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THE STRICT TOPOLOGY ON SPACES OF BOUNDED
HOLOMORPHIC FUNCTIONS

JUAN FERRERA AND ANGELES PRIETO

We introduce in this paper the space of bounded holomorphic functions on the
open unit ball of a Banach space endowed with the strict topology. Some good
properties of this topology are obtained. As applications, we prove some results
on approximation by polynomials and a description of the continuous homomor-
phisms.

0. INTRODUCTION

The aim of this paper is to introduce an appropriate topology on the space of
bounded holomorphic functions. It shares nice topological properties with the norm
topology and allows better approximation properties than the norm. Our definition
of strict topology enjoys good properties when it is restricted to natural subspaces
of holomorphic functions: the dual space, the subspaces of continuous polynomials
(where the strict topology coincides with the usual norm). This fact will be used to
prove that the space of bounded holomorphic functions equals the completion of the
space of polynomials. Part of this paper is devoted to the study of 7i°°(U) with the
strict topology as a topological algebra. We apply the density theorem to characterise
the strict-continuous algebra-homomorphisms for some Banach spaces. In these cases,
some results are obtained, providing a better understanding of the problem than in the
analogous case for the norm topology. As an application, we present some results on
composition homomorphisms between algebras of type H°° .

Throughout this paper, E will denote an arbitrary complex Banach space, E* will
be its dual and U the open unit ball of E. 7i°°(U) will denote the function space of all
homomorphic bounded functions on U. For any non-negative integer n, V(nE) will be
the space of continuous n-homogeneous polynomials on E. Two important subspaces
of V(nE) are Vf{

nE) and Vc(
nE) : Vf(

nE) is generated by {/n: / (E E*} and Vc{
nE)

is its completion with respect to the topology of uniform convergence on the unit ball.
For details on the theory of homomorphic functions we refer to [7].
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1. TOPOLOGICAL PROPERTIES OF THE STRICT TOPOLOGY

DEFINITION 1: Let U be the open unit ball in E. Consider Cf(U)

= {/: U -» [0, oo), / is continuous, bounded}. We define K(U) = {k G C%{U): for
every e > 0 there exists r G (0, 1) such that k(z) < e if z G U \ rU}. Each k G K{U)

defines a seminorm in H°°{U), pk(f) = sup \k(z)f(z)\ for every / G H°°{U). The

strict topology /3 is the topology in 7io°(i7) induced by the family {pk- k G K(U)}.

For finite dimensional Banach spaces this definition coincides with the strict topol-
ogy introduced by Buck in [6]. For a more general discussion in the one-dimensional
case, see [18]. In [15], this topology is used for arbitary connected open sets in E such
that T-C°°(U) is infinite-dimensional.

We pay attention to the completeness of T-C°°(U) endowed with the strict topology.

THEOREM 2 . The space H°°{U) with the strict topology is complete.

PROOF: Choose an arbitrary /3-Cauchy net (/-,,) in 'HC°(U). Since the space of all
holomorphic functions with the compact-open topology, {T~L{U), To), is complete (see,
for example [7, 16.13]), there exists / € H(U) so that (/7) converges to / in the
topology To . We claim that / is also bounded. Otherwise, for every n G N there exists
zn G U such that |/(zn)| > n2 • Then the set {zn: n ^ 1} has no adherent points
in U and is a closed discrete subset of U. Define k G K(U) such that k(zn) = 1/n
(such a choice is possible because U is normal). Since (k • / 7 ) is a uniformly Cauchy
net, for e > 0 there exists 70 such that the pointwise limit of the net, k • f, satisfies
\k(z)f-l0(z) — k(z)f(z)\ ^ e for all z G U. This contradicts the boundedness of k and
/Y0 proving that / is bounded. Now we have a /3-Cauchy net (/7) C H°°(U) which
is ro-convergent to / G 7i°°(U). If we consider the base of ^-closed neighbourhoods
of zero {/ G 7i°°(U): Pk{f) *S e}e>o,k€K(U)t by the Bourbaki Robertson theorem [13,
p.210], (f-f) is /3-convergent to / , and (H°°(^), /?) is complete. D

Recall that for an arbitrary open set U in E, a subset V C U is said to be U-

bounded if V is bounded and dist (V, E \ U) > 0. It is easy to check that the topology
T(, of uniform convergence on {/-bounded sets is weaker on H°°(U) than the strict
topology and the latter is weaker than the topology induced by the sup-norm, IHIOQ.

