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Abstract This paper first studies the multiplicity of normalized solutions to the non-autonomous
Schrödinger equation with mixed nonlinearities−∆u = λu+ h(εx)|u|q−2u+ η|u|p−2u, x ∈ RN ,∫

RN |u|2 dx = a2,

where a, ε, η > 0, q is L2-subcritical, p is L2-supercritical, λ ∈ R is an unknown parameter that appears
as a Lagrange multiplier and h is a positive and continuous function. It is proved that the numbers of
normalized solutions are at least the numbers of global maximum points of h when ε is small enough. The
solutions obtained are local minimizers and probably not ground state solutions for the lack of symmetry
of the potential h. Secondly, the stability of several different sets consisting of the local minimizers is
analysed. Compared with the results of the corresponding autonomous equation, the appearance of the
potential h increases the number of the local minimizers and the number of the stable sets. In particular,
our results cover the Sobolev critical case p = 2N/(N − 2).
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1. Introduction and main results

In this paper, we study the multiplicity and stability of normalized solutions to the
non-autonomous Schrödinger equation with mixed nonlinearities:−∆u = λu+ h(εx)|u|q−2u+ η|u|p−2u, x ∈ RN ,∫

RN |u|
2 dx = a2,

(1.1)
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2 X. Li, L. Xu and M. Zhu

where N ≥ 1, a, ε, η > 0, 2 < q < 2 + 4
N < p

{
< +∞, N = 1, 2,

≤ 2∗ := 2N
N−2 , N ≥ 3,

and λ ∈ R is

an unknown parameter that appears as a Lagrange multiplier. The function h satisfies
the following conditions:
(h1) h ∈ C(RN ,R) and 0 < h0 = infx∈RN h(x) ≤ maxx∈RN h(x) = hmax;
(h2) h∞ = lim|x|→+∞ h(x) < hmax;
(h3) h

−1(hmax) = {a1, a2, . . . , al} with a1 = 0 and aj 6= ai, if i 6= j.
A solution u to the problem (1.1) corresponds to a critical point of the functional:

Eε(u) :=
1

2

∫
RN
|∇u|2 dx− 1

q

∫
RN

h(εx)|u|q dx− η

p

∫
RN
|u|p dx, (1.2)

restricted to the sphere:

S(a) := {u ∈ H1(RN ) :

∫
RN
|u|2 dx = a2}.

It is well known that Eε ∈ C1(H1(RN ),R) and

E′
ε(u)ϕ =

∫
RN
∇u∇ϕdx−

∫
RN

h(εx)|u|q−2uϕdx− η
∫
RN
|u|p−2uϕdx,

for any ϕ ∈ H1(RN ).
One motivation driving the search for normalized solutions to Equation (1.1) is the

nonlinear Schrödinger equation:

i
∂ψ

∂t
+∆ψ + g(|ψ|2)ψ = 0, (t, x) ∈ R× RN . (1.3)

Searching for standing wave solution ψ(t, x) = e−iλtu(x) of Equation (1.3) leads
to Equation (1.1) for u if g(|s|2)s = h(εx)|s|q−2s+ η|s|p−2s. Since the mass

∫
RN |ψ|

2 dx
is preserved along the flow associated with (1.3), it is natural to consider the L2-norm
of u as prescribed. Moreover, the variational characterization of normalized solutions is
often a strong help to analyse their orbital stability, see [7, 10, 33, 34] and the references
therein.
In the study of normalized solutions to the Schrödinger equation:

−∆u = λu+ |u|p−2u, x ∈ RN , (1.4)

the number p̄ := 2 + 4/N , labelled L2-critical exponent, is a very important number,
because in the study of Equation (1.4) using variational methods, the functional

J(u) :=
1

2

∫
RN
|∇u|2 dx− 1

p

∫
RN
|u|p dx, u ∈ H1(RN ),

is bounded from below on S (a) for the L2-subcritical problem, i.e., 2 < p < 2 + 4/N .
Thus, a solution of Equation (1.4) can be found as a global minimizer of J |S(a),
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Multiplicity and stability of solutions to schrödinger equation 3

see [32, 36]. While for the L2-supercritical problem, i.e., 2 + 4/N < p < 2∗, J |S(a) is
unbounded from below (and from above). Related to this case, a seminal paper due
to Jeanjean [17] exploited the mountain pass geometry to get a normalized solution,
see [3, 4, 8, 14, 16, 20, 21] for more results about problems with unbounded functional. In
the purely L2-critical case (i.e., p = 2+4/N), the result is delicate. Recently, Soave [33, 34]
considered the Schrödinger equation with double power form nonlinearity:

−∆u = λu+ µ|u|q−2u+ |u|p−2u, x ∈ RN . (1.5)

Under different ranges of p and q, they investigated the geometric characteristics of the
functional corresponding to Equation (1.5) and studied the existence, multiplicity, orbital
stability and instability of the normalized solutions, see [2, 18, 19, 23, 35, 39] for more
results. The multiplicity of normalized solutions to the autonomous Schrödinger equation
or systems has also been considered extensively at the last years, see [2, 3, 5, 12, 14, 16,
19–21, 27, 28].
As to the non-autonomous Schrödinger equation:

−∆u+ V (x)u = λu+ f(u), x ∈ RN , (1.6)

under different assumptions on V and f, the existence of normalized solutions to (1.6)
has been studied by many researchers. Ikoma and Miyamoto [15] and Zhong and Zou
[43] considered Equation (1.6) with general L2-subcritical nonlinearities by applying
the standard concentration compactness arguments, see also [24, 30, 37] for results
to Equation (1.6) with special L2-subcritical nonlinearities f(u) = |u|p−2u. See [25, 30]
for results to Equation (1.6) with special L2-critical nonlinearities, [6, 29, 30, 37] for
results to Equation (1.6) with special L2-supercritical nonlinearities, and [11] for results
to Equation (1.6) with general L2-supercritical nonlinearities. In addition, the orbital
stability of the set consisting of the normalized ground state solutions to Equation (1.6)
was studied [6, 15]. There are relatively few studies about the mixed problem:

−∆u+ V (x)u = λu+ µ|u|q−2u+ |u|p−2u, x ∈ RN . (1.7)

Li and Zhao [24] studied the existence and orbital stability of normalized ground
state solutions to Equation (1.7) for q is L2-subcritical and p is L2-critical. When
p = 2N

N−2 , Kang and Tang [22] studied the existence of normalized ground state solu-

tions to Equation (1.7) in each of these cases 2 < p < 2 + 4
N , p = 2 + 4

N and

2+ 4
N < p < 2N

N−2 . Moreover, the strong instability of such solutions was also studied for

the case 2+ 4
N ≤ p <

2N
N−2 . As to the studies about the multiplicity of normalized solutions

to the non-autonomous Schrödinger equation, Yang et al. [42] studied Equation (1.6)
with f being L2-subcritical and satisfying Berestycki–Lions type conditions. Alves [1]
considered the multiplicity of normalized solutions to

−∆u = λu+ h(εx)f(u), x ∈ RN , (1.8)

with f being L2-subcritical. As far as we know, there are no studies about multiplicity of
normalized solutions to non-autonomous Schrödinger equation with mixed nonlinearities.
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4 X. Li, L. Xu and M. Zhu

In this paper, motivated by [1], we study the multiplicity of normalized solutions to
Equation (1.1).
To state the main results, let us first introduce some necessary notations. For r ≥ 1,

the Lr-norm of u ∈ Lr(RN ) is denoted by ‖u‖r. For every N ≥ 3, there exists an optimal
constant S > 0 depending only on N such that

S‖u‖22∗ ≤ ‖∇u‖
2
2, ∀u ∈ D1,2(RN ), (Sobolev inequality), (1.9)

where D1,2(RN ) denotes the completion of C∞
c (RN ) with respect to the norm ‖u‖D1,2 :=

‖∇u‖2. Let

2 < t <

{
∞, N = 1, 2,

2∗, N ≥ 3
and γt :=

N

2
− N

t
.

