BASIC p-GROUPS: HIGHER COMMUTATOR STRUCTURE

Dedicated to the memory of Hanna Neumann

PAUL M. WEICHSEL

(Received 9 May 1972)

Communicated by M. F. Newman

1. Introduction

The classification of groups according to the varieties they generate requires the study of a class of indecomposable elements. Such a class is the class of *basic* groups which have been studied in [4], [5] and [6]. A group is called *basic* if it is indecomposable *qua* group; that is, it is critical and indecomposable *qua* variety; that is, its variety is join-irreducible. In this note we consider the higher commutator structure of basic *p*-groups. Our main theme is the relation between the formal weight of the higher commutator subgroups and the class of the group. We obtain information about the power-commutator structure of a basic *p*-groups, the kinds of laws that can hold in such a group and the varietal structure of groups of the form: Center-extended-by-X.

We conclude this section with some notation and elementary definitions.

If A and B are subgroups of a group G, then $A \subseteq B$ means that A is a subgroup of B while $A \subset B$ means that A is a proper subgroup of B. If $\{a_1, \dots, a_r\}$ is a set of elements of the group G, then $(a_1, a_2) = a_1^{-1}a_2^{-1}a_1a_2$ is a simple commutator of weight 2 on $\{a_1, a_2\}$. A simple commutator of weight n on $\{a_1, \dots, a_n\}$ is defined inductively by: $(a_{\sigma 1}, \dots, a_{\sigma n}) = ((a_{\sigma 1}, \dots, a_{\sigma (n-1)}), a_{\sigma n})$ with σ a permutation on $\{1, \dots, n\}$. The rth commutator subgroup, G_r , is the subgroup generated by simple commutators of weight r on the elements of G. We say the class of G is c, c(G) = c, if $G_c \neq 1$ while $G_{c+1} = 1$. If A and B are subgroups of G, then $(A, B) = \langle \{(a, b) \mid a \in A, b \in B\} \rangle$, the subgroup generated by all commutators of that form. Similarly, if A,B,C are normal subgroups of G, then (A,B,C)=((A,B),C). If $f(x_1, \dots, x_n)$ is a word on the letters x_1, \dots, x_n and A_1, \dots, A_n are subgroups of G, then $f(A_1, \dots, A_n) = \langle \{f(a_1, \dots, a_n) \mid a_i \in A_i, i = 1, \dots, n\} \rangle$. The exponent of G is denoted by e(G). For each positive integer x, $(G)^x = \langle \{g^x \mid g \in G\} \rangle$. The center of G is Z(G).

If $u(x_1, \dots, x_n)$ is a word on $\{x_1, \dots, x_n\}$ then we denote by $u(x_i \to a)$ the

Basic p-groups

word $u(x_1, \dots, x_{i-1}, a, x_{i+1}, \dots, x_n)$. A finite p-group G is called *regular* if for any pair $a, b \in G$ and any positive integer α , $(ab)^{p^{\alpha}} = a^{p^{\alpha}} b^{p^{\alpha}} c^{p^{\alpha}}$, $c \in \langle a, b \rangle_2$.

For the basic terminology concerning varieties of groups, the reader is referred to the book by Neumann [1]. We remind the reader that a group G is called *critical* if the variety generated by the proper subgroups and quotient groups of G does not contain the group G.

All groups considered are finite.