In fact, it is proved in [16] that the strict topology is the mixed topology ~f[rb, ||-Hool >
obtained by mixing the topologies T(, and the norm. (See [8] for an analogous discussion
in the one-dimensional case). The general theory on mixed topology provides these
important facts:

(i) The strict bounded sets of 7i°°(U) are the norm bounded sets,
(ii) On norm bounded sets, the strict and Tf, topologies agree,

(iii) If F is a locally convex space and T: H°°(U) —> F is linear, then T is
/?-continuous if and only if T\B is rj-continuous for all B norm-bounded
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set in H°°(U).
(iv) A sequence in H°°(U) is /^-convergent to zero if, and only if, it is norm-

bounded and Tf, convergent to zero. (See [16, Proposition 4]).

Nevertheless, these three topologies are always different, as the next result shows.

PROPOSITION 3 . The space H°°{U) endowed with the strict topology is not
metrisable. Thus, the strict topology and the norm do not agree. Furthermore, the rj
topology is strictly weaker than the strict topology.

PROOF: Choose / 6 H°°{U) such that H/H^ = 1. Now, if we define the set
A = {/n + n / m : n, TO G N}, then 0 is adherent to A, but no sequence in A converges
to 0. (See [18, Proposition 3.12); here, the same argument applies, recalling that for a
given r in (0.1), there exists s in (0, 1) such that |/(z)| < s if ||z|| < r, as [17] shows).

Now, if we consider a holomorphic function / , bounded on rU for any r in (0, 1),
but unbounded on U , the sequence of partial sums of its Taylor series at the origin is rj
convergent to / (see [12, Proposition 1]). This sequence is not a Cauchy sequence for
the strict topology, since (7i°°(U), /?) is complete, but the sequence is not bounded. D

Since U is a bounded set, then the dual space E* and the rest of the spaces of
continuous polynomials can be regarded as subspaces of 7i°°(J7).

PROPOSITION 4 . The strict topology on V(nE) coincides with the norm
\\-\\-p(nE) on V{nE), when V(nE) is regarded as a subspa.ce o{ H°°{U).

PROOF: It follows from [5, Lemma 2. ii] that a net in \V{nE), IHI-p(ng)) converges
to zero if and only if there exists an open bounded set V in E such that the net tends
to zero uniformly on V. Since we can define k in K(U) with k\ry = 1 for a given r
in (0, 1), then the strict-topology and the norm are equivalent on V(nE). u

It follows from Proposition 4 that (7^°°({7), (3) is not reflexive, whenever E is not
reflexive. In fact, (E*, \\-\\g,) is a closed non-reflexive subspace of (H°°(U), ft).

The convergence condition for sequences of homogeneous polynomials of increasing
degree contrasts with the preceding result for polynomials of fixed degree.

PROPOSITION 5 . Let U be the open unit ball of E. For each n G N, consider
Pn 6 V{nE). Then, the sequence (Pn)™=1 C H°°(U) is strict convergent to zero if and
only if {H-Pnlloo : n ^ 1} is bounded.

