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Charged-current reactions

Charged-current interactions are the most frequent and occur in decays, as well as in
particle reactions. They have been analyzed in many books, especially those written
before 1970. Charged-current interactions, especially decays, were instrumental in
establishing properties of the currents. We can classify them according to the degree
of our theoretical understanding. The simplest reactions are purely leptonic. They
are relatively simple to calculate, because the couplings of leptons to currents are
precisely known and, now that the theory is renormalizable, we can include loop
corrections. Some leptonic reactions were presented in Chapter 8. We shall not
study them further.

The next class of reactions consists of the semileptonic ones, which can also
be treated successfully with various theoretical methods. They involve a single
coupling of the currents to hadrons, which can be understood at low energy and/or
at low momentum transfer in terms of form factors. They are also understood at
high energies in terms of the short-distance behavior of the currents. We shall
study several processes in this chapter: deep inelastic scattering and quasi-elastic
scattering.

Non-leptonic interactions are the most difficult to analyze. They do not include
any leptons and involve both strong and weak interactions. The interplay between
the two interactions is still a developing field of research.

11.1 Deep inelastic scattering

High-energy neutrino interactions have been used to probe the inner structure of
protons and neutrons: these studies were crucial for establishing the quark sub-
structure of matter and giving quantitative support to the field theory of quark
interactions (quantum chromodynamics). In Chapter 10 we described the general
structure of the cross sections and some consequences of the scaling phenomenon.
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11.1 Deep inelastic scattering 113

Then we showed that the general features can be explained in terms of the
quark–parton model. Many more properties and correlations with other reactions
have been understood and we discuss them here in greater detail.

11.1.1 Scaling and the charge of the quarks

The electroproduction reactions couple to the charge of the quarks, in contrast to
the neutrino reactions, which couple to the weak isospin. Comparison of the two
processes gives an indication regarding the charge of the constituents.

The electroproduction cross section is

dσ

dQ2 dν
= 4πα2

Q4

∫
dx δ

(
ν − Q2

2Mx

) ∑
i

e2
i [qi (x) + q̄ i (x)]

= 4πα2

Q4

x

ν

∑
i

e2
i [qi (x) + q̄ i (x)], (11.1)

with the normalization chosen to reproduce the Mott cross section. We obtain the
structure function

Fep
2 (x) = x

{
4

9
[u(x) + ū(x)] + 1

9

[
d(x) + d̄(x) + s(x) + s̄(x)

]}
, (11.2)

where u(x), d(x), ū(x), and d̄(x) are the quark distribution functions in the proton.
Similar equations hold for electron–neutron scattering, in which the exchanges
u ↔ d and ū ↔ d̄ take place. The structure function on an isoscalar target is the
average over protons and neutrons,

FeN
2 (x) = x

{
5

18

[
u(x) + ū(x) + d(x) + d̄(x)

] + 1

9
[s(x) + s̄(x)]

}
, (11.3)

where the factor of 5/18 follows directly from the fractional charges of the quarks.
For neutrino-induced reactions the structure functions are expressed in terms of

the quark distributions

Fνp
2 (x) = 2x[qi (x) + q̄ i (x)], (11.4)

Fνp
2 (x) = 2x Fνp

1 (x) (Callan and Gross, 1969), (11.5)

x Fνp
3 (x) = 2x[qi (x) − q̄ i (x)]. (11.6)

For neutrinos the following elementary processes are possible:

νd → µ−u,

νū → µ−d̄;
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114 Charged-current reactions

and for antineutrinos

ν̄u → µ+d,

ν̄d̄ → µ+ū.

We shall assume in this section that the Cabbibo angle is zero, so that scatterings
from strange quarks are neglected. Then we obtain the structure functions

Fνp
2 (x) = 2x[d(x) + ū(x)],

(11.7)
F ν̄p

2 (x) = 2x
[
d̄(u) + u(x)

] = f νn
2 (x)

and, for isoscalar targets,

FνN
2 (x) = x

[
u(x) + d(x) + ū(x) + d̄(x)

]
(11.8)

and

x FνN
3 (x) = x

[
u(x) + d(x) − ū(x) − d̄(x)

]
. (11.9)

Since the strange-quark structure functions s(x) and s̄(x) are relatively small, we
can neglect them and obtain from Eqs. (11.3) and (11.8) the ratio

FeN
2 (x)

FνN
2 (x)

= 5

18
. (11.10)

The ratio measures the average charge of the quarks and it indicates that the charges
of the constituents are fractional. These and other relations have shown that the
constituents of hadrons which couple in deep inelastic scattering carry the quantum
numbers of the quarks.