The Gagliardo–Nirenberg inequality (see [40]) says that there exists an optimal
constant CN,t > 0 depending on N and t such that

‖u‖t ≤ CN,t‖u‖
1−γt
2 ‖∇u‖γt2 , ∀u ∈ H1(RN ). (1.10)

Note that if we let CN,2∗ := S−1
2 , then (1.9) and (1.10) can be written in a unified form:

‖u‖t ≤ CN,t‖u‖
1−γt
2 ‖∇u‖γt2 , 2 < t

{
<∞, N = 1, 2,

≤ 2∗, N ≥ 3.
(1.11)

Let p and q be as in Equation (1.1) and set

B :=
pγp − qγq
2− qγq

(
2− qγq
pγp − 2

) pγp−2
pγp−qγq

(
CqN,q
q

) pγp−2
pγp−qγq

(
CpN,p
p

) 2−qγq
pγp−qγq

. (1.12)

We make the following assumptions on hmax, η and a:

(
hmaxa

q(1−γq)
) pγp−2
pγp−qγq

(
ηap(1−γp)

) 2−qγq
pγp−qγq <

1

2B
, (1.13)

and (
hmaxa

q(1−γq)
) 1
pγp−qγq η

N−2
4 − 1

pγp−qγq

≤

 (2− qγq)CqN,q2∗S
2∗
2

q(p− 2)


−1

pγp−qγq

S
N
4 .

(1.14)

The multiplicity result of this paper is as follows.
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Theorem 1.1. Let N, ε, a, η, p, q, h be as in Equation (1.1), hmax, a and η satisfy con-
dition (1.13). If p = 2∗, we further assume that Equation (1.14) holds. Then, there exists
ε0 > 0 such that Equation (1.1) admits at least l couples (uj , λj) ∈ H1(RN )× R of weak
solutions for ε ∈ (0, ε0) with

∫
RN |uj |

2 dx = a2, λj < 0 and Eε(uj) < 0 for j = 1, 2, . . . , l.

Remark 1.2. We make some notes on conditions (1.13) and (1.14):
(1) In studying the normalized solutions to the autonomous Schrödinger equation (1.5)

with mixed nonlinearities q < 2+ 4
N < p, the first step is to study the lower bound function

of the functional to the problem (1.5) and then assume the maximum of the lower bound
function is positive, see [18, 33, 34] for more details. In our non-autonomous problem (1.1),
we also obtain a lower bound function ga(r) for the functional Eε(u) and the condition
(1.13) is added just to guarantee the maximum of ga(r) is positive (see § 2) so that we
can truncate the functional Eε(u) and obtain the local minimizer of the functional with
negative energy. So in some sense, the condition (1.13) is very weak.
(2) When p = 2∗, the condition (1.14) is added for technical reasons in order to obtain

the PS condition for the truncated functional Eε,T (u) (see Lemmas 4.4) and it can be
weakened if we can give the explicit expression of R0 (see Lemma 4.4).

To prove Theorem 1.1, we follow the arguments of [1] (see also [9]). In [1], multiple
solutions to the problem (1.8) are perturbed from the global minimizer of the functional
J̃ |S(a) corresponding to the limit problem:

−∆u = λu+ µf(u), x ∈ RN . (1.15)

There the arguments depend on the existence of a global minimizer and the relative
compactness of any minimizing sequence of the functional J̃ |S(a). While in our problem
(1.1), the appearance of the L2-supercritical term η|u|p−2u implies that the functional to
the limit problem:

−∆u = λu+ µ|u|q−2u+ η|u|p−2u, x ∈ RN , (1.16)

with q < 2+ 4/N < p is unbounded from below (and from above). In view of the studies
of [18, 33], we know that the functional in this case has a local minimizer. So we try to
perturb multiple solutions to Equation (1.1) from the local minimizer of the limit problem
(1.16). If we restrict the limit functional to a bounded region to obtain the local minimizer
as did in articles [18, 33], we cannot obtain the connection of the functional to Equation
(1.1) and the limit functional to Equation (1.16) for the appearance of the potential. To
avoid this difficulty, we employ the truncated skill used in [2, 31], and then we can isolate
the local minimizer and finally obtain the multiplicity of normalized solutions to the
problem (1.1). The application of truncated functions and the appearance of the Sobolev
critical exponent p = 2∗ make the analysis challenging. In [2], the authors studied the
multiplicity of normalized solutions to the autonomous Schrödinger equation (1.16) with
q < 2 + 4/N < p = 2∗ in the radially symmetric space H1

rad(RN ) by using truncated
skill and genus theory. Note that our problem (1.1) is non-autonomous and not radially
symmetric, so their method does not work in our problem.
We also consider the stability of the solutions obtained in Theorem 1.1. For this aim,

we give the definition of stability.
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6 X. Li, L. Xu and M. Zhu

Definition 1.3. A set Ω ⊂ H1(RN ) is stable under the flow associated with the
problem: i∂ψ∂t +∆ψ + h(εx)|ψ|q−2ψ + η|ψ|p−2ψ = 0, t > 0, x ∈ RN ,

ψ(0, x) = u0(x)
(1.17)

if for any θ > 0 there exists γ > 0 such that for any u0 ∈ H1(RN ) satisfying

distH1(RN )(u0,Ω) < γ,

the solution ψ(t, ·) of problem (1.17) with ψ(0, x) = u0 satisfies

sup
t∈R+

distH1(RN )(ψ(t, ·),Ω) < θ.

Theorem 1.4. Let N, a, η, q, h and ε0 be as in Theorem 1.1, p < 2∗, ε ∈ (0, ε0), (1.13)
hold. Then, Ωi (i = 1, . . . , l) is stable under the flow associated with the problem (1.17),
where Ωi is defined in Equation (5.1). Since the definition of Ωi needs many notations
used in the proof of Theorem 1.1 in § 2–4, so we do not give it here.

Theorem 1.5. Let N, a, η, q, h and ε0 be as in Theorem 1.1, p = 2∗, ε ∈ (0, ε0),
(1.13) and (1.14) hold. Further assume that h(x) ∈ C1(RN ) and h′(x) ∈ L∞(RN ). Then,
Ωi (i = 1, . . . , l) is stable under the flow associated with the problem (1.17).

