∂φ

∂θ
=

+∞∑
n=0

φn(t)
rn+2

∂Pn(cos θ)

∂θ
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.2)

We also assume a non-hemispherical crater, where the shape of the cavity is decomposed
on a set of shifted Legendre polynomials (2.2).
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Since we assume that the fluid is inviscid and a potential flow, the flow is governed by
an unsteady Bernoulli equation:

∂φ

∂t
+ 1

2
u2 − gz + p

ρ
= constant, (5.3)

where ρ is the fluid density, u is the norm of the velocity, p is the pressure, g is the
acceleration due to gravity and z is the vertical coordinate below the initial fluid surface.
This equation is constant in the entire fluid domain. Far from the crater, u → 0, φ → 0
and the pressure is hydrostatic p(z) = p0 + ρgz, where p0 is the atmospheric pressure.
This means that the constant is equal to p0/ρ.

At the crater boundary, i.e. at r = R(θ, t) (equation (2.2)), the Young–Laplace equation
is

p(R) − p0 = σC, (5.4)

where C(θ, t) is the mean local curvature of the interface and σ the surface tension. In
cylindrical coordinates, the curvature is

C(θ, t) =
R2 + 2

(
∂R
∂θ

)2

− R
∂2R
∂θ2[

R2 +
(

∂R
∂θ

)2
]3/2 . (5.5)

The Bernoulli equation at the crater boundary is thus written as

(
∂φ

∂t

)
r=R

+ 1
2

u(R)2 − gR cos θ + σ

ρ
C = 0. (5.6)

We also use a kinematic boundary condition at the crater boundary:

∂R
∂t

+ u · ∇R = ∂R
∂t

+ uθ (R)
1
R

∂R
∂θ

= ur(R). (5.7)

Equations (5.6) and (5.7) are made dimensionless using the scaling laws for the crater
opening time scale t̃max (3.1) and the maximum crater radius R̃max (3.2), which gives the
following partial differential equation system:

(
∂φ∗

∂t∗

)
r∗=R∗

= −1
2

u∗(R∗)2 + 1
4

B
(

1
2
,

5
8

)2

ξR∗ cos θ − 1
8

√
3
2

B
(

1
2
,

5
8

)2
ξ√
Φ

√
Fr

We
C∗,

∂R∗

∂t∗
= u∗

r (R
∗) − u∗

θ (R
∗)

1
R∗

∂R∗

∂θ
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.8)

where the star notation denotes quantities made dimensionless with R̃max and t̃max, e.g.
t∗ = t̃/t̃max.
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Velocity field and cavity dynamics in drop impacts

We solve this differential equation system (5.8) by expanding the velocity potential (5.1)
up to degree nmax = 2:

φ∗(r∗, θ, t∗) = φ∗
0 (t∗)
r∗ + φ∗

1 (t∗) cos θ

r∗2 + φ∗
2 (t∗)(3 cos2 θ − 1)

2r∗3 . (5.9)

The components of the velocity field are then written (equation (5.2))

u∗
r (r

∗, θ, t∗) = −φ∗
0 (t∗)
r∗2 − 2φ∗

1 (t∗) cos θ

r∗3 − 3φ∗
2 (t∗)(3 cos2 θ − 1)

2r∗4 ,

u∗
θ (r

∗, θ, t∗) = −φ∗
1 (t∗) sin θ

r∗3 − 3φ∗
2 (t∗) sin θ cos θ

r∗4 .

⎫⎪⎪⎬
⎪⎪⎭ (5.10)

We also expand the crater boundary position (2.2) up to degree kmax = 1:

R∗(θ, t∗) = R∗
0(t

∗) + R∗
1(t

∗)(2 cos θ − 1). (5.11)

Note that the crater position R∗(θ, t∗) is written as a sum of shifted Legendre polynomials,
while the velocity potential φ∗(r∗, θ, t∗) is a sum of standard Legendre polynomials.

We then project the differential equation system (5.8) on a set of shifted Legendre
polynomials P̄m up to degree mmax = 2 for the Bernoulli equation and degree mmax = 1
for the kinematic boundary condition. The projection of a function X is written as

〈X, P̄m〉 = (2m + 1)

∫ π/2

0
XP̄m(cos θ) sin θ dθ. (5.12)

We simplify the equations by expanding the Bernoulli equation and the kinematic
boundary condition to the third and the fourth order in R∗

1. We obtain a system
of five equations with five unknowns: φ∗

0 (t∗), φ∗
1 (t∗), φ∗

2 (t∗), R∗
0(t

∗) and R∗
1(t

∗)
(equations (A1)–(A5)).