11.1.2 Spin of the quarks

In the V–A theory all fermions participate in the weak interactions as left-handed
particles and all antifermions as right-handed particles. For antineutrino–quark
scattering, helicity conservation requires that the process in the center-of-mass
frame vanishes at θcm = 180◦ as shown in Fig. 11.1.

The cross section has the angular dependence

dσ ν̄q

d cos θ cm
∝ (1 + cos θcm)2. (11.11)

The center-of-mass angle θcm is related to the laboratory energies by

1 + cos θcm

2
= Eµ

Eν
= 1 − y, (11.12)
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11.1 Deep inelastic scattering 115

Before collision
ν̄ q

J = +1

After collision
µ+ q

J = −1

Figure 11.1. Production of a forbidden configuration by helicity conservation in
antineutrino–quark scattering.

Table 11.1. Angular dependences of the
reactions

Process Jz y Dependence

νq, ν̄q̄ : ⇐
ν

⇒
q 0 1

νq̄, ν̄q : ⇐
ν

⇐
q̄ 1 (1 − y)2

which is easily obtained by evaluating the ratio k ′ · p/(k · p) in the center-of-mass
system. In this pictorial manner we understand the y dependence of the cross
section:

dσ ν̄q

dy
∝ (1 − y)2. (11.13)

A similar study of the reaction

ν + d → µ− + u (11.14)

shows that there is no reason for the cross section to vanish in any direction. In this
way we construct Table 11.1.

The cross sections in terms of the various species attain the form with q(x) and
q̄(x) contributions from spin- 1

2 constituents and k(x) distributions for spin-zero
constituents:

dσνN

dx dy
= G2 M Eν

π
x
[
q(x) + (1 − y)2q̄(x) + (1 − y)k(x)

]
, (11.15)

dσ ν̄N

dx dy
= G2 M Eν̄

π
x
[
(1 − y)2q(x) + q̄(x) + (1 − y)k(x)

]
. (11.16)

The experimental results indicate that the scattering occurs on spin- 1
2 constituents

and that the content of scalar constituents is very small. The y distribution for
antineutrinos is not exactly zero at y = 1 because protons and neutrons contain a
sea of quark–antiquark pairs in addition to their valence quarks. These pairs are
created by the emission of vector particles, the gluons, which also bind the quarks
into hadrons.
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116 Charged-current reactions

11.1.3 Sum rules

In the quark parton model, the distribution functions indicate how the quantum
numbers are distributed within hadrons. Thus integrals of distribution functions
must reproduce the quantum numbers of the target. For instance,

∫ 1
0 s(x)dx gives

the probability of finding a strange quark, with any momentum, within a proton.
Since the proton has zero strangeness,

∫ 1

0
[s(x) − s̄(x)]dx = 0. (11.17)

Similarly we can compute the baryon number and isospin of a proton:

1

3

∫ 1

0

[
u + d − ū − d̄

]
dx = 1 (baryon), (11.18)∫ 1

0

[
(u − d) − (ū − d̄)

]
dx = 1 (isospin). (11.19)

Such relations are known as sum rules and have been determined by combining
data from various processes.

A good example is the Adler (1965) sum rule

SA = 1

2

∫ [
F ν̄p

2 (x) − Fνp
2 (x)

]dx

x
= 1, (11.20)

which follows from the isospin relation in (11.19). The Adler sum rule follows from
current algebra and it must be valid for each value of Q2. In fact, it is a consequence
of the commutator of two isospin charges and as such is very reliable. Experimental
results give the value

SA = 1.08 ± 0.20, (11.21)

which is in good agreement but the error is relatively large.
A fast convergent sum rule is the Gross–Llewellyn Smith (1969) sum rule

∫ 1

0

[
Fνp

3 (x, Q2) + Fνn
3 (x, Q2)

]
dx = 6

[
1 − αs(Q2)

π

]
= 5.4 at Q2 = 3 GeV2

= 5.00 ± 0.16 (experiment). (11.22)

The right-hand side includes first-order QCD corrections. Again the agreement is
very good.
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11.2 Evolution of distribution functions 117

Finally, the integral
∫ 1

0 xq(x)dx gives the fraction of the proton’s momentum
carried by the q quark. Thus

∑
=

∫ 1

0
x
[
u(x) + d(x) + s(x) + ū(x) + d̄(x) + s̄(x)

]
dx = 0.54 (11.23)

is the momentum carried by all the quarks inside the proton. This integral was
determined by combining data from several processes. It is much less than unity,
indicating that the quarks carry one half of the proton’s momentum. The remaining
half must be carried by other particles, which do not interact directly with the
currents. They are the gluons of quantum chromodynamics.