Remark 1.6. (1) The definition of the sets Ωi (i = 1, . . . , l) seems so natural. They
act like potential wells to attract solutions that start around them and guarantee the
stability, see the proof of Theorem 1.4 in § 5 which is very interesting.
(2) In this paper, the solutions obtained in Theorem 1.1 are local minimizers and they

are probably not ground state solutions, since the potential h does not have symmetry
and thus these l different solutions probably have different energies. So in some sense, we
obtain the stability of local minimizer set Ωi, which is different from most of the existing
results concerning the stability of ground state solutions set (see [18, 26, 33]). Moreover,
by the definition of Ωi, we know Ωi ∩ Ωj = ∅ for i 6= j. So we obtain the stability of l
different sets Ωi (i = 1, . . . , l), which is very different from the existing results about the
stability of the only one set of ground state solutions.
(3) For the limit problem (1.16) with q < 2 + 4/N < p, authors [18, 33] obtained a

normalized local minimizer to (1.16) with negative energy which is also a ground state
solution and the ground state solutions set is stable. In view of the results of this paper, it
seems that the appearance of the potential h increases the numbers of the local minimizers
and the numbers of the stable sets.

This paper is organized as follows. In § 2, we define the truncated functional used in
the study. In § 3, we study the properties of the truncated autonomous functional. In § 4,
we study the truncated non-autonomous problem and give the proof of Theorem 1.1. In
§ 5, we prove the stability results Theorem 1.4.
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Multiplicity and stability of solutions to schrödinger equation 7

Notation: The usual norm of u ∈ H1(RN ) is denoted by ‖u‖. C,C1, C2, . . . denotes any
positive constant, whose value is not relevant and maybe change from line to line. on(1)
denotes a real sequence with on(1)→ 0 as n→ +∞. ‘→’ denotes strong convergence and
‘⇀’ denotes weak convergence. Br(x0) := {x ∈ RN : |x− x0| < r}.

2. Truncated functionals

In the proof of Theorem 1.1, we will adapt for our case a truncated function found in
Peral Alonso ([31], Chapter 2, Theorem 2.4.6).
In what follows, we will consider the functional Eε given by Equation (1.2) restricted

to S (a). By the Sobolev inequality and the Gagliardo–Nirenberg inequality (1.11), we
have

Eε(u) ≥
1

2

∫
RN
|∇u|2 dx− 1

q
hmax

∫
RN
|u|q dx− η

p

∫
RN
|u|p dx

≥ 1

2
‖∇u‖22 −

1

q
hmaxC

q
N,qa

q(1−γq)‖∇u‖qγq2 − η

p
CpN,pa

p(1−γp)‖∇u‖pγp2

= ga(‖∇u‖2),

(2.1)

for any u ∈ S(a), where

ga(r) :=
1

2
r2 − 1

q
hmaxC

q
N,qa

q(1−γq)rqγq − η

p
CpN,pa

p(1−γp)rpγp , r > 0.

Set ga(r) = r2wa(r) with

wa(r) :=
1

2
− 1

q
hmaxC

q
N,qa

q(1−γq)rqγq−2 − η

p
CpN,pa

p(1−γp)rpγp−2, r > 0.

Now we study the properties of wa(r). Note that

tγt


< 2, 2 < t < 2 + 4/N,

= 2, t = 2 + 4/N,

> 2, 2 + 4/N < t ≤ 2∗
and γ2∗ = 1.

It is obvious that limr→0+ wa(r) = −∞ and limr→+∞ wa(r) = −∞. By direct
calculations, we obtain that

w′
a(r) = −

1

q
hmaxC

q
N,qa

q(1−γq)(qγq − 2)rqγq−3 − η

p
CpN,pa

p(1−γp)(pγp − 2)rpγp−3.

Then, the equation w′
a(r) = 0 has a unique solution:

r0 =

(
(2− qγq) 1qhmaxC

q
N,qa

q(1−γq)

(pγp − 2)ηpC
p
N,pa

p(1−γp)

) 1
pγp−qγq

, (2.2)
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8 X. Li, L. Xu and M. Zhu

and the maximum of wa(r) is

wa(r0) =
1

2
−B

(
hmaxa

q(1−γq)
) pγp−2
pγp−qγq

(
ηap(1−γp)

) 2−qγq
pγp−qγq ,

where B is defined in Equation (1.12). Thus under the assumption (1.13), the maximum
of wa(r) is positive and wa(r) has exactly two zeros 0 < R0 < R1 < ∞, which are also
the zeros of ga(r). It is obvious that ga(r) has the following properties:


ga(0) = ga(R0) = ga(R1) = 0; ga(r) < 0 for r > 0 small;

limr→+∞ ga(r) = −∞; ga(r) has exactly two critical points;

r1 ∈ (0, R0) and r2 ∈ (R0, R1) with ga(r1) < 0 and ga(r2) > 0.

(2.3)

Now fix τ : (0,+∞)→ [0, 1] as being a non-increasing and C∞ function that satisfies:

τ(x) =

{
1, if x ≤ R0

0, if x ≥ R1

, (2.4)

and consider the truncated functional:

Eε,T (u) :=
1

2

∫
RN
|∇u|2 dx− 1

q

∫
RN

h(εx)|u|q dx− η

p
τ(‖∇u‖2)

∫
RN
|u|p dx. (2.5)

Thus,

Eε,T (u) ≥
1

2
‖∇u‖22 −

1

q
hmaxC

q
N,qa

q(1−γq)‖∇u‖qγq2

− η

p
τ(‖∇u‖2)CpN,pa

p(1−γp)‖∇u‖pγp2

= ḡa(‖∇u‖2),

(2.6)

for any u ∈ S(a), where

ḡa(r) :=
1

2
r2 − 1

q
hmaxC

q
N,qa

q(1−γq)rqγq − η

p
τ(r)CpN,pa

p(1−γp)rpγp .

It is easy to see that ḡa(r) has the following properties: ḡa(r) ≡ ga(r) for all r ∈ [0, R0];

ḡa(r) is positive and strictly increasing in (R0,+∞).
(2.7)
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Correspondingly, for any µ ∈ (0, hmax], we denote by Jµ, Jµ,T : H1(RN ) → R the
following functionals:

Jµ(u) :=
1

2

∫
RN
|∇u|2 dx− µ

q

∫
RN
|u|q dx− η

p

∫
RN
|u|p dx (2.8)

and

Jµ,T (u) :=
1

2

∫
RN
|∇u|2 dx− µ

q

∫
RN
|u|q dx− η

p
τ(‖∇u‖2)

∫
RN
|u|p dx. (2.9)

The properties of Jµ,T and Eε,T will be studied in § 3 and 4, respectively.

3. The truncated autonomous functional

In this section, we study the properties of the functional Jµ,T defined in Equation (2.9)
restricted to S(a1), where µ ∈ (0, hmax] and a1 ∈ (0, a].

Lemma 3.1. Let N, a, η, p and q be as in Equations (1.1) and (1.13) hold, µ ∈
(0, hmax], 0 < a1 ≤ a. Then the functional Jµ,T is bounded from below on S(a1).

Proof. By Equations (2.6) and (2.7), for any u ∈ S(a1),

Jµ,T (u) ≥ Jmax,T (u)

≥ 1

2
‖∇u‖22 −

1

q
hmaxC

q
N,qa

q(1−γq)
1 ‖∇u‖qγq2

− η

p
τ(‖∇u‖2)CpN,pa

p(1−γp)
1 ‖∇u‖pγp2

≥ ḡa(‖∇u‖2) ≥ inf
r≥0

ḡa(r) > −∞.