The general equation system (5.8) and its projection (A1)–(A5) may be further
simplified. The third term on the right-hand side of the Bernoulli equation (in (5.8))
corresponds to surface tension effects associated with the curvature of the air–water
interface. If this term is neglected, which corresponds to

√
Fr/We � 1, (5.8) then

simplifies as (
∂φ∗

∂t∗

)
r∗=R∗

= −1
2

u∗(R∗)2 + 1
4

B
(

1
2
,

5
8

)2

ξR∗ cos θ,

∂R∗

∂t∗
= u∗

r (R
∗) − u∗

θ (R
∗)

1
R∗

∂R∗

∂θ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.13)

In our experiments,
√

Fr/We is two to three times larger for case A (1.0 × 10−1) than for
cases B, C and D (4.9 × 10−2, 3.9 × 10−2 and 3.3 × 10−2, respectively). This is consistent
with the surface tension argument used to explain the difference between case A and the
other cases (§ 3). Since ξ is independent of Fr and We in our experimental range (Lherm
et al. 2022), this normalised equation system without surface tension is independent of the
impact parameters and may be used to provide a predictive model.

The general and the simplified equation systems are solved numerically as initial value
problems, using a differential equation solver. The solution thus depends on the choice of
initial conditions. On the one hand, we can solve the equation systems separately for each
experiment. The initial conditions are defined at t̃ = 1, which corresponds to an advection
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time of the impacting drop, and fitted on each experiment by using a joint least-squares
inversion of the five experimental coefficients over the entire time series. On the other
hand, we can solve the equation systems at the same time for all the experiments. The
initial conditions are also defined at t̃ = 1 but fitted simultaneously on all the experiments
using the joint least-squares inversion over the entire time series. This method allows the
definition of a unique set of initial conditions that may be used in a predictive model. In
both cases, the fitting procedure is motivated by the sensitivity of the model to the initial
conditions used. A slight modification of the initial conditions may change significantly
the time evolution of the coefficients. This sensitivity might be related to the exact impact
conditions, including a possible variability in the contact dynamics with the surface of
the pool and in the shape of the drop upon impact. Furthermore, the sensitivity to initial
conditions might be amplified by the truncation of the crater shape and of the velocity
potential expansion, which is probably insufficient to model properly the early evolution
of the crater. This sensitivity is investigated in more detail in Appendix B.

We now define two models using different systems of equations and definitions of initial
conditions. The first model, referred to as the general model, accounts for surface energy
effects and uses the general equation system (5.8) and initial conditions fitted on single
experiments. This means that the number of sets of initial conditions is equal to the number
of experiments. For example, the initial conditions of a given experiment in case B are
φ∗

0 (1) = −0.07 ± 0.02, φ∗
1 (1) = −0.07 ± 0.02, φ∗

2 (1) = 0.009 ± 0.003, R∗
0(1) = 0.41 ±

0.03 and R∗
1(1) = −0.28 ± 0.02. Uncertainties on the coefficients correspond to 1 − σ

standard deviations on the parameters in the least-squares inversion. The initial conditions
of all the experiments are presented in Appendix B. The second model, referred to as
the simplified model, uses the simplified equation system, without surface tension and
independent of the impact parameters (5.13), as well as initial conditions fitted on all the
experiments. The reference set of initial conditions is

φ∗
0 (1) = −0.21 ± 0.01, φ∗

1 (1) = 0.002 ± 0.005, φ∗
2 (1) = 0.0004 ± 0.0005,

R∗
0(1) = 0.29 ± 0.02, R∗

1(1) = −0.39 ± 0.02.

}

(5.14)

Given the uncertainties, this set of initial conditions can be further simplified by
using φ∗

1 (1) = φ∗
2 (1) = 0, which corresponds to an initial velocity field given by (u∗

r =
−φ∗

0 (1)/r∗2, u∗
θ = 0). The physical interpretation of these initial conditions should be

investigated in the future. It probably involves the contact dynamics between the drop
and the pool and the early evolution of the crater. Nonetheless, the simplified model is
a predictive model, independent of the impact parameters, that can be used to predict
the crater and velocity field evolution within the range of Fr and We covered by our
experiments. However, we anticipate the model to show predictability limitations outside
of this range, in particular at low Fr and We in the bubble entrapment region (e.g.
Pumphrey & Elmore 1990), due to the neglected surface tension term and more generally
to the relatively low degree of truncation used in our model.

