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Abstract

In this paper we analyse the fractional Poisson process where the state probabilities p
νk

k (t),
t ≥ 0, are governed by time-fractional equations of order 0 < νk ≤ 1 depending on the
number k of events that have occurred up to time t . We are able to obtain explicitly the
Laplace transform of p

νk

k (t) and various representations of state probabilities. We show
that the Poisson process with intermediate waiting times depending on νk differs from
that constructed from the fractional state equations (in the case of νk = ν, for all k, they
coincide with the time-fractional Poisson process). We also introduce a different form of
fractional state-dependent Poisson process as a weighted sum of homogeneous Poisson
processes. Finally, we consider the fractional birth process governed by equations with
state-dependent fractionality.
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1. Introduction

We first consider a state-dependent time-fractional Poisson process N(t), t ≥ 0, whose state
probabilities p

νk

k (t) = P{N(t) = k} are governed by the following equations

dνk

dtνk
p

νk

k (t) = −λp
νk

k (t) + λp
νk−1
k−1 (t), k ≥ 0, t > 0, νk ∈ (0, 1], λ > 0, (1.1a)

p
νk

k (0) =
{

1, k = 0,

0, k ≥ 1,
(1.1b)

where p
νk

k (t) = 0 if k ∈ Z
−\{0}. These equations are obtained by replacing, in the governing

equations of the homogeneous Poisson process, the ordinary derivative with the Dzhrbashyan–
Caputo fractional derivative (see Podlubny (1999)),

dν

dtν
f (t) =

⎧⎪⎪⎨⎪⎪⎩
1

�(m − ν)

∫ t

0
(t − s)m−ν−1f (m)(s) ds, m − 1 < ν < m,

dmf

dtm
, ν = m.
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State-dependent fractional point processes 19

We remark that in (1.1), the order of the fractional derivatives depends on the number of events
that have occurred up to time t . By definition, we have

dνk

dtνk
p

νk

k (t) = 1

�(1 − νk)

∫ t

0
(t − s)−νk

d

ds
p

νk

k (s) ds, 0 < νk < 1.

Hence, the dependence of p
νk

k (t) on the past is twofold. On one side, the fractional derivative
depends on the whole time span [0, t] through the weight function. On the other side, the
number of events that have occurred up to time t modifies the power of the weight function.
This means that in the case of a monotonical structure of the sequence of fractional orders νk ,
the memory effect can play an increasing or decreasing role. For example, if νk decreases
with k, the memory function tends to be constant and applies the same weight to the whole time
span [0, t]. We note that state-dependent fractionality was considered in different contexts by
Fedotov et al. (2012).

For νk = ν, for all k, the system (1.1) coincides with the system governing the classical frac-
tional Poisson process considered for example by Beghin and Orsingher (2009), where the frac-
tional derivative is meant in the Dzhrbashyan–Caputo sense as in our case. Of course, if νk = 1,
for all k, we retrieve the governing equation for the homogeneous Poisson process. Some
papers devoted to the study of various forms of fractional Poisson processes have appeared in
the last decades. In Hilfer andAnton (1995), the authors introduced for the first time the Mittag–
Leffler waiting-time density in the theory of continuous-time random walks. The time-fractional
Poisson process was then explicitly considered by Repin and Saichev (2000). Starting from this
paper, different approaches to fractional Poisson processes were considered. In Mainardi et al.
(2004), for example, the authors considered renewal processes with Mittag–Leffler distributed
intertimes. A slightly different approach to the fractional Poisson process was developed by
Laskin (2003), where the fractional derivative appearing in the equations governing the state
probabilities coincides with the Riemann–Liouville derivative. More recently, Beghin and
Orsingher (2009) and Meerschaert et al. (2011) studied the subordination of the Poisson process
to the inverse stable subordinator, discussing the relation with fractional Poisson processes.
Another type of fractional Poisson process was developed in Orsingher and Polito (2012) where
a space-fractionality was considered. Physical applications of the fractional Poisson processes
are discussed, for example, in Laskin (2009), where a new family of quantum coherent states
was studied.

By solving (1.1), we obtain∫ +∞

0
e−stp

νk

k (t) dt = λksν0−1∏k
j=0(s

νj + λ)
, s > 0. (1.2)

The inversion of (1.2) is by no means a simple matter. We have been able to obtain an explicit
result for p

ν0
0 and p

ν1
1 in terms of generalized Mittag–Leffler functions defined as (see, for

example, Saxena et al. (2006))

Em
ν,β(x) =

∞∑
k=0

xk�(m + k)

k! �(νk + β)�(m)
, ν, β, m ∈ R

+, x ∈ R.

We also state the distribution p
νk

k (t) of the Poisson process with fractionality νk depending on
the number of events k, in terms of subordinators and their inverses (see (2.12) below).
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20 R. GARRA ET AL.

Part of this paper is devoted to the construction of a point process N (t), t ≥ 0, with
intertime Uk between the kth and (k + 1)th event distributed as

P{Uk > t} = Eνk,1(−λtνk ).