The proof is complete. �

Lemma 3.2. Let N, a, η, p, q be as in Equations (1.1) and (1.13) hold, µ ∈ (0, hmax],
0 < a1 ≤ a. Υµ,T,a1 := infu∈S(a1) Jµ,T (u) < 0.

Proof. Fix u ∈ S(a1). For t > 0, we define ut(x) = t
N
2 u(tx). Then, ut ∈ S(a1) for all

t > 0. By τ ≥ 0 and qγq < 2, we obtain that

Jµ,T (ut) ≤
1

2

∫
RN
|∇ut|2 dx−

µ

q

∫
RN
|ut|q dx

=
1

2
t2
∫
RN
|∇u|2 dx− µ

q
tqγq

∫
RN
|u|q dx,

< 0

for t > 0 small enough. Thus, Υµ,T,a1 < 0. The proof is complete. �
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Lemma 3.3. Let N, a, η, p and q be as in Equations (1.1) and (1.13) hold, µ ∈
(0, hmax]. Then
(1) Jµ,T ∈ C1(H1(RN ),R);
(2) Let a1 ∈ (0, a]. If u ∈ S(a1) such that Jµ,T (u) < 0, then ‖∇u‖2 < R0 and Jµ,T (v) =

Jµ(v) for all v satisfying ‖v‖2 ≤ a and being in a small neighborhood of u in H1(RN ).

Proof. (1) is trivial. Now we prove (2). It follows from Jµ,T (u) < 0 and

Jµ,T (u) ≥ ḡa1(‖∇u‖2) ≥ ḡa(‖∇u‖2),

that ḡa(‖∇u‖2) < 0, which implies that ‖∇u‖2 < R0 by (2.7). By (1) and Jµ,T (u) < 0,
we obtain that Jµ,T (v) < 0 for all v in a small neighborhood of u in H1(RN ), which
combined with ‖v‖2 ≤ a gives that ‖∇v‖2 < R0 and thus Jµ,T (v) = Jµ(v). The proof is
complete. �

For any a1 ∈ (0, a], we define

mµ(a1) := inf
u∈V (a1)

Jµ(u), V (a1) := {u ∈ S(a1) : ‖∇u‖2 < R0}.

Since Jµ,T (u) ≥ ḡa1(‖∇u‖2) ≥ ḡa(‖∇u‖2) for any u ∈ S(a1), by Lemma 3.1, we
obtain that

Υµ,T,a1 = inf
u∈S(a1)

Jµ,T (u) = mµ(a1). (3.1)

In ([18], Lemma 2.6 and Theorem 1.2), the authors obtained that

Lemma 3.4. Let N, a, η, p and q be as in Equations (1.1) and (1.13) hold, µ ∈
(0, hmax]. Then
(1) a1 ∈ (0, a] 7→ mµ(a1) is continuous;

(2) Let 0 < a1 < a2 ≤ a, then
a21
a22
mµ(a2) < mµ(a1) < 0.

Consequently, by Equation (3.1) and Lemma 3.4, we obtain that

Lemma 3.5. Let N, a, η, p and q be as in Equations (1.1) and (1.13) hold, µ ∈
(0, hmax]. Then
(1) a1 ∈ (0, a] 7→ Υµ,T,a1 is continuous;

(2) Let 0 < a1 < a2 ≤ a, then
a21
a22

Υµ,T,a2 < Υµ,T,a1 < 0.

The next compactness lemma is useful in the study of the autonomous problem as well
as in the non-autonomous problem.

Lemma 3.6. Let N, a, η, p and q be as in Equations (1.1) and (1.13) hold, µ ∈
(0, hmax], a1 ∈ (0, a]. {un} ⊂ S(a1) be a minimizing sequence with respect to Υµ,T,a1 .
Then, for some subsequence, either
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(i) {un} is strongly convergent,
or
(ii) There exists {yn} ⊂ RN with |yn| → ∞ such that the sequence vn(x) = un(x+ yn)

is strongly convergent to a function v ∈ S(a1) with Jµ,T (v) = Υµ,T,a1 .

Proof. Noting that ‖∇un‖2 < R0 for n large enough, there exists u ∈ H1(RN ) such
that un ⇀ u in H1(RN ) up to a subsequence. Now we consider the following three
possibilities.
(1) If u 6≡ 0 and ‖u‖2 = b 6= a1, we must have b ∈ (0, a1). Setting vn = un − u,

dn = ‖vn‖2, and by using

‖un‖22 = ‖vn‖22 + ‖u‖22 + on(1),

we obtain that ‖vn‖2 → d, where a21 = d2 + b2. Noting that dn ∈ (0, a1) for n large
enough, and using the Brézis–Lieb Lemma (see [41]), Lemma 3.5, ‖∇un‖22 = ‖∇u‖22 +
‖∇vn‖22 + on(1), ‖∇u‖22 ≤ lim infn→+∞ ‖∇un‖22, τ is continuous and non-increasing, we
obtain that

Υµ,T,a1 + on(1) = Jµ,T (un) =
1

2
‖∇vn‖22 −

µ

q
‖vn‖qq −

η

p
τ(‖∇un‖2)‖vn‖pp

+
1

2
‖∇u‖22 −

µ

q
‖u‖qq −

η

p
τ(‖∇un‖2)‖u‖pp + on(1)

≥ Jµ,T (vn) + Jµ,T (u) + on(1)

≥ Υµ,T,dn +Υµ,T,b + on(1)

≥ d2n
a21

Υµ,T,a1 +Υµ,T,b + on(1).

Letting n→ +∞, we find that

Υµ,T,a1 ≥
d2

a21
Υµ,T,a1 +Υµ,T,b

>
d2

a21
Υµ,T,a1 +

b2

a21
Υµ,T,a1 = Υµ,T,a1 ,

which is a contradiction. So this possibility can not exist.
(2) If ‖u‖2 = a1, then un → u in L2(RN ) and thus un → u in Lt(RN ) for all t ∈ (2, 2∗).
Case p < 2∗, then

Υµ,T,a1 = lim
n→+∞

Jµ,T (un)

= lim
n→+∞

(
1

2
‖∇un‖22 −

µ

q
‖un‖qq −

η

p
τ(‖∇un‖2)‖un‖pp

)
≥ Jµ,T (u).

As u ∈ S(a1), we infer that Jµ,T (u) = Υµ,T,a1 , then ‖∇un‖2 → ‖∇u‖2 and thus un → u

in H1(RN ), which implies that (i) occurs.
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12 X. Li, L. Xu and M. Zhu

Case p = 2∗, noting that ‖∇vn‖2 ≤ ‖∇un‖2 < R0 for n large enough, and using the
Sobolev inequality, we have

Jµ,T (vn) = Jµ(vn) =
1

2

∫
RN
|∇vn|2 dx−

µ

q

∫
RN
|vn|q dx−

η

p

∫
RN
|vn|p dx

≥ 1

2
‖∇vn‖22 −

η

2∗
1

S
2∗
2

‖∇vn‖2
∗

2 + on(1)

= ‖∇vn‖22

(
1

2
− η

2∗
1

S
2∗
2

‖∇vn‖2
∗−2

2

)
+ on(1)

≥ ‖∇vn‖22

(
1

2
− η

2∗
1

S
2∗
2

R2∗−2
0

)
+ on(1)