Figure 11 compares the experimental coefficients φ∗
0 (figure 11a), φ∗

1 (figure 11b) and
φ∗

2 (figure 11c) of the velocity potential and the experimental coefficients R∗
0 (figure 11d)

and R∗
1 (figure 11e) of the crater shape with the coefficients obtained with the general

(coloured solid lines) and the simplified (black solid lines) models. We determine the
experimental velocity potential coefficients from the experimental velocity field using a
joint least-squares inversion of the radial and the polar components (5.2). We also obtain
the experimental crater shape coefficients by fitting the crater boundary position with the
shifted Legendre polynomial expansion (2.2), using the method described in § 2.4.1.
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Figure 11. Coefficients φ∗
0 (a), φ∗

1 (b), φ∗
2 (c), R∗

0 (d) and R∗
1 (e) as a function of time normalised by the opening

time scale of the crater t̃/t̃max, in the four cases. For each case, the different types of markers correspond
to different experiments. The coloured solid lines give the solution of the general model, where the initial
conditions are fitted on a single experiment of the corresponding case. The black solid lines give a solution to
the simplified model, where the initial conditions are fitted simultaneously on all the experiments. The black
dashed lines give a solution to the simplified model, where the initial conditions are modified by ±25 % with
respect to their reference value.

The models capture well the evolution of the velocity potential (figure 11a–c) for all
cases. In detail, the models are dominated by φ∗

1 and are slightly less accurate when it
comes to fit φ∗

2 , as expected since this corresponds to velocity fluctuations on smaller
scales. These results are consistent with the good agreement between the simplified model
and the experimental velocity coefficients of figure 10, in particular regarding the slope
of ur,0(r, t). Although ur,0(r, t) remains less steep than in the experiments, it decreases
significantly faster than 1/r2. The models also capture well the evolution of the crater
shape (figure 11d,e). Note that R̃max slightly overestimates the experimental maximum
crater radius, with maximum R∗

0 systematically smaller than 1. This can be explained by the
neglected surface energy in the energy balance (Lherm et al. 2022). In detail, R∗

1 is slightly
underestimated and changes at a higher rate than experimental data when t̃/t̃max � 0.4 and
t̃/t̃max � 1.7. This corresponds respectively to the early opening of the crater and the end
of crater collapse, including the formation of the central jet, where an expansion of R
to a higher degree (at least k = 2) would be required to model the observed degree of
deformation of the cavity (e.g. figure 4c).

Note that the predictive model, using the simplified equation system (5.13) with the
reference set of initial conditions (5.14), is particularly in good agreement with the
experimental data. The sensitivity of the simplified model to the initial conditions is
illustrated with two solutions where the initial conditions have been modified by ±25 %
with respect to their reference value (figure 11, black dashed lines).
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Although case A is slightly different from cases B, C and D due to surface tension effects
(see § 3), the models capture properly the general cratering dynamics. In detail, φ∗

2 and R∗
1

are significantly underestimated when 0.5 � t̃/t̃max � 1.4, as expected since the models
do not account for the capillary wave propagation responsible for this cavity deformation.

Figure 12 compares snapshots of the radial (figure 12a,b) and polar (figure 12c,d)
components of the experimental velocity field (figure 12a,c) with the components
calculated from the predictive simplified model (figure 12b,d), in case B. The comparison
is conducted at different times during the opening stage (i), just before the crater reaches
its maximum size (ii), and during the closing stage (iii). This illustrates that the velocity
fields from the simplified model and the experiment are very similar during all stages of
the cratering process. The differences observed are mainly in the magnitude of the velocity,
in particular close to the crater and the initial water surface (θ = ±π/2). Similar results
are obtained in the other cases. The good agreement between the experimental velocity
field and the simplified model shows that the truncation used in the model (degree k = 1
in shifted Legendre polynomials for R∗ and degree n = 2 in Legendre polynomials for φ∗)
is sufficient to accurately capture the flow dynamics.