2. Higher commutator subgroups of basic p-groups: f-class

Let $f(x_1, \dots, x_n)$ be a commutator (not necessarily simple) on the letters x_1, \dots, x_n of weight n. Thus each letter appears exactly once. For example, $f(x_1, x_2, x_3, x_4) = ((x_4, x_2), (x_3, x_1))$ is a commutator of weight 4 on x_1, x_2, x_3, x_4 . Let $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ be a sequence of positive integers. Then $f(G_{\alpha_1}, \dots, G_{\alpha_n})$, sometimes denoted by $f(G, \Lambda)$ is called an *f*-commutator subgroup of G, or simply a higher commutator subgroup of G. Thus if f(x) = x (a commutator of weight 1) $f(G_{\alpha}) = G_{\alpha}$ the α th commutator subgroup of G. Now suppose that $f(x_1, \dots, x_n)$ and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ are as above. In analogue with the lower central series of a group we consider the groups $f(G_{\alpha_1}, \dots, G_{\alpha_{-1}}, G_{\alpha_{i+1}}, G_{\alpha_{i+1}}, \dots, G_{\alpha_n})$ for each $i = 1, \dots, n$. We denote the union of these groups by $f(G, \Lambda + 1)$ and refer to each as a component of $f(G, \Lambda + 1)$. Of particular interest is the case $f(G, \Lambda)$ \neq 1 and $f(G, \Lambda + 1) = 1$ since this resembles the last term of the lower central series. (It should be noted that there exist finite *p*-groups G such that $f(G, \Lambda) = f(G, \Lambda + 1)$ $\neq 1$ for suitable f and A). The "weight" of f(G, A) is given by $\alpha = \sum_{i=1}^{n} \alpha_i$ and it is natural to ask whether the integer α depends on A for a particular f and how it is related to the class of the group G. It is not difficult to construct examples showing that for a fixed p-group G and fixed commutator $f(x_1, \dots, x_n)$ there exist two sequences $\Lambda_1 = \{\alpha_1, \dots, \alpha_n\}$ and $\Lambda_2 = \{\beta_1, \dots, \beta_n\}$ with $\sum_{i=1}^n \alpha_i \neq \sum_{i=1}^n \beta_i$ such that $f(G, \Lambda_1) \neq 1$, $f(G, \Lambda_2) \neq 1$ while $f(G, \Lambda_1 + 1) = f(G, \Lambda_2 + 1) = 1$. Our first result (2.5) will show that this cannot happen if G is a basic p-group of small class c (c < p) and can happen only under special circumstances if G is basic with no restrictions on its class. In general the integer α is closely related to the class of G.

DEFINITION 2.1. Let $g(y_1, \dots, y_r)$ be a word on the r letters y_1, \dots, y_r and let G be a group. We say that g is G-multilinear if for each $i = 1, \dots, r$ and all $y_1, \dots, y_r, a \in G, g(y_i \to y_i a) = g \cdot g(y_i \to a)$.

LEMMA 2.2. Let $f(x_1, \dots, x_n)$ be a commutator of weight n and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ a sequence of poisitve integers. Then for any group G, $(f(G, \Delta), G) \subseteq f(G, \Lambda + 1)$.

PROOF. The proof is by induction on *n*. If n = 1, then $\Lambda = \{\alpha_1\}, f(x_1) = x_1$ and so $f(G, \Lambda) = G_{\alpha_1}$. Hence $(f(G, \Lambda), G) = G_{\alpha_1+1} = f(G, \Lambda + 1)$. Now assume that the lemma is true for all integers k, $1 \le k < n$. Since f is a commutator we may assume, by reindexing if necessary, that