= ‖∇vn‖22
1

q
hmaxC

q
N,qa

q(1−γq)R
qγq−2
0 + on(1),

(3.2)

because wa(R0) = 1
2 −

η
2∗

1

S
2∗
2

R2∗−2
0 − 1

qhmaxC
q
N,qa

q(1−γq)R
qγq−2
0 = 0. Now we

remember that

Υµ,T,a1 ← Jµ,T (un) ≥ Jµ,T (vn) + Jµ,T (u) + on(1). (3.3)

Since u ∈ S(a1), we have Jµ,T (u) ≥ Υµ,T,a1 , which combined with Equations (3.2) and

(3.3) gives that ‖∇vn‖22 → 0 and then un → u in H1(RN ). This implies that (i) occurs.
(3) If u ≡ 0, that is, un ⇀ 0 in H1(RN ). We claim that there exist R, β > 0 and

{yn} ⊂ RN such that

∫
BR(yn)

|un|2 dx ≥ β, for all n. (3.4)

Indeed, otherwise we must have un → 0 in Lt(RN ) for all t ∈ (2, 2∗). Thus, for p < 2∗,
Jµ,T (un) ≥ 1

2‖∇un‖
2
2 + on(1), which contradicts Jµ,T (un) → Υµ,T,a1 < 0. For p = 2∗,

similarly to (3.2), we obtain that

Jµ,T (un) ≥ ‖∇un‖22
1

q
hmaxC

q
N,qa

q(1−γq)R
qγq−2
0 + on(1).

We also get a contradiction in this case. Hence, in all cases, Equation (3.4) holds and
|yn| → +∞ obviously. From this, considering ūn(x) = un(x+ yn), clearly {ūn} ⊂ S(a1)
and it is also a minimizing sequence with respect to Υµ,T,a1 . Moreover, there exists

ū ∈ H1(RN )\{0} such that ūn ⇀ ū in H1(RN ). Following as in the first two possibilities
of the proof, we derive that ūn → ū in H1(RN ), which implies that (ii) occurs. �
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Lemma 3.7. Let N, a, η, p, q be as in Equation (1.1), µ ∈ (0, hmax], a1 ∈ (0, a], (1.13)
hold. Then, Υµ,T,a1 is attained.

Proof. By Lemma 3.1, there exists a bounded minimizing sequence {un} ⊂ S(a1)
satisfying Jµ,T (un) → Υµ,T,a1 as n → +∞. Now, applying Lemma 3.6, there exists
u ∈ S(a1) such that Jµ,T (u) = Υµ,T,a1 . The proof is complete. �

An immediate consequence of Lemma 3.7 is the following corollary.

Corollary 3.8. Let N, a, η, p and q be as in Equations (1.1) and (1.13) hold. Fix
a1 ∈ (0, a] and let 0 < µ1 < µ2 ≤ hmax. Then, Υµ2,T,a1 < Υµ1,T,a1 .

Proof. Let u ∈ S(a1) satisfy Jµ1,T (u) = Υµ1,T,a1 . Then, Υµ2,T,a1 ≤ Jµ2,T (u) <
Jµ1,T (u) = Υµ1,T,a1 . �

4. Proof of Theorem 1.1

In this section, we first prove some properties of the functional Eε,T defined in
Equation (2.5) restricted to the sphere S (a), and then give the proof of Theorem 1.1.
Denote

Jmax,T := Jhmax,T , Υmax,T,a := Υhmax,T,a,

and

J∞,T := Jh∞,T , Υ∞,T,a := Υh∞,T,a.

It is obvious that J∞,T (u) ≥ Jmax,T (u) and Eε,T (u) ≥ Jmax,T (u) for any u ∈ S(a). By
Lemma 3.1, the definition:

Γε,T,a := inf
u∈S(a)

Eε,T (u),

is well defined and Γε,T,a ≥ Υmax,T,a.
The next lemma establishes some crucial relations involving the levels Γε,T,a, Υ∞,T,a

and Υmax,T,a.

Lemma 4.1. Let N, a, η, p, q, h and ε be as in Equations (1.1) and (1.13) hold. Then

lim sup
ε→0+

Γε,T,a ≤ Υmax,T,a < Υ∞,T,a < 0.

Proof. By Lemma 3.7, choose u ∈ S(a) such that Jmax,T (u) = Υmax,T,a. Then,

Γε,T,a ≤ Eε,T (u) =
1

2

∫
RN
|∇u|2 dx− 1

q

∫
RN

h(εx)|u|q dx

− η

p
τ(‖∇u‖2)

∫
RN
|u|p dx.
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Letting ε→ 0+, by the Lebesgue dominated convergence theorem, we deduce that

lim sup
ε→0+

Γε,T,a ≤ lim sup
ε→0+

Eε,T (u) = Jh(0),T (u) = Jmax,T (u) = Υmax,T,a,

which combined with Lemma 3.2 and Corollary 3.8 completes the proof. �

By Lemma 4.1, there exists ε1 > 0 such that Γε,T,a < Υ∞,T,a for all ε ∈ (0, ε1). In the
following, we always assume that ε ∈ (0, ε1). Similarly to the proof of Lemma 3.3, we
have the following result, whose proof is omitted.

Lemma 4.2. Let N, a, η, p, q, h, ε be as in (1.1), ε ∈ (0, ε1), (1.13) hold. Then
(1) Eε,T ∈ C1(H1(RN ),R);
(2) If u ∈ S(a) such that Eε,T (u) < 0, then ‖∇u‖2 < R0 and Eε,T (v) = Eε(v) for all

v satisfying ‖v‖2 ≤ a and being in a small neighborhood of u in H1(RN ).

The next two lemmas will be used to prove the PS condition for Eε,T restricted to
S (a) at some levels.

Lemma 4.3. Let N, a, η, p, q, h be as in (1.1), ε ∈ (0, ε1), (1.13) hold. Assume {un} ⊂
S(a) such that Eε,T (un) → c as n → +∞ with c < Υ∞,T,a. If un ⇀ u in H1(RN ), then
u 6≡ 0.

Proof. Assume by contradiction that u ≡ 0. Then,

c+ on(1) = Eε,T (un) = J∞,T (un) +
1

q

∫
RN

(h∞ − h(εx))|un|q dx.

By (h2), for any given δ > 0, there exists R> 0 such that h∞ ≥ h(x)− δ for all |x| ≥ R.
Hence,

c+ on(1) = Eε,T (un) ≥ J∞,T (un) +
1

q

∫
BR/ε(0)

(h∞ − h(εx))|un|q dx

− δ

q

∫
Bc
R/ε

(0)

|un|q dx.

Recalling that {un} is bounded in H1(RN ) and un → 0 in Lt(BR/ε(0)) for all t ∈ [1, 2∗),
it follows that

c+ on(1) = Eε,T (un) ≥ J∞,T (un)− δC + on(1),

for some C > 0. Since δ > 0 is arbitrary, we deduce that c ≥ Υ∞,T,a, which is a
contradiction. Thus, u 6≡ 0. �

Lemma 4.4. Let N, a, η, p, q and h be as in Equation (1.1), ε ∈ (0, ε1), Equation (1.13)
hold. If p = 2∗, we further assume that Equation (1.14) holds. Let {un} be a (PS)c
sequence of Eε,T restricted to S(a) with c < Υ∞,T,a and let un ⇀ uε in H1(RN ). If un
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does not converge to uε strongly in H1(RN ), there exists β > 0 independent of ε ∈ (0, ε1)
such that

lim sup
n→+∞

‖un − uε‖2 ≥ β.