11.2 Evolution of distribution functions

The algebraic relations discussed in this and the previous chapter assumed point-
like constituents within the nucleon. We know from previous advances in physics
that a particle that looks point-like on one resolution scale reveals substructure at
a higher resolution. The scaling phenomenon and the numerous quantum-number
relations revealed a point-like structure, but deviations from scaling indicate the
existence of additional structure. In fact, it has been established that the variation
of the structure functions with Q2 is due to the emission of vector particles: the
gluons. As was mentioned earlier, they carry the other half of the momentum of the
nucleons, that was missing in the momentum sum rule.

The additional structure is introduced by the theory of strong interactions known
as quantum chromodynamics (QCD). There are many indications that each flavor
of quarks comes in three colors: red, white, and blue. The names for the colors
are arbitrary, but the fact that there are three is important. The quarks interact
with each other by the exchange of vector bosons that change the color of the
quarks.

The theory of the strong interaction – QCD – is a non-Abelian gauge theory
based on the group SU(3)c. Each quark species – up, down, strange, . . . – forms a
triplet in color space and has a coupling gs to the eight gluons, Gα

µ, which belong
to the adjoint representation of SU(3) color. We write the color triplet as

q(x) =
⎛
⎝ qr

qw

qb

⎞
⎠

and the Lagrangian

LQCD = q̄(x)iγ µ

[
∂µ + i

2
gsλ

αGα
µ(x)

]
q(x), (11.24)
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118 Charged-current reactions

with λα the Gell-Mann matrices of SU(3)c and Gα
µ(x) with α = 1, 2, . . ., 8 the

eight gluons. There is no mass term for the gluons that leaves the color sym-
metry exact. QCD makes dramatic predictions. The first one concerns the coupling
constant.

In field theories coupling constants and other observables are modified by higher-
order corrections that involve loops. Many loop diagrams are divergent, which
demands special handling of them. When all the infinities from loop diagrams
are absorbed into the definition of couplings, masses, and other parameters of the
original Lagrangian, we say that the theory is renormalizable. In these theories we
can calculate physical observables with high precision. QCD and the electroweak
theory are renormalizable. It is beyond the scope of this book to describe or prove
renormalization. Instead, we shall describe a few cases of higher-order corrections
in order to demonstrate the methods entering these calculations. Furthermore, we
describe some properties of field theories that have significant impact on properties
of weak interactions.

One quantity modified by loop corrections is the strong coupling constant gs.
The infinities introduced by higher orders are absorbed into the redefinition of
the coupling constant. Since the corrections involve the addition of infinite quan-
tities, the numerical value of the coupling is unknown and must be determined
experimentally. Thus αs is measured at a specific reference scale µ0, known as
the renormalization point. In many cases the reference scale µ is identified with
the momentum flowing through the vertex. The arbitrariness of the reference point
leads to a differential equation – the renormalization-group equation. To be specific,
the change of α(µ) = g2

s /(4π ) with respect to the reference point µ satisfies the
equation

µ
dα

dµ
= β(α), (11.25)

where β(α) represents the sum of higher-order corrections and is of the form

β(α) = β0α
3 + O(α5). (11.26)

The constant β0 and higher terms are determined in perturbation theory. The solution
is obtained as ∫ α(µ)

α(µ0)

dα

β(α)
= ln

(
µ

µ0

)
(11.27)

or, keeping the leading term on the right-hand side of Eq. (11.26), we obtain

α(µ) = α(µ0)

1 + β0α(µ0)ln
(
µ2/µ2

0

) . (11.28)
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11.2 Evolution of distribution functions 119

This states that, knowing the coupling constant at the reference scale µ0, we can
predict its value at another scale µ. The coupling constant is no longer a constant
but runs with momentum; hence the name running coupling constant.

An important property of QCD is that the value of β0 = 11 − 2
3 Nf, with Nf

the number of generations, is positive. As the momentum increases, the coupling
constant decreases and, at very high momentum, αs(p) is so small that perturbation
theory is applicable. This provides a justification of scaling and of the parton model.
It also goes beyond scaling, by predicting modifications introduced by the emission
of gluons. The corrections are functions of Q2 producing predictable violations of
scaling. The corrections have been studied extensively in perturbation theory and
compared with many experimental results.