Figure 13 compares the crater shape obtained in a backlight experiment similar to case
B (Fr = 442) with the crater boundary position calculated from the predictive simplified
model. The crater shape is well captured by the model, consistent with the results of
figure 11(d,e). In detail, at the very beginning of the crater opening stage (figure 13i),
the model overestimates the width of the crater and does not capture accurately the
flat-bottomed shape of the cavity. During the crater opening stage and the beginning of
the crater collapse stage (figure 13iii–v), the model slightly underestimates the crater
depth and width, consistent with the coefficients of figure 11(d,e). Finally, when the crater
collapses (figure 13vi), the model shows the central jet initiation, although it visibly lacks
higher degrees to account for the vertical walls of the cavity. Figure 13 also compares the
experimental velocity field obtained in case B with the velocity field obtained from the
simplified model. The comparison shows a good agreement between the two, which is
consistent with the analysis of figure 12.

6. Conclusion

In this paper, we analyse quantitatively the velocity field around the crater produced by
the impact of a liquid drop onto a deep liquid pool. Using new high-resolution PIV
measurements, we obtain simultaneously the evolution of the velocity field around the
cavity and the crater shape. We found that the shape of the cavity and the velocity field
seem to be independent of Fr and We at a given t/tmax, when these two dimensionless
numbers are large enough (cases B, C and D). The velocity field is dominated by the
degrees 0 and 1 in terms of shifted Legendre polynomials, with the degree 0 of the radial
component ur,0(r, t) decreasing faster than 1/r2. Furthermore, the radial component of the
velocity field is dominated by the degree 1 in terms of standard Legendre polynomials.
This is not inconsistent with the growth of the crater because the degree 1 of the
radial component has a non-zero average over a hemisphere. The experiments also show
significant contributions from the degree 2, in particular when the crater is strongly
deformed. This is possibly related to the non-hemispherical shape (degree 1) of the cavity.
We also found that the velocity field does not vanish when the crater reaches its maximum
size.

In previous velocity models (Engel 1967; Maxwell 1977; Leng 2001; Bisighini et al.
2010), strong constraints were imposed on the crater shape and/or on the velocity field.
They were unable to explain the properties observed in our experimental measurements,
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Figure 12. Radial (a,b) and polar (c,d) components of the velocity field from experimental data (a,c) and from
the simplified model (b,d), in case B. The snapshots correspond to times when the crater is opening (i), when
the crater is almost at its maximum size (ii) and when the crater is closing (iii). The solid green lines correspond
to the experimental crater boundary.

in particular the radial dependency of the radial component of the velocity field and
the evolution of the shape of the cavity. We thus developed a semi-analytical model
based on a Legendre polynomial expansion of an unsteady Bernoulli equation, coupled
with a kinematic boundary condition at the crater boundary. Assuming that the surface
tension term involved in the Bernoulli equation is negligible, we define a simplified model,
independent of the impact parameters, that can predict the evolution of the crater shape and
of the velocity field within the range of Fr and We numbers covered in our experiments.
Although the model is sensitive to the initial conditions, it remains predictive by using a
unique set of fitted initial conditions. In particular, the model can capture the initiation of
the central jet. However, one intrinsic limitation of the model is that it assumes the cavity
radius to be a bijective function of θ . While this assumption is true during the opening
stage and part of the crater closing stage, including the central jet initiation, it eventually
fails when the central jet reaches a critical height, since the air–water interface can be
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t̃  = 23.6 t̃ /t̃ max = 0.66 t̃  = 40.5 t̃ /t̃ max = 1.14 t̃  = 65.9 t̃ /t̃ max = 1.85

(i) (ii) (iii)

(iv) (v) (vi)

Figure 13. Time evolution of the crater shape obtained in a backlight experiment similar to case B (Fr = 442).
The solid green lines correspond to the crater boundary obtained from the simplified model. The black arrows
correspond to the experimental velocity field, normalised by its maximum value in each snapshot. The grey
arrows correspond to the velocity field obtained from the simplified model, normalised by its maximum value
in each snapshot.

crossed twice at a given θ . The model can therefore not be used to describe the full growth
of the central jet.
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Appendix A. Equations of the Legendre polynomial model

The Legendre polynomial model equations correspond to the projection of (5.8) up to
degree mmax = 1 for the kinematic boundary condition and up to degree mmax = 2 for
the Bernoulli equation. The projected boundary conditions and Bernoulli equations are
respectively expanded to the fourth and the third order in R∗

1. The boundary condition is
then written as

Ṙ∗
0 = 1

6R∗
0

8

{
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0 R∗
0

2
(
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and the Bernoulli equation is written as
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The simplified version of the equation system (5.13) can be obtained by using
√

Fr/We = 0
in (A1)–(A5).