Proof. By Lemma 4.2, we must have ‖∇un‖2 < R0 for n large enough, and so, {un}
is also a (PS)c sequence of Eε restricted to S (a). Hence,

Eε(un)→ c and ‖Eε|′S(a)(un)‖ → 0 as n→ +∞.

Setting the functional Ψ : H1(RN )→ R given by:

Ψ(u) =
1

2

∫
RN
|u|2 dx,

it follows that S(a) = Ψ−1(a2/2). Then, by Willem ([41], Proposition 5.12), there exists
{λn} ⊂ R such that

‖E′
ε(un)− λnΨ′(un)‖H−1(RN ) → 0, as n→ +∞. (4.1)

By the boundedness of {un} in H1(RN ), we know {λn} is bounded and thus, up to
a subsequence, there exists λε such that λn → λε as n → +∞. This together with
Equation (4.1) leads to

E′
ε(uε)− λεΨ′(uε) = 0, in H−1(RN ), (4.2)

and then

‖E′
ε(vn)− λεΨ′(vn)‖H−1(RN ) → 0, as n→ +∞, (4.3)

where vn := un − uε. By direct calculations, we get that

Υ∞,T,a > lim
n→+∞

Eε(un)

= lim
n→+∞

(
Eε(un)−

1

2
E′
ε(un)un +

1

2
λn‖un‖22 + on(1)

)
= lim
n→+∞

[(
1

2
− 1

q

)∫
RN

h(εx)|un|q dx

+

(
1

2
− 1

p

)
η

∫
RN
|un|p dx+

1

2
λna

2 + on(1)

]
≥ 1

2
λεa

2,

which implies that

λε ≤
2Υ∞,T,a

a2
< 0, for all ε ∈ (0, ε1). (4.4)

https://doi.org/10.1017/S0013091523000676 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000676


16 X. Li, L. Xu and M. Zhu

By Equation (4.3), we know∫
RN
|∇vn|2 dx− λε

∫
RN
|vn|2 dx−

∫
RN

h(εx)|vn|q dx− η
∫
RN
|vn|p dx = on(1), (4.5)

which combined with Equation (4.4) gives that∫
RN
|∇vn|2 dx−

2Υ∞,T,a

a2

∫
RN
|vn|2 dx

≤ hmax

∫
RN
|vn|q dx+ η

∫
RN
|vn|p dx+ on(1).

(4.6)

If un does not converge to uε strongly in H1(RN ), that is, vn does not converge to 0
strongly in H1(RN ), by (4.6) and the Sobolev inequality, we deduce that∫

RN
|∇vn|2 dx−

2Υ∞,T,a

a2

∫
RN
|vn|2 dx

≤ hmaxC
q
N,q‖vn‖

q + ηCpN,p‖vn‖
p + on(1).

So there exists C > 0 independent of ε such that ‖vn‖ ≥ C and then by Equation (4.6):

lim sup
n→+∞

(
hmax

∫
RN
|vn|q dx+ η

∫
RN
|vn|p dx

)
≥ C. (4.7)

Case p < 2∗, by (4.7) and the Gagliardo–Nirenberg inequality (1.11), there exists β > 0
independent of ε ∈ (0, ε1) such that

lim sup
n→+∞

‖vn‖2 ≥ β. (4.8)

Case p = 2∗, if

lim sup
n→+∞

∫
RN
|vn|q dx ≥ C,

for some C > 0 independent of ε, we obtain (4.8) as well. If

lim inf
ε→0+

lim sup
n→+∞

∫
RN
|vn|q dx = 0 and lim inf

ε→0+
lim sup
n→+∞

‖vn‖2 = 0,

by Equation (4.7) we have

lim inf
ε→0+

lim sup
n→+∞

∫
RN
|vn|p dx ≥ C,
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and by Equation (4.5) we have

lim inf
ε→0+

lim sup
n→+∞

∫
RN
|∇vn|2 dx = lim inf

ε→0+
lim sup
n→+∞

η

∫
RN
|vn|p dx.

Applying the Sobolev inequality to the above equality, we obtain that

lim inf
ε→0+

lim sup
n→+∞

‖∇vn‖22 = lim inf
ε→0+

lim sup
n→+∞

η‖vn‖2
∗

2∗ ≤ lim inf
ε→0+

lim sup
n→+∞

ηS−2∗/2‖∇vn‖2
∗

2 ,

which implies that

R0 ≥ lim inf
ε→0+

lim sup
n→+∞

‖∇vn‖2 ≥ η−
N−2
4 SN/4. (4.9)

On the other hand, by the assumption (1.14), we have

R0 < η−
N−2
4 SN/4. (4.10)

Indeed, by the expression of r0 in Equation (2.2), Equation (1.14) is equivalent to

r0 < η−
N−2
4 S

N
4 . (4.11)

Since R0 < r0 < R1 (see § 2), we obtain Equation (4.10), which contradicts
Equation (4.9). So we must have Equation (4.8) for the case p = 2∗. The proof is
complete. �

Now, we give the compactness lemma.

Lemma 4.5. Let N, a, η, p, q and h be as in Equation (1.1), ε ∈ (0, ε1), β be as in
Lemma 4.4,

0 < ρ0 ≤ min

{
Υ∞,T,a −Υmax,T,a,

β2

a2
(Υ∞,T,a −Υmax,T,a)

}
,

and Equation (1.13) hold. If p = 2∗, we further assume that Equation (1.14) holds. Then,
Eε,T satisfies the (PS)c condition restricted to S(a) if c < Υmax,T,a + ρ0.

Proof. Let {un} ⊂ S(a) be a (PS)c sequence of Eε,T restricted to S (a). Noting that
c < Υ∞,T,a < 0, by Lemma 4.2, {un} is bounded in H1(RN ). Let un ⇀ uε in H

1(RN ).
By Lemma 4.3, uε 6≡ 0. Set vn := un − uε. If un → uε in H

1(RN ), the proof is complete.
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If un does not converge to uε strongly in H1(RN ) for some ε ∈ (0, ε1), by Lemma 4.4,

lim sup
n→+∞

‖vn‖2 ≥ β.

Set b = ‖uε‖2, dn = ‖vn‖2 and suppose that ‖vn‖2 → d, then we get d ≥ β > 0 and
a2 = b2 + d2. From dn ∈ (0, a) for n large enough, we have

c+ on(1) = Eε,T (un) ≥ Eε,T (vn) + Eε,T (uε) + on(1). (4.12)

Since vn ⇀ 0 in H1(RN ), similarly to the proof of Lemma 4.3, we deduce that

Eε,T (vn) ≥ J∞,T (vn)− δC + on(1) (4.13)

for any δ > 0, where C > 0 is a constant independent of δ, ε and n. By (4.12) and (4.13),
we obtain that

c+ on(1) = Eε,T (un) ≥ J∞,T (vn) + Eε,T (uε)− δC + on(1)

≥ Υ∞,T,dn +Υmax,T,b − δC + on(1).