The Laplace transform of the univariate distributions of N (t), t ≥ 0, is∫ ∞

0
e−st

P{N (t) = k} dt = λk sνk−1∏k
j=0(s

νj + λ)
,

which differs slightly from (1.2). From this point of view the state-dependent fractional Poisson
process differs from the time-fractional Poisson process because the approach based on the
construction by means of independent interevent times Uk and the one based on fractional
equations (1.1), do not lead to the same one-dimensional distribution. We show that the
probabilities pk(t) = P{N (t) = k} are solutions to the fractional integral equations

pk(t) − pk(0) = −λIνkpk(t) + λIνk−1pk−1(t),

where I νk is the Riemann–Liouville fractional integral

(I νkf )(t) = 1

�(νk)

∫ t

0
(t − s)νk−1f (s) ds, νk > 0.

A third definition of the state-dependent fractional Poisson process, say N̂(t), with distribution

Pr{N̂(t) = j} = (λt)j

�(νj j + 1)

1

Eνj ,1(λt)

[+∞∑
j=0

(λt)j

�(νj j + 1)

1

Eνj ,1(λt)

]−1

, j ≥ 0, (1.3)

is introduced and analysed in Section 3. The distribution

P{N̂ν(t) = j} = (λt)j

�(νj + 1)

1

Eν,1(λt)
, (1.4)

investigated in Beghin and Orsingher (2009), has been proved to be a weighted sum of Poisson
distributions by Balakrishnan and Kozubowski (2008) and Beghin and Macci (2012).

Finally, we analyse the state-dependent nonlinear pure birth process with one initial progen-
itor, where the state probabilities p

νk

k (t) satisfy the fractional equations

dνk

dtνk
p

νk

k (t) = −λkp
νk

k (t) + λk−1p
νk−1
k−1 (t), k ≥ 1, t > 0, νk ∈ (0, 1], (1.5a)

p
νk

k (0) =
{

1, k = 1,

0, k ≥ 2.
(1.5b)

The Laplace transform of the solution to (1.5) is given by∫ +∞

0
e−stp

νk

k (t) dt =
(k−1∏

j=1

λj

)
sν1−1∏k

j=1(s
νj + λj )

.

A similar and more general state-dependent fractional birth–death process was recently tackled
by Fedotov et al. (2012), where possible applications to chemotaxis are sketched. The case
where νk = ν, for all k in (1.5), has been dealt with in Orsingher and Polito (2010). An attempt
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State-dependent fractional point processes 21

to apply this fractional birth process was discussed in Garra and Polito (2011) in relation to
tumoral growth models and ETAS (epidemic type aftershock sequences) models in statistical
seismology. The dependence of the state probabilities of the point processes considered here
from the structure of νk requires further investigation which certainly implies a numerical
approach.

1.1. Notation

For the sake of clarity we briefly summarize the notation used for the different point processes
analysed in the following sections. First, we indicate with N(t), t ≥ 0, the counting process
associated with the variable-order difference-differential equations (1.1). In particular, the
state probabilities p

νk

k (t) = P{N(t) = k}, k ≥ 0, represent the probability of being in state k

at a fixed time t ≥ 0. The point process constructed and studied in Section 3 by means
of independent but nonidentically distributed interarrival times is instead indicated by N (t).
Both processes, when νk = ν for all k ≥ 0, reduce to the time-fractional Poisson process
Nν(t) treated, for example, in Beghin and Orsingher (2009). In the same article the authors
also considered the alternative definition for a fractional Poisson process characterized by the
distribution (1.4) and denoted here by N̂ν(t), t ≥ 0. We refer to its direct generalization in
a state-dependent sense as N̂(t) for which the distribution becomes that in (1.3). Lastly, the
linear fractional pure birth process with state-dependent order of fractionality presented in the
last section is simply indicated as Nlin(t), t ≥ 0.

2. The state-dependent fractional Poisson process

We first consider a state-dependent time-fractional Poisson process N(t), t ≥ 0, whose state
probabilities p

νk

k (t) = P{N(t) = k} are governed by (1.1). We have the following result.

Theorem 2.1. The Laplace transform of the solution to the state-dependent time-fractional
equations

dνk

dtνk
p

νk

k (t) = −λp
νk

k (t) + λp
νk−1
k−1 (t), k ≥ 0, t > 0, νk ∈ (0, 1], (2.1a)

p
νk

k (0) =
{

1, k = 0,

0, k ≥ 1,
(2.1b)

can be written as

p̃
νk

k (s) =
∫ +∞

0
e−stp

νk

k (t) dt = λksν0−1∏k
j=0(s

νj + λ)
,

where the fractional derivative appearing in (2.1) is in the sense of Dzhrbashyan–Caputo.