$$f(x_1, \cdots, x_n) = (u(x_1, \cdots, x_r), v(x_{r+1}, \cdots, x_n)),$$

u and *v* being commutators of weights *r* and *n*-*r* respectively. We now use the "three-subgroup-lemma" of P. Hall [2, Theorem 3.4.7] which states that if *A*, *B* and *C* are normal subgroups of the group *G*, then each of the subgroups: (A, B, C), (B, C, A) and (C, A, B) is contained in the subgroup generated by the other two. Thus $(f(G, \Lambda), G) = (u(G, \Lambda_1), v(G, \Lambda_2), G)$ is contained in the join of $(v(G, \Lambda_2), G, u(G, \Lambda_1))$ and $(G, u(G, \Lambda_1), v(G, \Lambda_2))$ where $\Lambda_1 = \{\alpha_1, \dots, \alpha_r\}$ and $\Lambda_2 = \{\alpha_{r+1}, \dots, \alpha_n\}$. Now $(v(G, \Lambda_2), G, u(G, \Lambda_1)) = (u(G, \Lambda_1), (v(G, \Lambda_2), G))$ and $(G, u(G, \Lambda_1), v(G, \Lambda_2)) = ((u(G, \Lambda_1, G), v(G, \Lambda_2)))$ and by the induction assumption $(u(G, \Lambda_1), G) \subseteq (G, \Lambda_1 + 1)$ while $(v(G, \Lambda_2), G) \subseteq v(G, \Lambda_2 + 1)$. Hence $(f(G, \Lambda), G) \subseteq (u(G, \Lambda_1), (f(G, \Lambda_2 + 1)) \cdot (u(G, \Lambda_1 + 1), v(G, \Lambda_2)))$ and clearly both factors of this product are in $f(G, \Lambda + 1)$. Hence the lemma follows by induction.

LEMMA 2.3. Let $f(x_1, \dots, x_n)$ be a commutator of weight n and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ a sequence of positive integers. Then for a fixed group G, the commutator $f(y_1, \dots, y_n)$ with $y_i = (y_{i1}, \dots, y_{ini})$, $i = 1, \dots, n$ is G-multilinear on the variables $\{y_{i1i} | i = 1, \dots, n, j_i = 1, \dots, \alpha_i\}$ modulo $f(G, \Lambda + 1)$.

PROOF. The proof is by induction on *n*. If n = 1, then $f(x_1) = x_1$, $f(y_1) = (y_{11}, \dots, y_{1\alpha_1})$ while $f(G, \Lambda) = G_{\alpha_1}$ and $f(G, \Lambda + 1) = G_{\alpha_1+1}$. Clearly $f(y_1)$ is G-multilinear modulo G_{α_1+1} . Now assume the lemma for all $k, 1 \le k < n$ and $f(x_1, \dots, x_n) = (u(x_1, \dots, x_r), v(x_{r+1}, \dots, x_n))$ (by reindexing if necessary). Choose a fixed pair $j, k, 1 \le j \le r, 1 \le k \le \alpha_j$ and consider $f(y_{jk} \to y_{jk}z)$ $= (u(y_{jk} \to y_{jk}z), v)$. By induction $u(y_{jk} \to y_{jk}z) = u \cdot u(y_{jk} \to z)b$ with $b \in u(G, \Lambda_1 + 1), \Lambda_1 = \{\alpha_1, \dots, \alpha_r\}$ and hence $f(y_{jk} \to y_{jk}z) = (u \cdot u(y_{jk} \to z)b, v)$. Using the well-known identities

$$(cd, e) = (c, e)(c, e, d)(d, e)$$

and

$$(c, de) = (c, e)(c, d)(c, d, e)$$

we obtain

$$f(y_{jk} \to y_{jk}z) = f \cdot (f, b) \cdot (f, u(y_{jk} \to z)) \cdot (f, u(y_{jk} \to z), b) \cdot f(y_{ik} \to z) \cdot (f(y_{ik} \to z), b) \cdot (b, v).$$

Now it follows from 2.2 that each commutator containing f or $f(y_{jk} \to z)$ properly is in $f(G, \Lambda + 1)$, while $(b, v) \in (u(G, \Lambda_1 + 1), v) \subseteq f(G, \Lambda + 1)$. Hence $f(y_{jk} \to y_{jk}z)$ $= f \cdot f(y_{jk} \to z) \mod f(G, \Lambda + 1)$. Now, if we choose the pair j, k so that $r + 1 \leq j \leq n$ we repeat the above argument for v. Hence the lemma follows by induction.