Letting n→ +∞, by Lemma 3.5 and the arbitrariness of δ > 0, we obtain that

c ≥ Υ∞,T,d +Υmax,T,b ≥
d2

a2
Υ∞,T,a +

b2

a2
Υmax,T,a

= Υmax,T,a +
d2

a2
(Υ∞,T,a −Υmax,T,a)

≥ Υmax,T,a +
β2

a2
(Υ∞,T,a −Υmax,T,a),

which contradicts c < Υmax,T,a +
β2

a2
(Υ∞,T,a − Υmax,T,a). Thus, we must have un → uε

in H1(RN ). �

In what follows, let us fix ρ̃, r̃ > 0 satisfying:

• Bρ̃(ai) ∩Bρ̃(aj) = ∅ for i 6= j and i, j ∈ {1, . . . , l};
• ∪li=1Bρ̃(ai) ⊂ Br̃(0);
• K ρ̃

2
= ∪li=1B ρ̃

2
(ai).

We also set the function Qε : H
1(RN )\{0} → RN by

Qε(u) :=

∫
RN χ(εx)|u|2 dx∫

RN |u|2 dx
,

where χ : RN → RN is given by:

χ(x) :=

{
x, if |x| ≤ r̃,
r̃ x
|x| , if |x| > r̃.
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The next two lemmas will be useful to get important PS sequences for Eε,T restricted
to S (a).

Lemma 4.6. Let N, a, η, p, q and h be as in Equations (1.1) and (1.13) hold. Then,
there exist ε2 ∈ (0, ε1], ρ1 ∈ (0, ρ0] such that if ε ∈ (0, ε2), u ∈ S(a) and Eε,T (u) ≤
Υmax,T,a + ρ1, then

Qε(u) ∈ K ρ̃
2
.

Proof. If the lemma does not occur, there must be ρn → 0, εn → 0 and {un} ⊂ S(a)
such that

Eεn,T (un) ≤ Υmax,T,a + ρn and Qεn(un) 6∈ K ρ̃
2
. (4.14)

Consequently,

Υmax,T,a ≤ Jmax,T (un) ≤ Eεn,T (un) ≤ Υmax,T,a + ρn,

then

{un} ⊂ S(a) and Jmax,T (un)→ Υmax,T,a.

According to Lemma 3.6, we have two cases:
(i) un → u in H1(RN ) for some u ∈ S(a),
or
(ii) There exists {yn} ⊂ RN with |yn| → +∞ such that vn(x) = un(x+ yn) converges

in H1(RN ) to some v ∈ S(a).
Analysis of (i): By the Lebesgue dominated convergence theorem,

Qεn(un) =

∫
RN χ(εnx)|un|2 dx∫

RN |un|2 dx
→
∫
RN χ(0)|u|2 dx∫

RN |u|2 dx
= 0 ∈ K ρ̃

2
.

From this, Qεn(un) ∈ K ρ̃
2

for n large enough, which contradicts Qεn(un) 6∈ K ρ̃
2

in

Equation (4.14).
Analysis of (ii): Now, we will study two cases: (I) |εnyn| → +∞ and (II) εnyn → y for

some y ∈ RN .
If (I) holds, the limit vn → v in H1(RN ) provides

Eεn,T (un) =
1

2

∫
RN
|∇vn|2 dx−

1

q

∫
RN

h(εnx+ εnyn)|vn|q dx

− η

p
τ(‖∇vn‖2)

∫
RN
|vn|p dx

→ J∞,T (v).
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Since Eεn,T (un) ≤ Υmax,T,a + ρn, we deduce that

Υ∞,T,a ≤ J∞,T (v) ≤ Υmax,T,a,

which contradicts Υ∞,T,a > Υmax,T,a in Lemma 4.1.
Now if (II) holds, then

Eεn,T (un) =
1

2

∫
RN
|∇vn|2 dx−

1

q

∫
RN

h(εnx+ εnyn)|vn|q dx

− η

p
τ(‖∇vn‖2)

∫
RN
|vn|p dx

→ Jh(y),T (v),

which combined with Eεn,T (un) ≤ Υmax,T,a + ρn gives that

Υh(y),T,a ≤ Jh(y),T (v) ≤ Υmax,T,a.

By Corollary 3.8, we must have h(y) = hmax and y = ai for some i = 1, 2, . . . , l. Hence,

Qεn(un) =

∫
RN χ(εnx)|un|2 dx∫

RN |un|2 dx
=

∫
RN χ(εnx+ εnyn)|vn|2 dx∫

RN |vn|2 dx

→
∫
RN χ(y)|v|2 dx∫

RN |v|2 dx
= ai ∈ K ρ̃

2
,

which implies that Qεn(un) ∈ K ρ̃
2
for n large enough. That contradicts Equation (4.14).

The proof is complete. �

From now on, we will use the following notations:

• θiε := {u ∈ S(a) : |Qε(u)− ai| ≤ ρ̃};
• ∂θiε := {u ∈ S(a) : |Qε(u)− ai| = ρ̃};
• βiε := inf

u∈θiε
Eε,T (u);

• β̃iε := inf
u∈∂θiε

Eε,T (u).

Lemma 4.7. Let N, a, η, p, q and h be as in Equations (1.1) and (1.13) hold, ε2 and
ρ1 be obtained in Lemma 4.6. Then, there exists ε3 ∈ (0, ε2] such that

βiε < Υmax,T,a +
ρ1
2

and βiε < β̃iε, for any ε ∈ (0, ε3).

Proof. Let u ∈ S(a) be such that

Jmax,T (u) = Υmax,T,a.
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For 1 ≤ i ≤ l, we define

ûiε(x) := u
(
x− ai

ε

)
, x ∈ RN .

Then, ûiε ∈ S(a) for all ε> 0 and 1 ≤ i ≤ l. Direct calculations give that

Eε,T (û
i
ε) =

1

2

∫
RN
|∇u|2 dx− 1

q

∫
RN

h(εx+ ai)|u|q dx−
η

p
τ(‖∇u‖2)

∫
RN
|u|p dx,

and then

lim
ε→0+

Eε,T (û
i
ε) = Jh(ai),T (u) = Jmax,T (u) = Υmax,T,a. (4.15)

Note that

Qε(û
i
ε) =

∫
RN χ(εx+ ai)|u|2 dx∫

RN |u|2 dx
→ ai as ε→ 0+.

So ûiε ∈ θiε for ε small enough, which combined with Equation (4.15) implies that there
exists ε3 ∈ (0, ε2] such that

βiε < Υmax,T,a +
ρ1
2
, for any ε ∈ (0, ε3).

For any v ∈ ∂θiε, that is, v ∈ S(a) and |Qε(v)− ai| = ρ̃, we obtain that |Qε(v) 6∈ K ρ̃
2
.

Thus, by Lemma 4.6,

Eε,T (v) > Υmax,T,a + ρ1, for all v ∈ ∂θiε and ε ∈ (0, ε3),

which implies that

β̃iε = inf
v∈∂θiε

Eε,T (v) ≥ Υmax,T,a + ρ1, for all ε ∈ (0, ε3).

Thus,

βiε < β̃iε, for all ε ∈ (0, ε3).

�

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Set ε0 := ε3, where ε3 is obtained in Lemma 4.7. Let ε ∈
(0, ε0). By Lemma 4.7, for each i ∈ {1, 2, . . . , l}, we can use the Ekeland’s variational
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principle to find a sequence {uin) ⊂ θiε satisfying:

Eε,T (u
i
n)→ βiε and ‖Eε,T |′S(a)(u

i
n)‖ → 0, as n→ +∞,

that is, {uin}n is a (PS)
βiε

sequence for Eε,T restricted to S (a). Since βiε < Υmax,T,a+ρ0,

it follows from Lemma 4.5 that there exists ui such that uin → ui in H1(RN ). Thus

ui ∈ θiε, Eε,T (ui) = βiε and Eε,T |′S(a)(u
i) = 0.