Proof. We can solve (2.1) by means of an iterative procedure, as follows. The equation
related to k = 0 is

dν0

dtν0
p

ν0
0 (t) = −λp

ν0
0 (t), t > 0, ν0 ∈ (0, 1], p

ν0
0 (0) = 1,

and has the solution p
ν0
0 (t) = Eν0,1(−λtν0), with Laplace transform,

p̃
ν0
0 (s) =

∫ +∞

0
e−stp

ν0
0 (t) dt = sν0−1

λ + sν0
,
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where

Eν0,1(−λtν0) =
∞∑

k=0

(−λtν0)k

�(ν0k + 1)

is the Mittag–Leffler function.
For k = 1, ⎧⎪⎨⎪⎩

dν1

dtν1
p

ν1
1 (t) = −λp

ν1
1 (t) + λp

ν0
0 (t), t > 0, ν1 ∈ (0, 1],

p
ν1
1 (0) = 0,

has the solution, with Laplace transform,

p̃
ν1
1 (s) =

∫ +∞

0
e−stp

ν1
1 (t) dt = λsν0−1

λ + sν0

1

λ + sν1
. (2.2)

By iterating this procedure, we arrive at

p̃
νk

k (s) =
∫ +∞

0
e−stp

νk

k (t) dt = λksν0−1∏k
j=0(s

νj + λ)
. (2.3)

Remark 2.1. A direct approach based on the inversion of the Laplace transform of (2.3) is
clumsy and cumbersome. We give the explicit evaluation of p

ν1
1 (t). In this case, from (2.2),

we have

p̃
ν1
1 (s) =

∫ +∞

0
e−stp

ν1
1 (t) dt

= λsν0−1

λ2 + λ(sν0 + sν1) + sν0+ν1

= λsν0−1

λ2 + sν0+ν1

1

1 + λ(sν0 + sν1)/(λ2 + sν0+ν1)

= λsν0−1
∞∑

m=0

(−λ(sν0 + sν1))m

(λ2 + sν0+ν1)m+1

= λsν0−1
∞∑

m=0

(−λ)m

(λ2 + sν0+ν1)m+1

m∑
r=0

(
m

r

)
sν0r+ν1(m−r). (2.4)

The inversion of (2.4) involves the generalized Mittag–Leffler function, defined as (see, for
example, Saxena et al. (2006))

Em
ν,β(−λtν) =

∞∑
k=0

(−λtν)k�(m + k)

k! �(νk + β)�(m)
,

where ν, β, m ∈ R
+. Indeed, we recall the following relation.∫ +∞

0
e−st tβ−1Em

ν,β(−λtν) dt = sνm−β

(λ + sν)m
. (2.5)
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In view of (2.4) and (2.5), we arrive at

p
ν1
1 (t) =

∞∑
m=0

(−1)mλm+1
m∑

r=0

(
m

r

)
tν0(m−r)+ν1r+ν1Em+1

ν0+ν1,ν0(m−r)+ν1r+ν1+1(−λ2tν0+ν1).

(2.6)

For the ν1 = ν0 = ν case, (2.6) becomes

pν
1(t) =

∞∑
m=0

(−1)mλm+1
m∑

r=0

(
m

r

)
tν(m+1)Em+1

2ν,ν(m+1)+1(−λ2t2ν)

=
∞∑

m=0

(−1)m(λtν)m+12mEm+1
2ν,ν(m+1)+1(−λ2t2ν)

=
∞∑

m=0

(−1)m(λtν)m+12m
∞∑

r=0

(
m + r

r

)
(−1)r (λ2t2ν)r

�(2νr + ν(m + 1) + 1)

=
∞∑

m=0

(−1)m(λtν)m+12m
∞∑

r=0

(−(m + 1)

r

)
(λ2t2ν)r

1

2π i

∫
Ha

eww−2νr−ν(m+1)−1 dw

=
∞∑

m=0

(−1)m(λtν)m+12m

× 1

2π i

∫
Ha

eww−ν(m+1)−1
[ ∞∑

r=0

(−(m + 1)

r

)
(λ2t2νw−2ν)r

]
dw

=
∞∑

m=0

(−1)m(λtν)m+12m 1

2π i

∫
Ha

ew w−ν(m+1)−1

(λ2t2νw−2ν + 1)m+1 dw

= 1

2π i

∫
Ha

ew λtνw−ν−1

λ2t2νw−2ν + 1

[ ∞∑
m=0

(−1)m(
2w−νλtν

λ2t2νw−2ν + 1
)m

]
dw

= 1

2π i

∫
Ha

λtνwν−1ew

(wν + λtν)2 dw

= λtν

ν
Eν,ν(−λtν), (2.7)

where in the last equality we have used the fact that

Eν,ν(x) = ν
d

dx
Eν,1(x) = ν

2π i

d

dx

∫
Ha

ewwν−1

wν − x
dw = ν

2π i

∫
Ha

ewwν−1

(wν − x)2 dw,

and applied the contour-integral representation of the reciprocal of the Gamma function

1

�(x)
= 1

2π i

∫
Ha

euu−xdu,

where Ha stands for the Hankel contour (see Olver et al. (2010, Equation (5.9.2), p. 139)).
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We note that (2.7) gives the result obtained for the time-fractional Poisson process in Beghin
and Orsingher (2009) as expected. Moreover, by considering∫ +∞

0
e−st λtν

ν
Eν,ν(−λtν) dt = λsν−1

(λ + sν)2 ,

we retrieve, for the case ν = ν0 = ν1,

pν
1(t) = λtν

ν
Eν,ν(−λtν),

which is the result obtained for the time-fractional Poisson process (see Beghin and Orsingher
(2009, Equation (2.11))).

By applying Equation (34) of Saxena et al. (2006) it is possible to give an explicit expression
for p

νk

k (t), for any k ≥ 2, in terms of cumbersome sums of generalized Mittag–Leffler functions.