Basic p-groups

LEMMA 2.4. Let $f(x_1, \dots, x_n)$ be a commutator of weight n and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ a sequence of positive integers. Let G be a p-group such that $f(G, \Lambda)$ is regular. Then $f^{p^{\beta}}(y_1, \dots, y_n)$ with $y_i = (y_{i1}, \dots, y_{i\alpha_i})$ $i = 1, \dots, n$ is G-multilinear on the variables $\{y_{ij_i} | i = 1, \dots, n, j_i = 1, \dots, \alpha_i\}$ modulo $f^{p^{\beta}}(G, \Lambda + 1)$ for any positive integer β .

PROOF. It follows from 2.3 that $f(y_1, \dots, y_n)$ is G-multilinear modulo $f(G, \Lambda + 1)$. Thus $f^{p\beta}(y_{jk} \to y_{jk}z) = (f \cdot f(y_{jk} \to z) \cdot b)^{p\beta}$ in the notation of the proof of 2.3. Now since $f(G, \Lambda)$ is regular it follows that $(f \cdot f(y_{jk} \to z) \cdot b)^{p\beta}$ $f^{p\beta} \cdot f^{p\beta}(y_{jk} \to z) \cdot b^{p\beta} \cdot c^{p\beta}$ with c in the commutator subgroup of $f(G, \Lambda)$ and hence by 2.2 in $f(G, \Lambda + 1)$. This completes the proof.

We now answer the question, raised earlier, about the "weight" of $f(G, \Lambda)$, its dependence on Λ and its relation to the class of G.

THEOREM 2.5. Let G be a p-group of class c such that var G is join-irreducible. Let $f(x_1, \dots, x_n)$ be a commutator of weight n and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ a sequence of positive integers such that $f(G,\Lambda) \neq 1$ but $f(G,\Lambda+1) = 1$. Then if $\alpha = \sum_{i=1}^{n} \alpha_i, \ \alpha \equiv c \pmod{p-1}$.

PROOF. Let F be the relatively free group in var G of the same rank as that of G. F therefore generates var G and satisfies: $f(F, \Lambda + 1) = 1$. Now consider $f(F,\Lambda) \cap F_c$. Since $f(G,\Lambda) \neq 1$, then also $f(F,\Lambda) \neq 1$. Clearly $F_c \neq 1$. Since var G = var F is join-irreducible it follows from [6, Theorem 1.6] that $f(F,\Lambda) \cap F_c \neq 1$. Hence there is $d \in f(F,\Lambda)$ and $h \in F_c$ such that $d = h \neq 1$ and we may assume from the multilinearity of $f(y_1, \dots, y_c)$ and (x_1, \dots, x_c) that both d and h may be expressed as products of powers of elements of the form $f((y_{11}, \dots, y_{1\alpha_1}), \dots, (y_{n_1}, \dots, y_{n\alpha_n}))$ and (w_1, \dots, w_c) respectively in a set of free generators of F. Hence, since F is relatively free this relation is a law in F and hence in G. Thus if we replace each generator z_i by z_i^l , l is a positive integer and use the fact that $f(F,\Lambda)$ is central in F (or that $f(G,\Lambda)$ is central in G) we obtain the equations

$$d = h$$
 and $d^{l^{\alpha}} = h^{l^{\alpha}}$.

Therefore

and since h is not trivial, $p|l^c - l^{\alpha} = l^{\alpha}(l^{c-\alpha} - 1)$. Now we insert the requirement that l be a primitive root of p, whence $p|l^{c-\alpha} - 1$ and $p-1|c-\alpha$; that is

 $h^{l^c-l^\alpha}=1$

$$\alpha \equiv c \pmod{p-1}.$$

This completes the proof.

It thus follows that, modulo p-1, the integer α is independent of Λ and in fact of f itself, as long as the condition: $f(G,\Lambda) \neq 1$, $f(G,\Lambda+1) = 1$ is satisfied in a basic p-group G.

P. M. Weichsel

The next result is an analogue of [6, Theorem 2.5].