There is an extensive list of articles in which violations of scaling have been
computed and are discussed in detail. Experimentally, the changes have been ob-
served with the structure functions increasing for small x as functions of Q2 and
decreasing for x > 0.4.

The second prediction concerns the production of gluons, which are emit-
ted by the accelerating particles. The quarks produced materialize into hadrons
and produce jets of particles. Similarly, the gluons also produce jets of hadrons.
Consequently we expect some reactions to produce two jets (from qq̄ pairs) and
others three jets (from qq̄g production). Three-jet events have been observed in
electron–positron-annihilation reactions. The production of gluons implies that
they also exist within hadrons and are responsible for the missing momentum
in the sum rule in Eq. (11.23). Consequently the experimental results have been
analyzed with the inclusion of an additional distribution function for the gluons.
A dramatic property of the gluon distribution function is its rapid increase at
small x .

For small momenta the coupling constant grows and becomes very big, making
a perturbative description impossible. It is customary to denote by �2 the scale of
Q2 at which the denominator becomes zero. This happens at

�2 = µ2
0e−1/[β0α(µ0)]. (11.29)

It follows now that the coupling constant can be rewritten

α(µ) = 1

β0 ln(µ2/�2)
. (11.30)

We can think of � as the boundary between the region where quarks and gluons
appear as quasi-free particles and the world of bound states like protons, pions,
etc. At momenta smaller than �, the strong interaction becomes so strong that the
quarks cannot come out as free particles, but remain confined within hadrons. This
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120 Charged-current reactions

property of confined quarks has not been proved yet, and thus it is difficult to judge
which among several approaches may ultimately be the most productive.

It is evident that QCD and its consequences form an extensive and exciting topic,
which is, however, beyond the scope of this book. We shall have occasion to return
to QCD in Section 15.6, where we discuss the effective Hamiltonian for low-energy
weak interactions. As a last topic concerning the charged-current interactions we
discuss in the next section quasi-elastic scattering.

11.3 Quasi-elastic scattering

In contrast to deep inelastic scattering, quasi-elastic scattering gives information
on the static properties of the proton and the neutron. In fact, the first experiments
with neutrino beams measured the reactions shown in Fig. 11.2:

ν(k) + n(p) → µ−(k ′) + p(p′), (11.31)

ν̄(k) + p(p) → µ+(k ′) + n(p′), (11.32)

which are still interesting on several accounts. For instance, we would like to deter-
mine their form factors accurately and check their relation to the electromagnetic
form factors. Furthermore, the quasi-elastic cross sections reach constant values for
neutrino energies greater than 2.0 GeV. This property has been used for measuring
the flux of neutrino beams and is still useful. Low-energy neutrino interactions re-
cently started being used efficiently for studying neutrino oscillations. For all these
reasons we present in this chapter an explicit calculation.

For low energies relative to the mass of the W boson, interactions of neutrinos
can be written as a leptonic current times a hadronic current:

M = G√
2

ū(k ′)γµ(1 − γ5)u(k)〈p|J+
µ |n〉.

The hadronic current has a complicated structure produced by the motion of the
quarks within hadrons. We define the vector form factors of the charged current as

〈p|V +
µ |n〉 = ū(p′)

(
γµF+

1 + i
σµνqν

2M
F+

2 + qµ

M
F+

3

)
u(p). (11.33)

Denoting, as before, the isovector form factor of the electromagnetic current by
FV

1 , we obtain

F+
1 (q2) = −2FV

1 (q2). (11.34)

The factor 2 comes from the normalization of V +
µ = V 1

µ + iV 2
µ and the

Clebsch–Gordan coefficients, which are
√

2
3 for the charged current and −

√
1
3 for
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n
pµ

p
p µ

W, qµ

l

k µ

νl

kµ

Figure 11.2. Quasi-elastic scattering.

the electromagnetic current. For the following calculation it is convenient to write
the hadronic current in a modified form:

〈p|J+
µ |n〉 = ū(p′)

[
gVγµ + fV

(p + p′)µ
2M

+ hV
qµ

2M

+ gAγµγ5 + fAiσµν

qνγ5

2M
+ hA

qµγ5

2M

]
u(p), (11.35)

where we left out the factor cos θc arising from the Cabibbo angle. In reducing
(11.33) to (11.35) we used the Gordon decomposition formula, which gives the
relations gV = F+

1 + F+
2 , fV = −F+

2 , and F+
3 vanishes as explained in Chapter 2.