Remark 2.2. An alternative way to obtain a representation of the state probability in the state-
dependent Poisson process is given by the following integral approach; starting from (2.3),
we have

p̃
νk

k (s) =
∫ +∞

0
e−stp

νk

k (t) dt

= λk sν0−1∏k
j=0(s

νj + λ)

=
(∫ ∞

0
e−λw0sν0−1e−w0s

ν0 dw0

)( k∏
j=1

∫ ∞

0
e−λwj λe−wj s

νj
dwj

)
. (2.8)

For the following developments, it is useful to recall that the inverse process of a ν-stable
subordinator Hν(t), t ≥ 0, namely Lν(t), t ≥ 0, is such that

P{Lν(t) < x} = P{Hν(x) > t}, x, t ≥ 0.

Hence, the relation between the law lν(x, t) of the process Lν(t) and the law hν(x, t) of the
process Hν(t) is given by (see, for example, D’Ovidio et al. (2014))

lν(x, t) = P{Lν(t) ∈ dx}
dx

= ∂

∂x
P{Hν(x) > t} = ∂

∂x

∫ ∞

t

hν(s, x) ds,

or, otherwise, ∫ ∞

t

P{Hν(x) ∈ dw} =
∫ x

0
P{Lν(t) ∈ dz}.

Hence, the density of the inverse process Lν(t) is given by

P{Lν(t) ∈ dx} = ∂

∂x

∫ ∞

t

P{Hν(x) ∈ dw}. (2.9)
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Therefore, the Laplace transform of lν(x, t) is given by

l̃ν (x, s) =
∫ ∞

0
e−st lν(x, t) dt

=
∫ ∞

0
e−st d

dx

[∫ +∞

t

P{Hν(x) ∈ dw}
]

dt

= d

dx

∫ ∞

0
P{Hν(x) ∈ dw}

∫ w

0
e−st dt

= 1

s

d

dx

[∫ ∞

0
(1 − e−sw)P{Hν(x) ∈ dw}

]
= sν−1e−xsν

, (2.10)

where we used the fact that

h̃ν(x, s) =
∫ +∞

0
e−sthν(x, t) dt = e−xsν

.

We also note that the explicit form of the law of the inverse of the stable subordinator is known in
terms of Wright functions (D’Ovidio et al. (2014)). Going back to (2.8), and in view of (2.10),
we can write

p̃
νk

k (s) =
(∫ ∞

0
e−λw0 dw0

∫ ∞

0
e−st lν0(w0, t) dt

)
×

( k∏
j=1

λ

∫ ∞

0
e−λwj dwj

∫ ∞

0
e−sxhνj

(x, wj ) dx

)

=
∫ ∞

0
dw0e−λw0 · · ·

∫ ∞

0
dwke−λwk

×
[∫ ∞

0
e−st lν0(w0, t) dt

k∏
j=1

λ

∫ ∞

0
e−sxhνj

(x, wj ) dx

]
. (2.11)

Hence, by inverting the Laplace transform we obtain

p
νk

k (t) = λk

∫ ∞

0
dw0e−λw0

∫ ∞

0
dw1e−λw1 · · ·

×
∫ ∞

0
dwke−λwk [lν0(w, t) ∗ hν1,...,νk

(w1, . . . , wk, t)] (2.12)

where the symbol ‘∗’ stands for the convolution of the law of the inverse stable subordinator lν0

and the distribution of the sum of k independent stable subordinators hν1,...,νk
(w1, . . . , wk, t).

In other words, lν0(w, t) ∗ hν1,...,νk
(w1, . . . , wk, t) is the distribution of the random variable

Lν0(t) +
k∑

j=1

Hνj (t).
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Remark 2.3. Another interesting characterization of the state-probabilities of the above process
is given by the following observation. First of all, since, for m = 1, E1

ν,β(·) = Eν,β(·),
from (2.5) we have ∫ +∞

0
e−st tν−1Eν,ν(−λtν) dt = 1

λ + sν
, (2.13)∫ +∞

0
e−stEν,1(−λtν) dt = sν−1

λ + sν
.

Hence, from (2.3), we find that

p̃
νk

k (s) = λksν0−1∏k
j=0(s

νj + λ)
(2.14)

=
[∫ +∞

0
e−stEν0,1(−λtν) dt

] k∏
j=1

[∫ +∞

0
e−stλtνj −1Eνj ,νj

(−λtνj ) dt

]
.

On the other hand, from (2.11), we have

p̃
νk

k (s) =
(∫ ∞

0
e−λw0 dw0

∫ ∞

0
e−st lν0(w0, t) dt

)
×

( k∏
j=1

λ

∫ ∞

0
e−λwj dwj

∫ ∞

0
e−sxhνj

(x, wj ) dx

)

=
(∫ ∞

0
e−st l̃ν0(λ, t) dt

)( k∏
j=1

λ

∫ ∞

0
e−sx h̃νj

(x, λ) dx

)
, (2.15)

which clearly coincides with (2.14).
By inverting the Laplace transform, we obtain the following result

p
νk

k (t) = Eν0,1(−λtν0)
k∗

j=1
λtνj −1Eνj ,νj

(−λtνj ) =
∫ ∞

0
Eν0,1(−λ(t − s)ν0)g(s) ds, (2.16)

where g(s) is the kth time iterated convolution of the functions

hj (t) = λtνj −1Eνj ,νj
(−λtνj ). (2.17)