COROLLARY 2.6. Let G be a p-group of class c such that var G is join-irreducible. Let $f(x_1, \dots, x_n)$ be a commutator of weight n and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ is a sequence of positive integers such that $f(G, \Lambda)$ is regular and nontrivial. If $e(f(G, \Lambda)) = p^{\gamma+1} > e(f(G, \Lambda + 1))$ and $\alpha = \sum_{i=1}^n \alpha_i$, then $\alpha \equiv c \pmod{p-1}$.

PROOF. Consider $f^{p^{\gamma}}$. Clearly $f^{p^{\gamma}}(G, \Lambda + 1) = 1$ and 2.4 applies. Hence we may repeat the proof of 2.5 replacing f by $f^{p^{\gamma}}$ and the result follows.

3. Center-extended-by-f groups

As a result of 2.5 we can now state a decomposition theorem for *p*-groups which satisfy $f(G, \Lambda) \neq 1$, $f(G, \Lambda + 1) = 1$.

THEOREM 3.1. Let G be a p-group of class c, $f(x_1, \dots, x_n)$ a commutator of weight n and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ a sequence of positive integers with $\alpha = \sum_{i=1}^n \alpha_i$. If $f(G, \Lambda) \neq 1$ while $f(G, \Lambda + 1) = 1$, then var $G = var\{A, B\}$ with $f(A, \Lambda) = 1$ and $c(B) \equiv \alpha \pmod{p-1}$.

PROOF. Since G is a finite p-group, var G is generated by the finite set of basic groups it contains, each satisfying $f(G, \Lambda + 1) = 1$. Let A be the direct product of all basic groups H in var G which satisfy $f(H, \Lambda) = 1$. Each remaining basic group M in var G satisfies $f(M, \Lambda) \neq 1$ and $f(M, \Lambda + 1) = 1$. Thus by 2.5 $c(M) \equiv \alpha \pmod{p-1}$. Hence the class of the direct product B of all such basic groups will likewise satisfy the same congruence.

It follows from 2.2 that a group G which satisfies $f(G, \Lambda) \neq 1$ and $f(G, \Lambda + 1) = 1$ is a central extension of a group A such that $f(A, \Lambda) = 1$. Unfortunately, the condition that $f(G, \Lambda + 1) = 1$ in 3.1 cannot be replaced by the condition that $f(G, \Lambda)$ is central in G. For the one hand there are easy examples of groups G for which both $f(G, \Lambda)$ and $f(G, \Lambda + 1)$ are central and non-trivial. Moreover A. G. R. Stewart [3] has given an example of a nonmetabelian, center-extended-by-metabelian group of exponent p(p > 5) which is basic and of class 5. Such a group G satisfies $(G_2, G_2) = f(G, \Lambda) \neq 1$ and central with $f = (x_1, x_2)$ and $\Lambda = \{2, 2\}$ but clearly fails to satisfy the conclusion of 3.1. The difficulty is that while $(G_2, G_2) \neq 1$ and central, $(G_2, G_2) = (G_3, G_2) = f(G, \Lambda + 1) \neq 1$. (Perhaps such groups should be called "center-extended-by- $f(G, \Lambda)$ " groups, giving the "maximal" Λ possible.)

If we add the condition $f(G, \Lambda) \supset f(G, \Lambda + 1)$ to the requirement that $f(G, \Lambda)$ be central we can obtain a similar congruence on α . The reader should note that in the proof that follows we utilize for the first time the fact that a basic group is critical. In fact we need only the weaker condition that G is monolithic.

COROLLARY 3.2. Let G be a basic p-group of class c. Let $f(x_1, \dots, x_n)$ be a

Basic p-groups

commutator of weight n and $\Lambda = \{\alpha_1, \dots, \alpha_n\}$ a sequence of positive integers such that $f(G, \Lambda)$ is central in G and $f(G, \Lambda) \supset f(G, \Lambda + 1)$. Then $\alpha \equiv c \pmod{p-1}$ with $\alpha = \sum_{i=1}^{n} \alpha_i$.