PROOF: The forward implication follows easily from the remark (i) before Propo-
sition 3. Conversely, suppose {Pn: n ^ 1} is U-H^-bounded. It is enough to show (see
remark (iii) above) that, for a fixed ro < 1, the sequence (Pn) converges uniformly to
zero on TQU . And this follows from the boundedness of (Pn), as the degree increases. D

From the Cauchy inequalities and Proposition 5 we obtain the following Corollary.

https://doi.org/10.1017/S0004972700016312 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016312


252 J. Ferrera and A. Prieto [4]

COROLLARY 6 . Let U be the open unit ball of E and f £ H°°{U). Then the

sequence ( (dnf(0) )/(n!) ) is strict convergent to zero.

PROPOSITION 7 . Let U be the open unit ball of E. For each n £ N, the space

(v{nE), IHl7,(nB)) is a closed complemented subspace of (H°°(U), /?).

PROOF: It is clear that the mapping Hn: (H°°{U), /?) -» (V{nE), /3innE)) de-

fined by IIn( / ) = (dnf(0))/(n\) is a projection onto V(nE). In order to show that IIn

is continuous, we choose a net (fa)a /^-convergent to zero in 7i°°(U). For r £ (0, 1),

the net (fa\ru) is uniformly convergent to zero. The Cauchy inequalities and Propo-

sition 4 prove that IIn is continuous and, hence, (V(nE), |HI-p(»E)) is a closed com-

plemented subspace. D

We give a characterisation of the functions in H°°(U) having convergent Taylor
series for the strict topology.

PROPOSITION 8 . Let U be the open unit ball of E. Given f £ H°°{U),

for each n £ N, let fn{z) = £ (dmf(0))/(m\). Then the sequence ( / n ) n > 0 is f3-
m=0 ^ ' "

convergent to f if and only if (/n)n>o JS uniformly bounded.
PROOF: The forward implication is obvious. Conversely, if (/n) is uniformly

bounded, we need only show that (/n) is Tj-convergent to / (comment (iv) above). It
is clear, by [12, Proposition 1]. D

The next example proves the existence of functions in H°°(U) having non-
convergent Taylor series.

EXAMPLE 9: Let D be the open unit disk in C. For each n £ N, consider

Ln: n°°(D) -» C defined by Ln(f) = f) a{, when f(z) = f^ anz
n, z £ U. Then Ln

«=o t=o
is a linear, continuous mapping, for all n. Nevertheless, taking the polynomial

( z z2 zm zm+1 z2m\
= — + _ + ... + _ . ... ,

\77i m — 1 1 1 m )
it is shown (see [14, p.49]) that (gm) is uniformly bounded, but Lm(gm) > logm.
Thus, (||-tm||oo)m tends to infinity. Then, using the Uniform Boundedness Principle,
there exists / £ 7i°°(U) with sup |L n ( / ) | = oo. It follows that the partial sums of the

neN
Taylor series of / are not bounded. D

This example can be transferred to the unit ball of any Banach space.
We study now the problem of density of the family of polynomials. For the classical

spaces of holomorphic functions (such as the space ~H(U) of all holomorphic functions,
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or the space Hb(U) of all holomorphic functions which are bounded over {/-bounded
sets) it is shown that the space of polynomials is dense with respect to their natural
topologies (compact-open and r&, respectively). On the other hand, the completion
of the class of all the polynomials with respect to the uniform topology (which is the
classical topology for ~H°°(U)) is just the space of all bounded holomorphic functions
which can be extended continuously to the closed ball. Our last aim in this section will
be to describe the space of bounded holomorphic functions as the completion of the
space of all the polynomials with respect to the strict topology.

LEMMA 1 0 . Let U be theopen unit ballotE. Given f € W°{U) and A 6 (0 ,1 ) ,
let f\{z) = f(Xz). Then the net (f\) converges to f in the strict topology, when A
tends to 1.

PROOF: For every A e (0, 1), WfxW^ ^ H/llo,- Thus, it is enough to show that
the net (f\) converges to / uniformly on rU, for all r 6 (0, 1) (see the comment
(ii) preceding). And this follows from the Cauchy inequalities and a standard dilation
argument. D

THEOREM 1 1 . Let U be the open unit ball of E. The space of polynomials on
E, V{E), is dense in H°°(U) with respect to the strict topology /3. Hence, H°°{U) is
the completion of V(E) with respect to the strict topology.