We note that the last equation can be written in terms of the Prabhakar operator, that is, an integral
operator involving a Mittag–Leffler function as kernel (Prabhakar (1971)). From (2.16) we have
an integral representation, in explicit form given by

p
ν1
1 (t) =

∫ t

0
Eν0,1(−λ(t − s)ν0)Eν1,ν1(−λsν1)sν1−1 ds,

p
ν2
2 (t) =

∫ t

0
ds1Eν0,1(−λ(t − s1)

ν0)

×
∫ s1

0
ds2s

ν1−1
2 Eν1,ν1(−λs

ν1
2 )(s1 − s2)

ν2−1Eν2,ν2(−λ(s1 − s2)
ν2)

...
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p
νk

k (t) =
∫ t

0
ds1Eν0,1(−λ(t − s1)

ν0)

∫ s1

0
ds2 . . .

×
∫ sk

0
dsks

νk−1−1
k Eνk−1,νk−1(−λs

νk−1
k )(sk−1 − sk)

νk−1Eνk,νk
(−λ(sk−1 − sk)

νk ).

In order to find the mean value of the distribution p
νk

k (t), we multiply all the terms of (2.1)
for k and sum over all the states so that

∞∑
k=0

k
dνk

dtνk
p

νk

k (t) = −λ

∞∑
k=0

kp
νk

k (t) + λ

∞∑
k=0

kp
νk−1
k−1 (t)

= −λ

∞∑
k=0

kp
νk

k (t) + λ

∞∑
k=0

(k + 1)p
νk

k (t)

= λ. (2.18)

In the νk = ν case, for all k, we have

dν

dtν

∞∑
k=0

kpν
k (t) = dν

dtν
E(Nν(t)) = λ,

the solution of which is given by E(Nν(t)) = λtν/�(ν + 1) (see Beghin and Orsingher (2009,
Equation (2.7))). We note that it is possible to find an interesting result involving a convergent
series by using the Laplace transform in (2.18). Indeed, we have

∞∑
k=0

ksνk p̃
νk

k (s) = λs−1,

and recalling that

p̃
νk

k (s) = λksν0−1∏k
j=0(s

νj + λ)
, (2.19)

we find that
∞∑

k=0

kλksν0+νk∏k
j=0(s

νj + λ)
= λ.

This result is not trivial and we can check to see that it works, for example, in the special case
of ν = νk for all k, thus,

∞∑
k=1

kλks2ν

(sν + λ)k+1 = s2ν

sν + λ

∞∑
k=1

kλk

(sν + λ)k

= λs2ν

sν + λ

[
d

dw

∞∑
k=1

wk

(sν + λ)k

]
w=λ

= λs2ν

sν + λ

[
d

dw

w

sν + λ − w

]
w=λ

= λs2ν

sν + λ

[
sν + λ

(sν + λ − w)2

]
w=λ

= λ.
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Remark 2.4. We note for the probability generating function G(u, t) of the process N(t),
t ≥ 0, the following representation holds for u ∈ [0, 1]:∫ ∞

0
e−stG(u, t) dt =

∞∑
k=0

uk

∫ ∞

0
e−st

P{N(t) = k} dt

=
∫ ∞

0
e−st

P

{
min{0≤k≤N(t)} Xk > 1 − u

}
dt

=
∞∑

k=0

λkuksν0−1∏k
j=0(λ + sνj )

, (2.20)

where Xk, k ≥ 1, are independent and identically distributed random variables uniform
in [0, 1].

The representation of the probability generating function

G(u, t) = P

{
min{0≤k≤N(t)} Xk > 1 − u

}
,

follows the same lines for the time and space fractional Poisson processes described by
Orsingher and Polito (2012). In (2.20), the driving process is the state-dependent Poisson
process.

3. Alternative forms of the state-dependent Poisson process

We now construct a point process with independent but not identically distributed interarrival
times. In particular, the waiting time Uk between the kth and (k + 1)th arrival is distributed
with probability distribution function

fUk
(t) = λtνk−1Eνk,νk

(−λtνk ), t > 0.

Let us now call N (t), t ≥ 0, such a process which leads us to the following theorem.

Theorem 3.1. The state probabilities pk(t) of the process N (t), t ≥ 0, are governed by the
integral equation

pk(t) − pk(0) = −λIνkpk(t) + λIνk−1pk−1(t), t ≥ 0, νk ∈ (0, 1],
where I ν is the fractional integral in the sense of Riemann–Liouville (see (1)). Moreover, their
Laplace transforms are given by∫ ∞

0
e−st

P{N (t) = k} dt = λk sνk−1∏k
j=0(s

νj + λ)
.

Proof. First, we observe that the Laplace transform of the state probabilities can be calculated
directly by using the definition of the process N (t),∫ ∞

0
e−st

P{N (t) = k} dt

=
∫ ∞

0
e−st dt

[∫ t

0
P(U0 + · · · + Uk−1 ∈ dy) −

∫ t

0
P(U0 + · · · + Uk ∈ dy)

]
= 1

s

∫ ∞

0
e−sy[P(U0 + · · · + Uk−1 ∈ dy) − P(U0 + · · · + Uk ∈ dy)]
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= 1

s

[
λk∏k−1

j=0(λ + sνj )
− λk+1∏k

j=0(λ + sνj )

]

= 1

s

λk(λ + sνj ) − λk+1∏k
j=0(λ + sνk )

= λk sνk−1∏k
j=0(s

νj + λ)
. (3.1)

We note that, unfortunately, it does not coincide with (2.3). Hence, we have two distinct
processes that can be matched only by assuming that νk = ν for each k = 0, 1 . . . (in other
words, in the time-fractional Poisson case).