As

Qε(u
i) ∈ Bρ̃(ai), Qε(u

j) ∈ Bρ̃(aj),

and

Bρ̃(ai) ∩Bρ̃(aj) = ∅ , for i 6= j,

we conclude that ui 6≡ uj for i 6= j while 1 ≤ i, j ≤ l. Therefore, Eε,T has at least l
non-trivial critical points for all ε ∈ (0, ε0).
As Eε,T (u

i) < 0 for any i = 1, 2, . . . , l, by Lemma 4.2, ui (i = 1, 2, . . . , l) is in fact the
critical point of Eε on S (a) with Eε(u

i) < 0 and then there exists λi ∈ R such that

−∆ui = λiu
i + h(εx)|ui|q−2ui + η|ui|p−2ui, x ∈ RN .

By using Eε(u
i) = βiε < 0 and E′

ε(u
i)ui = λia

2, we obtain that

1

2
λia

2 = Eε(u
i) +

(
1

q
− 1

2

)∫
RN

h(εx)|ui|q dx+

(
1

p
− 1

2

)∫
RN
|ui|p dx,

which implies that λi < 0 for i = 1, 2, . . . , l. The proof is complete. �

5. Stability

In this section, we investigate the stability of the solutions obtained in Theorem 1.1. For
any i = 1, 2, . . . , l, we define

Ωi : = {v ∈ θiε : Eε,T |′S(a)(v) = 0, Eε,T (v) = βiε}

= {v ∈ θiε : Eε|′S(a)(v) = 0, Eε(v) = βiε, ‖∇v‖2 ≤ R0}.
(5.1)

Next we show the stability of the sets Ωi (i = 1, . . . , l) in two cases p < 2∗ or p = 2∗.
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Proof of Theorem 1.4. Letting r1 be such that ḡa(r1) = βiε, and considering
Equation (2.6), the definition of Ωi and β

i
ε < 0, we know that

‖∇v‖2 ≤ r1 < R0, for any v ∈ Ωi.

Let a1 > a be such that ḡa1(R0) =
βiε
2 . There exists δ > 0 such that if

u0 ∈ H1(RN ) and distH1(RN )(u0,Ωi) < δ,

then

‖u0‖2 ≤ a1, ‖∇u0‖2 ≤ r1 +
R0 − r1

2
, Eε,T (u0) ≤

2

3
βiε.

Denoting by ψ(t, ·) the solution to Equation (1.17) with initial value u0 and denot-
ing by [0, Tmax) the maximal existence interval for ψ(t, ·), we have classically that
either ψ(t, ·) is globally defined for positive times, or ‖∇ψ(t, ·)‖2 = +∞ as t → T−

max,
see ([38], Section 3). Set ã = ‖u0‖2. Note that ‖ψ(t, ·)‖2 = ‖u0‖2 for all t ∈ (0, Tmax) by
the conservation of the mass. If there exists t̃ ∈ (0, Tmax) such that ‖∇ψ(t̃, ·)‖2 = R0,
then

Eε(ψ(t̃, ·)) = Eε,T (ψ(t̃, ·)) ≥ ḡã(R0) ≥ ḡa1(R0) =
βiε
2
,

which contradicts the conservation of the energy:

Eε(ψ(t, ·)) = Eε(u0) ≤
2

3
βiε, for all t ∈ (0, Tmax).

Thus,

‖∇ψ(t, ·)‖2 < R0, for all t ∈ [0, Tmax), (5.2)

which implies that ψ(t, ·) is globally defined for positive times.
Next we prove that Ωi is stable. The validity of Lemma 4.5 for complex valued func-

tion can be proved exactly as in Theorem 3.1 in [13]. Thus, the stability of Ωi can be
proved by modifying the classical Cazenave–Lions argument [10] (see also [24]). For the
completeness, we give the proof here. Suppose by contradiction that there exist sequences
{u0,n} ⊂ H1(RN ) and {tn} ⊂ R+ and a constant θ0 > 0 such that for all n ≥ 1,

inf
v∈Ωi

‖u0,n − v‖ <
1

n
(5.3)

and

inf
v∈Ωi

‖ψn(tn, ·)− v‖ ≥ θ0, (5.4)
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where ψn(t, ·) is the solution to (1.17) with initial value u0,n. By Equation (5.2), there
exists n0 such that for n > n0 it holds that ‖∇ψn(t, ·)‖2 < R0 for all t ≥ 0.
By Equation (5.3), there exists {vn} ⊂ Ωi such that

‖u0,n − vn‖ <
2

n
. (5.5)

That {vn} ⊂ Ωi implies that {vn} ⊂ θiε is a (PS)
βiε

sequence of Eε,T restricted to S (a).

From the proof of Theorem 1.1, there exists v ∈ Ωi such that

lim
n→+∞

‖vn − v‖ = 0,

which combined with (5.5) gives that

lim
n→+∞

‖u0,n − v‖ = 0. (5.6)

Hence,

lim
n→+∞

‖u0,n‖2 = ‖v‖2 = a, lim
n→+∞

Eε(u0,n) = Eε(v) = βiε < β̃iε.

Then by the conservation of mass and energy, we obtain that

lim
n→+∞

‖ψn(t, ·)‖2 = a, lim
n→+∞

Eε(ψn(t, ·)) = βiε, for any t ≥ 0. (5.7)

Define

ϕn(t, ·) =
aψn(t, ·)
‖ψn(t, ·)‖2

, t ≥ 0.

Then ϕn(t, ·) ∈ S(a) and

‖ϕn(t, ·)− ψn(t, ·)‖ → 0 as n→ +∞ uniformly in t ≥ 0, (5.8)

which combined with Equation (5.6) gives that

lim
n→+∞

‖ϕn(0, ·)− v‖ = lim
n→+∞

∥∥∥∥ au0,n
‖u0,n‖2

− v
∥∥∥∥ = 0.

Hence, ϕn(0, ·) ∈ θiε\∂θiε for n large enough because v ∈ θiε\∂θiε. Using the method of
continuity, limn→+∞Eε(ϕn(t, ·)) = βiε for all t ≥ 0, and βiε < β̃iε, we obtain that:

for n large enough, ϕn(t, ·) ∈ θiε\∂θiε for all t ≥ 0. (5.9)

From (5.7)–(5.9), {ϕn(tn, ·)} ⊂ θiε is a minimizing sequence of Eε,T at level βiε, and from
the proof of Theorem 1.1, there exists ṽ ∈ θiε such that

lim
n→+∞

‖ϕn(tn, ·)− ṽ‖ = 0, (5.10)
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which combined with (5.8) gives that

lim
n→+∞

‖ψn(tn, ·)− ṽ‖ = 0.

That contradicts (5.4). Hence Ωi is stable for any i = 1, 2, . . . , l. �

Proof of Theorem 1.5. The proof can be done by modifying the arguments of § 3
and 4 in [18] and using the arguments of the proof of Theorem 1.4, so we omit it. �
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