PROOF: Fix / G H°°(U). The function fx denned by fx(z) = f(\z) is holo-
morphic and bounded in U\ = (1/\)U, for all A € (0, 1). The radius of bound-
edness of f\ at 0 is I/A (see [7, p.219]) and the Taylor series of f\ at 0 con-
verges uniformly to f\ on U. Now, fixing e > 0 and ib £ K{U), there exists
Ao G (0,1) such that Pk(f — fx0) < e/2. Given Ao, there exists n0 £ N such

that •OV
z&U

/ n 0

< e/2 sup k(z). Therefore, the polynomial

P(z) = ( E (<*VAO(0)) / (* ! ))(*) satisfies pfc(/ - P) < e. This completes the proof. D

2. THE ALGEBRA {H°°{U),I3)

If the vector space H°°(U) is endowed with the pointwise product, it turns into an
algebra. We obtain this basic result:

PROPOSITION 12. The space H°°(U) endowed with the strict topology is a
commutative topological algebra with unity. Furthermore, its maximal closed ideals
are the kernels of the complex valued strict continuous homomorphisms.

In the following, Wf will denote the space H°°(U), where U is the open unit ball
of E. In the next results, we shall use the extension of functions in Ti^ to the unit
ball of the bidual, given by [9], and the extension to the bidual of polynomials in E
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(see [4]). For / £ Tig" and P £ V(E), we shall denote by / and P the corresponding
extensions to BE*'{0, 1) and E** . Here is a class of strict-continuous homomorphisms.

PROPOSITION 1 3 . Let E be a Banach space. For every z in BE**(0, 1), the
homomorphism defined by <f>z(f) = f(z), for all f £ Hg , is strict continuous.

PROOF: Let (fa) C W|? be a net strict-convergent to zero. Choose r < 1 such
that z £ BE'*(0, r). By [9, Theorem 2] there exists a net (x7) in BE(O, r) which
converges to z in the polynomial-star topology. The fact that (fa\BE(o,r)) is uniformly
convergent to zero together with the fact that for a fixed a, (/a(a;7)) converges to
fa(z) [9, Lemma], yields that (j>z is strict-continuous. u

It is obvious that the ideal Mz = {/ € W|?: f(z) = 0} is a strict closed maximal
ideal, for any z £ BE**(0, 1)- We show the converse for a certain class of Banach
spaces.

PROPOSITION 14 . Let E be a Banach space. For each algebra-homomorphism
4>: I^E —* C there exists a unique z in the closed unit ball of E** such that <j>{P) =
P(z), for all P £ VC(E). Furthermore, if cj> is strict-continuous, then \\z\\ < 1.

PROOF: Since (H|?, IHIOQ) is a Banach algebra, any homomorphism <j>: TCE —> C
is H'll^-continuous. Hence, (J>\E* is ||-||B.-continuous. Thus, there exists a unique
z £ E** such that ^E- = z; but \<f>(f)\ ^ \\f\\B. , for all / £ E*. This shows that

k

\\z\\ < 1. Now we choose P £ Vf(
nE), P = Y,f? w i t h /i> ••-, /* 6 E*; then

* * *=1

HP) = 12 HfD = S ZU?) = P(z)- F r o m t n e n o r m continuity of <j>, it follows that

4>(P) = P{z), for all P £ VC(E). Finally, if <j> is strict-continuous and ||z|| = 1, for each
n £ N, we can choose /„ £ BE'(0, 1) with z(fn) > 1 - 1/n. The sequence ( / " ) n ? 1

contradicts the continuity of <f> and proves that ||z|| < 1. D

The next result follows from Proposition 14 and the strict density of V(E).