We can also find, in an explicit way, the integral equation governing the probabilities pk(t) =
P{N (t) = k}. We start from the ordinary difference-differential equation, governing the
Poisson process

dpk

dt
(t) = −λpk(t) + λpk−1(t),

with initial conditions

pk(0) =
{

1, k = 0,

0, k ≥ 1.

By integration with respect to t , we have the equivalent integral equation

pk(t) − pk(0) = −λ

∫ t

0
pk(s) ds + λ

∫ t

0
pk−1(s) ds. (3.2)

In order to obtain a fractional generalization of the last equation, we replace the first-order
integral in the right-hand side of (3.2), with state-dependent fractional integrals, i.e.

pk(t) − pk(0) = −λIνkpk(t) + λIνk−1pk−1(t), t ≥ 0, νk ∈ (0, 1], k ≥ 0, (3.3)

where I νk is the fractional integral in the sense of Riemann–Liouville. For k = 0, we have

p0(t) − 1 = −λIν0p0(t),

whose solution is given simply by p0(t) = Eν0,1(−λtν0). With k = 1, we obtain

p1(t) = −λIν1p1(t) + λIν0p0(t),

whose Laplace transform, after some simple calculations, is given by

p̃1(t) = λsν1−1

(sν0 + λ)(sν1 + λ)
,

and coincides with (3.1) in the k = 1 case. Then, it is immediate to prove that, for any order
k ≥ 1, the Laplace transform of pk(t), is given by (3.1). This proves that (3.3) is the governing
equation for N (t), t ≥ 0, as claimed.
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In order to highlight the relation between the two processes N(t), t ≥ 0, and N (t), t ≥ 0,
we can write, by rearranging (2.19),

p̃
νk

k (s) = sν0−νk
λksνk−1∏k

j=0(s
νj + λ)

.

Therefore, if (νk − ν0) > 0, for fixed k, we have

p
νk

k (t) = 1

�(νk − ν0)

∫ t

0
(t − y)(νk−ν0)−1

P{N (y) = k} dy = I νk−ν0P{N (t) = k}, t ≥ 0,

where I νk−ν0 is the Riemann–Liouville fractional integral. Note that, since the Riemann–
Liouville fractional derivative (that we indicate here with Dα) is the left-inverse operator to the
Riemann–Liouville fractional integral, we also obtain the related relation

Dνk−ν0p
νk

k (t) = P{N (t) = k}, t ≥ 0, (νk − ν0) > 0.

Conversely, in view of (3.1), we can write∫ ∞

0
e−st

P{N (t) = k} dt = sνk−ν0
λksν0−1∏k

j=0(s
νj + λ)

,

and, thus, if (ν0 − νk) > 0, for fixed k, we obtain

P{N (t) = k} = 1

�(ν0 − νk)

∫ t

0
(t − y)(ν0−νk)−1p

νk

k (y) dy = I ν0−νkp
νk

k (t), t ≥ 0,

and
Dν0−νkP{N (t) = k} = p

νk

k (t), t ≥ 0, (ν0 − νk) > 0.

Therefore, we have the following relation between the state probabilities of the two processes

p
νk

k (t) =
{

I νk−ν0P{N (t) = k}, νk > ν0,

Dν0−νkP{N (t) = k}, νk < ν0.
(3.4)

In order to deepen the meaning of this relation, we consider, as an example, the relation between
p

ν1
1 (t) and P{N (t) = 1}.

By inverting the Laplace transform (3.1), we obtain

P{N (t) = 1} =
∞∑

m=0

(−1)mλm+1

×
m∑

r=0

(
m

r

)
tν0(m−r)+ν1r+ν0Em+1

ν0+ν1,ν0(m−r)+ν1r+ν0+1(−λ2tν0+ν1),

by calculation similar to those given above for p
ν1
1 (t). Recalling that (Mathai and Haubold

(2008, p. 123))

Iα[tγ−1Em
β,γ (atβ)] = tα+γ−1Em

β,α+γ (atβ),
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and assuming that, for example, ν1 > ν0, we find that

I ν1−ν0P{N (t) = 1}

=
∞∑

m=0

(−1)mλm+1

×
m∑

r=0

(
m

r

)
I ν1−ν0(tν0(m−r)+ν1r+ν0Em+1

ν0+ν1,ν0(m−r)+ν1r+ν0+1(−λ2tν0+ν1))

=
∞∑

m=0

(−1)mλm+1

×
m∑

r=0

(
m

r

)
tν0(m−r)+ν1r+ν1Em+1

ν0+ν1,ν0(m−r)+ν1r+ν1+1(−λ2tν0+ν1)

= p
ν1
1 (t),

as expected.
Moreover, we observe that, since p

ν0
0 (t) = P{N (t) = 0} = Eν0,1(−λtν0), we have

∞∑
k=1

p
νk

k (t) =
∞∑

k=1

P{N (t) = k} = 1 − Eν0,1(−λtν0).