The term hAqµγ5 contributes to the cross section terms proportional to the lepton
masses and will be omitted. In Chapters 1 and 2 we discussed the fact that charge
conjugation and time-reversal together require hV and fA to vanish. On eliminating
these three form factors, we obtain a simplified form for the matrix element which
we shall use in this section:

〈p|J+
µ |n〉 = ū(p′)

[
gVγµ + fV

(p + p′)µ
2M

+ gAγµγ5

]
u(p). (11.36)

The electromagnetic form factors are known from electron-scattering experiments
on protons and neutrons. Similar values of the axial form factor at low values of
Q2 have been measured in β-decay. We shall use this information at the end of this
section.

The calculation of the cross section is now straightforward but tedious. Since
the calculation of quasi-elastic scattering is not easily available in books, I give a
few intermediate steps. There is a second reason: the elastic scattering for neutral
currents has a similar functional form that is obtained by replacing the form factors
by those of neutral currents. Studies of quasi-elastic scattering frequently use a
formula in terms of Mandelstam variables (Llewellyn Smith, 1974). We derive
here two more formulas that are convenient for taking limits in specific kinematic
regions.

https://doi.org/10.1017/9781009402378.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402378.012


122 Charged-current reactions

The kinematics for the process are simplest in the laboratory frame where the
nucleon is at rest:

p · k = p′ · k ′ = M E,

p · k ′ = p′ · k = M E + q2

2
,

k · k ′ = m2
µ

2
− q2

2
, (11.37)

p · p′ = M2

x
− q2

2
,

Q2 = 2Mν = 4E E ′ sin2

(
θ

2

)
.

The square of the hadronic tensor is obtained from (11.36)

Hµν = (
g2

V + g2
A

)
(pµ p′

ν + pν p′
µ − gµν p · p′) − 2igVgAεµνγ δ pγ p′δ

+ M2
(
g2

V − g2
A

)
gµν +

(
f 2
V

p · p′ + M2

4M2
+ fVgV

)
(pµ + p′

µ)(pν + p′
ν).

(11.38)

The first line of this equation follows from Eq. (8.37) and the remaining ones from
a straightforward calculation. The similarities between Section 8.3 and the present
one can be used for comparisons. For instance, the inner product of the leptonic
tensor in Eq. (8.36) with Hµν leads to a matrix element that can be expressed in
terms of the scattering angle. From the matrix element and the phase-space integral
we arrive at the differential cross section

dσ

dE ′ = G2
F

2π
M

E ′

E

{ (
g2

V + g2
A

)[
1 + Q2

2M2
sin2

(
θ

2

)]
+ (

g2
A − g2

V

)
sin2

(
θ

2

)

− 2gAgV

(
E + E ′

M

)
sin2

(
θ

2

)
+

[
f 2
V

(
1 + Q2

4M2

)
+ 2 fVgV

]
cos2

(
θ

2

)}
.

(11.39)

Several limiting cases are now interesting. For gA = 0 the cross section depends
only on the vector terms and the functional form agrees with the Rosenbluth formula.
Differences between electroproduction and neutrino-induced formulas arise from
the photon propagator and the coupling constants.
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Alternatively, we may combine the gV and gA terms and obtain another expres-
sion for the cross section:

dσ

dE ′ = G2
F M

4π

{
(gV − gA)2 + (gV + gA)2

(
E ′

E

)2

+ (
g2

A − g2
V

) Mν

E2

+ 1

2

[
f 2
V

(
1 + Q2

4M2

)
+ 2 fVgV

][(
1 + E ′

E

)2

− Q2

E2

(
1 + Q2

4M2

)] }
.

(11.40)

For fV = 0 the interaction of the neutrino has the same functional form as neutrino–
electron scattering and the expression above agrees with Eq. (8.43).

The two equations for quasi-elastic scattering presented already are convenient
for taking specific limits. It is customary, however, to use another formula, which
expresses the differential cross section in terms of Mandelstam variables s, u, t =
q2 (Llewellyn Smith 1974). Most recent analyses use it and have been able to
account for the experimental data in terms of three form factors. The vector form
factors are related to those measured in electromagnetic reactions. The axial form
factor is parametrized

gA(q2) = gA(0)(
1 − q2/M2

A

)2 , (11.41)

with gA(0) = 1.26 and MA = 1.00 ± 0.05 GeV/c2 (its precise value is still being
debated among the experts).
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