COROLLARY 1 5 . Let E be a Banach space such that V(nE) = Vc{
nE), for

all n £ N. Then for every strict-continuous homomorphism <j>: "H^ —» C there exists
z £ BE"(0, 1) sudi that <f>(f) = J{z), for all f £ H^.

The condition in Corollary 15 is satisfied by every finite-dimensional space; in
particular, the strict-continuous homomorphisms on 7i°°(D(0, 1)) are exactly the eval-
uations at points of D(0, 1). Recall that the analogous result for the norm topology
involves the well known Corona problem (see [11] for a discussion).

Consider the cpace Co of all complex sequences which tend to zero. It is known (see
[3]) that V(nc0) = Vc(

nc0) for all n £ N. Hence, every strict continuous homomorphism
on 7"̂ ? is the evaluation at a point of B^oo(0, 1) of the canonical extension given in
[9].
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Let T* be the original Tsirelson space. This space was introduced by Tsirelson in
1973 [19] and provides an important example of a reflexive Banach space not containing
any copy of tv nor co. In [2, Theorem 6], it is proved that V(nT*) is reflexive, for all
n G N. Now, by [1, Theorem 7], it follows that V(nT*) = Vc{

nT*), for all n £ N and
the result can be applied. Since T* is reflexive, the strict-continuous homomorphisms
on H^?, are exactly the evaluations at points of BT*(0, 1).

After considering the scalar-valued homomorphisms, the natural question arises
of describing the strict continuous homomorphisms between algebras of bounded holo-
morphic functions. We claim that these homomorphisms, for certain classes of Banach
spaces, are associated with holomorphic mappings between the underlying unit balls.
We shall say that the algebra homomorphism <f>: WJ? —» Tig5 is a composition homomor-

phism if there exists a holomorphic mapping $ : BE —* Bp*+ such that 4>{f) — f o $ ,
for all / in 'H'p , where / is its canonical extension to Bp** •

PROPOSITION 16 . The composition homomorphism <f>\ H'p -> 7if? associated
with a holomorphic mapping $ : BE —• BF**

 l s continuous for the respective strict
topologies.

PROOF: Since the strict topology in H'p' is the mixed topology 7[TJ,, IHI^], it is
enough to show that a bounded net ( / a ) in Up0 convergent to /o satisfies that the net
(<f>(fa)) in Hf^ converges to <j>(fo) uniformly on every BE{0, r) (0 < r < 1) (see (iii)
in Section 1). This follows from the fact that $(BE(0, r)) is contained in Bp**(0, s),
for some s in (0, 1), by [17], and ( / a ) converges to f0 uniformly on this ball. D

We finish with a converse for certain Banach spaces.

THEOREM 17 . Let E be a Banach space and let F a Banach space such that

each polynomial on F is in Vc[
nE). Then every strict-continuous homomorphism from

"hCp to Kg is a composition homomorphism.

PROOF: Consider <j>: "hCp —* 7^^ a strict-continuous homomorphism. For every x

in BE the evaluation homomorphism Sx, given by b~x(g) — g(x) for all g in W", is
strict continuous. Hence, Corollary 15 assures that for any x in BE there exists a unique
z* in BF.* so that 6X o <j>(f) = f(zT), for all / in Hf. Define $ : BE -»• BF» by
$(z) = zx . Since F* C 'H'p , $ is well-defined. In order to prove that $ is holomorphic,
choose v in F*; its canonical extension v to BF** coincides with its inclusion in F***,
as BF is cr(F**, F*) dense in Bp" . Then ($(«), v) — ?($(x)) = <f>(v)(x) for every x

in BE and « in F*, that is, vo $ is holomorphic in BE for all v in F*. Since F* is
norming in F*** , the Graves-Taylor theorem (see, for example, [7, 14.9]) together with
the Dunford theorem (see [10, Theorem 76]), yields that $ is holomorphic. D
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