In view of (3.4), this implies that

∞∑
k=1

P{N (t) = k} =
∞∑

k=1

p
νk

k (t)

=
∑

k : νk>ν0

I νk−ν0P{N (t) = k} +
∑

k : νk<ν0

Dν0−νkP{N (t) = k}.

The second process we construct, denoted by N̂(t), t ≥ 0, is given by the following
generalization of the Poisson process, whose univariate probabilities are given by

Pr{N̂(t) = j} = (λt)j

�(νj j + 1)

1

Eνj ,1(λt)

[+∞∑
j=0

(λt)j

�(νj j + 1)

1

Eνj ,1(λt)

]−1

, j ≥ 0, (3.5)

where λ > 0, 0 < νj ≤ 1. We can treat it as a generalized Poisson process with state-dependent
probabilities. Indeed, we note that, if νj = 1, for all j , we have

Pr{N̂(t) = j} = (λt)j

�(j + 1)

1

eλt

[+∞∑
j=0

(λt)j

�(j + 1)

1

eλt

]−1

= (λt)j

j ! e−λt = Pr{N(t) = j},

which is the state probability of the homogeneous Poisson process.
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A similar construction was adopted by Beghin and Orsingher (2009). We note that an anal-
ogous generalization was used by Sixdeniers et al. (1999) in quantum mechanics, in relation to
Mittag–Leffler-type coherent states. We now recall from Balakrishnan and Kozubowski (2008)
that the distribution (3.5) can be regarded as a weighted Poisson sum. Indeed, we note that

(λt)j

�(νj j + 1)

1

Eνj ,1(λt)
= j !

�(νj j + 1)
Pr{N(t) = j}

[+∞∑
k=0

k!
�(νj k + 1)

Pr{N(t) = k}
]−1

.

Hence, we have

P{N̂(t) = j} =
[

(j ! /�(νj j + 1))P{N(t) = j}∑+∞
k=0(k! /�(νj k + 1))P{N(t) = k}

]

×
[+∞∑

j=0

(j ! /�(νj j + 1))P{N(t) = j}∑+∞
k=0(k! /�(νj k + 1))P{N(t) = k}

]−1

.

The probability generating function of (3.5) is given by

G(u, t) =
∞∑

k=0

uk Pr{N̂(t) = k}

=
[+∞∑

k=0

(λut)k

�(νkk + 1)

1

Eνk,1(λt)

][+∞∑
k=0

(λt)k

�(νkk + 1)

1

Eνk,1(λt)

]−1

.

In the νj = ν case, for all j ≥ 0, we have

G(u, t) =
[+∞∑

k=0

(λut)k

�(νk + 1)

1

Eν,1(λt)

][+∞∑
k=0

(λt)k

�(νk + 1)

1

Eν,1(λt)

]−1

= Eν,1(uλt)

Eν,1(λt)
,

that coincides with Equation (4.4) of Beghin and Orsingher (2009).
By means of the generating function we can also find the explicit form of the mean value of

the distribution (3.5), i.e.

EN̂(t) =
[
λt

+∞∑
k=0

k(λt)k−1

�(νkk + 1)

1

Eνk,1(λt)

][+∞∑
k=0

(λt)k

�(νkk + 1)

1

Eνk,1(λt)

]−1

=
[
λt

+∞∑
k=0

(λt)k

νk+1�(νk+1k + νk+1)

1

Eνk+1,1(λt)

][+∞∑
k=0

(λt)k

�(νkk + 1)

1

Eνk,1(λt)

]−1

,

such that, when νk = ν for all k, we recover the case considered in Beghin and Orsingher (2009)
and in Beghin and Macci (2012), i.e.

EN̂ν(t) = λtEν,ν(λt)

νEν,1(λt)
.

We now consider a sequence of a random number of nonnegative independent and identically
distributed random variables with distribution F(β) = P(Xi ≤ β), i ≥ 1 and represented
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by N̂(t). The distribution of the maximum and minimum of this sequence is given by

Pr
{
max

(
X1, · · · , XN̂(t)

)
< β

}
=

[+∞∑
k=0

(λF (β)t)k

�(νkk + 1)

1

Eνk,1(λt)

][+∞∑
k=0

(λt)k

�(νkk + 1)

1

Eνk,1(λt)

]−1

,

Pr
{
min

(
X1, · · · , XN̂(t)

)
> β

}
=

[+∞∑
k=0

(λ[1 − F(β)]t)k
�(νkk + 1)

1

Eνk,1(λt)

][+∞∑
k=0

(λt)k

�(νkk + 1)

1

Eνk,1(λt)

]−1

.

In the ν = νk = 1 case, for all k, we recover the distribution of the maximum and minimum
of the homogeneous Poisson process.