Appendix B. Initial conditions of the Legendre polynomial model

Figure 14 shows the initial conditions of the general model, obtained by fitting individually
the experiments, and of the simplified model, obtained by fitting all the experiments
simultaneously. They are both defined at t̃ = 1 and use a joint least-squares inversion of the
experimental coefficients over the entire time series. Uncertainties on the initial conditions
correspond to 1 − σ standard deviations on the parameters in the least-squares inversion.

At low
√

Fr/We, corresponding to high Fr and We numbers (cases B, C, D), the
dispersion of the initial conditions is larger than the uncertainties associated with the
least-squares inversion, whereas at higher

√
Fr/We, corresponding to moderate Fr and We

numbers (case A), the initial conditions are clustered within the inversion uncertainties.
This dispersion at higher Fr and We suggests a higher variability of the crater shape and
of the velocity field upon impact. This might be related to a greater sensitivity to the exact
impact conditions, possibly including variability in the contact dynamics with the surface
of the pool and in the shape of the drop upon impact. Furthermore, we do not find any
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Figure 14. Initial conditions (at t̃ = 1) of the Legendre polynomial models, for the coefficients φ∗
0 (a), φ∗

1
(b), φ∗

2 (c), R∗
0 (d) and R∗

1 (e), obtained using a joint least-squares inversion of the experimental coefficients
over the entire time series. The coloured markers correspond to the general model, where initial conditions
are obtained by fitting experiments individually. The black circles correspond to the simplified model, where
initial conditions are obtained by fitting all the experiments simultaneously. Uncertainties correspond to 1 − σ

standard deviations on the parameters in the least-squares inversion.

secondary dependency on Fr or We. Finally, the initial conditions of the simplified model,
obtained by fitting all the experiments simultaneously, are similar to the initial conditions
obtained by fitting individually the experiments.

The relatively large dispersion observed for a given case (except for case A) indicates
that the model is sensitive to the initial conditions. For example, a change in all the initial
conditions by ±25 % gives a significantly modified evolution of the coefficients over
time (figure 11, black dashed lines). In order to further investigate this initial condition
sensitivity, we conducted a quantitative test on the simplified model. Figure 15 shows
the relative change of the model coefficients with respect to the simplified model, as
a result of an individual modification of a single initial condition from the reference
value defined in (5.14). The relative change δX is defined as the absolute change in
X = {φ∗

0 , φ∗
1 , φ∗

2 , R∗
0, R∗

1}, X − Xref , scaled by the root mean square of the simplified
model r.m.s.(Xref ). We choose to scale the absolute change by the root mean square
of the simplified model to ensure a non-diverging value of the relative change when
Xref → 0. Note that this sensitivity test only investigates the role of independent parameter
modifications. Coupled modifications of the initial conditions (as in figure 11, black dashed
lines) might amplify significantly the changes in the evolution of the coefficients.

Within the range of parameter modifications (by ±40 %), the coefficients are generally
more influenced by modifications of the initial conditions of the crater shape, i.e. R∗

0(1)

(figure 15d) and R∗
1(1) (figure 15e). Besides, the coefficient R∗

0 is the least modified
with a maximum change of ∼ 30 % (figure 15iv), while φ∗

0 , φ∗
1 , φ∗

2 and R∗
1 reach

respectively ∼300 % (figure 15i), ∼150 % (figure 15ii), ∼ 200 % (figure 15iii) and ∼100 %
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Figure 15. Sensitivity of the simplified model to individual changes in the initial conditions. (a–e) Each row
corresponds to the relative change δX(1) = [X(1) − Xref (1)]/Xref (1) (in %) of a single initial condition X(1) =
{φ∗

0 (1), φ∗
1 (1), φ∗

2 (1), R∗
0(1), R∗

1(1)} with respect to the reference value Xref (1), defined in (5.14). Each column
corresponds to the relative change δX = (X − Xref )/r.m.s.(Xref ) (in %) of the coefficient X over the entire time
series, for a given initial condition modification. The relative change δX is defined as the absolute change in X,
X − Xref , scaled by the root mean square of the simplified model r.m.s.(Xref ).

(figure 15v). Finally, the change in the coefficients over time is not homogeneous. For
example, φ∗

0 is changed relatively uniformly over time (in magnitude), independently of the
modified initial condition, while φ∗

2 is changed much more heterogeneously and depends
on the modified initial condition.
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