4. State-dependent fractional pure birth processes

In this section we consider a different point process which can be generalized in a state-
dependent sense as we have done for the fractional Poisson process. Thus, we analyse a
state-dependent fractional pure birth process (see Orsingher and Polito (2010) for the fractional
case with constant order), where the probabilities are governed by the following equations:

dνk

dtνk
p

νk

k (t) = −λkp
νk

k (t) + λk−1p
νk−1
k−1 (t), k ≥ 1, t > 0, νk ∈ (0, 1], (4.1a)

p
νk

k (0) =
{

1, k = 1,

0, k ≥ 2.
(4.1b)

As in Section 2 the Laplace transform of the solution to (4.1) can be found rather easily.
This is done in the following proposition.

Proposition 4.1. The Laplace transform of the solution to the state-dependent fractional pure-
birth process (4.1) is given by

p̃
νk

k (s) =
∫ +∞

0
e−stp

νk

k (t) dt =
(k−1∏

j=1

λj

)
sν1−1∏k

j=1(s
νj + λj )

,

where the fractional derivative appearing in (4.1) is in the sense of Dzhrbashyan–Caputo.

Proof. We can solve equation (4.1) by means of an iterative procedure, as follows.
The equation related to k = 1 is given by⎧⎪⎨⎪⎩

dν1

dtν1
p

ν1
1 (t) = −λ1p

ν1
1 (t), t > 0, ν1 ∈ (0, 1],

p
ν1
1 (0) = 1,

and has solution p
ν1
1 (t) = Eν1,1(−λtν1). For k = 2,⎧⎪⎨⎪⎩
dν2

dtν2
p

ν2
2 (t) = −λ2p

ν2
2 (t) + λ1p

ν1
1 (t), t > 0, ν2 ∈ (0, 1],

p
ν2
2 (0) = 0,
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has solution, with Laplace transform,

p̃
ν2
2 (s) =

∫ +∞

0
e−stp

ν2
2 (t) dt = λ1s

ν1−1

λ1 + sν1

1

λ2 + sν2
,

whose inverse is given by (see (2.4))

p
ν2
2 (t) =

∞∑
m=0

(−1)m
m∑

r=0

(
m

r

)
λr+1

1 λm−r
2 tν2(m−r)+ν1r+ν2

× Em+1
ν1+ν2,ν2(m−r)+ν1r+ν2+1(−λ1λ2t

ν1+ν2).

By iterating this procedure, we immediately arrive at

p̃
νk

k (s) =
∫ +∞

0
e−stp

νk

k (t) dt =
(k−1∏

j=1

λj

)
sν1−1∏k

j=1(s
νj + λj )

,

as claimed.

By recalling (2.13), we obtain the explicit expression of the state probabilities p
νk

k (t), k ≥ 1,
t ≥ 0, as

p
νk

k (t) = Eν1,1(−λ1t
ν1)

k∗
j=1

λj t
νj −1Eνj ,νj

(−λj t
νj ),

where the convolution is in the sense of (2.16).
We now consider the state-dependent linear birth process, denoted by Nlin(t), t ≥ 0. This

means that we take λk = λk in (4.1). We have the following theorem.

Theorem 4.1. Let us consider the state-dependent linear birth process Nlin(t), t ≥ 0, gov-
erned by

dνk

dtνk
p

νk

k (t) = −λkp
νk

k (t) + λ(k − 1)p
νk−1
k−1 (t), k ≥ 1, t > 0, νk ∈ (0, 1], (4.2a)

p
νk

k (0) =
{

1, k = 1,

0, k ≥ 2,
(4.2b)

then the following relation holds:

∞∑
k=1

km dνk

dtνk
p

νk

k (t) = λ

m−1∑
j=1

(
m

j

)
EN

m−j+1
lin .

Proof. In order to find explicit relations for the moments of the distribution Nlin(t), we
multiply both sides of (4.2) by km and sum over all the states, obtaining

∞∑
k=1

km dνk

dtνk
p

νk

k (t) = −λ

∞∑
k=1

km+1p
νk

k (t) + λ

∞∑
k=1

km(k − 1)p
νk−1
k−1 (t)

= −λ

∞∑
k=1

km+1p
νk

k (t) + λ

∞∑
k=1

k(k + 1)mp
νk

k (t)

= −λ

∞∑
k=1

km+1p
νk

k (t) + λ

∞∑
k=1

m∑
j=0

(
m

j

)
km−j+1p

νk

k (t)
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= λ

m∑
j=1

(
m

j

) ∞∑
k=1

km−j+1p
νk

k (t)

= λ

m∑
j=1

(
m

j

)
EN

m−j+1
lin .

Remark 4.1. We can consider in a explicit way the relations involving first and second
moments. For example, if we multiply (4.2) for k and sum over all the states, we obtain

∞∑
k=1

k
dνk

dtνk
p

νk

k (t) = −λ

∞∑
k=1

k2p
νk

k (t) + λ

∞∑
k=1

k(k − 1)p
νk−1
k−1 (t)

= λ

∞∑
k=1

kp
νk

k (t)

= λENlin(t).

In the same way, for the second moment, we multiply (4.2) for k2, obtaining

∞∑
k=1

k2 dνk

dtνk
p

νk

k (t) = −λ

∞∑
k=1

k3p
νk

k (t) + λ

∞∑
k=1

k2(k − 1)p
νk−1
k−1 (t)

= λ

∞∑
k=1

kp
νk

k (t) + 2λ

∞∑
k=1

k2p
νk

k (t)

= λENlin(t) + 2λE(Nlin)
2(t).
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