PROOF. Since G is basic it is critical and hence Z(G) is cyclic. $f(G, \Lambda)$ is a subgroup of Z(G) and so $e(f(G, \Lambda)) > e(f(G, \Lambda + 1))$ since $f(G, \Lambda) \supset f(G, \Lambda + 1)$. Clearly Z(G) is regular and so 2.8 applies. Thus $\alpha \equiv c \pmod{p-1}$.

4. Higher commutator laws of basic p-groups

In this section we investigate some consequences of laws of the form $f(G, \Lambda) = 1$ in basic *p*-groups. We begin with the simplest non-trivial case: $f(x_1, x_2) = (x_1, x_2)$ and $\Lambda = \{\alpha_1, \alpha_2\}, \alpha_1, \alpha_2 \ge 2$.

THEOREM 4.1. Let G be a basic p-group of class c. If $(G_r, G_s) = 1$ with

$$2 \leq r \leq s \leq \frac{c}{2} < \frac{p+2r-1}{2},$$

then $(G_r, G_r) = 1$.

PROOF. Assume that $(G_r, G_r) \neq 1$. Now let i, j be chosen so that $i, j \geq r$, $(G_i, G_j) \geq 1$ and i + j is maximal with these properties. Thus if $f(x_1, x_2) = (x_1, x_2)$ and $\Lambda = \{i, j\}$ it follows that $f(G, \Lambda) \neq 1$ while $f(G, \Lambda + 1) = 1$. Hence we can apply 2.5 and conclude that $i + j \equiv c \pmod{p-1}$. Now $i + j \leq c$ and so either i + j = c or else $2r \leq i + j \leq c - (p-1)$. But the second alternative implies that $c \geq 2r + p - 1$, a contradiction. Thus i + j = c. Therefore, either $i \geq c/2$ or $j \geq c/2$. We may choose either possibility since $(G_i, G_j) = (G_j, G_i)$. Thus assume that $j \geq c/2$. Then $G_j \subseteq G_s$ and $G_i \subseteq G_r$ by assumption, and so $(G_i, G_j) \subseteq (G_r, G_s) = 1$, a contradiction. Hence it follows that $(G_r, G_r) = 1$.

The theorem can be restated in terms of laws as follows:

COROLLARY 4.2. Let G be a basic p-group of class c. If $((x_1, \dots, x_r), (y_1, \dots, y_s))$ = 1 is a law of G with $2 \leq r \leq s \leq c/2 < (p + 2r - 1)/2$, then $((x_1, \dots, x_r), (y_1, \dots, y_r)) = 1$ is a law of G.

Generalizations of 4.1 can be carried out in a number of different directions. We give one example in the case: $f(x_1, x_2, x_3) = (x_1, x_2, x_3)$.

THEOREM 4.3. Let G be a basic p-group of class c. If $(G_r, G_s, G_2) = (G_r, G_2, G_s)$ = 1, 2 $\leq r \leq s \leq (c-2)/2 < (2r + p - 1)/2$, then $(G_r, G_r, G_2) = (G_r, G_2, G_r) = 1$.

PROOF. Since (G_s, G_2, G_r) is contained in the subgroup generated by (G_2, G_r, G_s) and (G_r, G_s, G_2) , and since $(G_2, G_r, G_s) = (G_r, G_2, G_s)$ it follows that $(G_s, G_2, G_r) = 1$. Thus under all permutations of 2, r, s the triple commutator subgroup composed of (G_2, G_r, G_s) is trivial.

Now consider the set $S = \{(G_u, G_v, G_w) \mid \text{ one of } u, v \text{ or } w \text{ is } 2 \text{ and the others}$ are $\geq r\}$. Let $(G_i, G_j, G_k) \in S$ such that $(G_i, G_j, G_k) \neq 1$, and i + j + k is maximal with this property. Let $f(x_1, x_2, x_3) = (x_1, x_2, x_3)$ and $\Lambda = \{i, j, k\}$. Then $f(G, \Lambda) \neq 1$ and $f(G, \Lambda + 1) = 1$. Thus it follows from 2.5 that $i + j + k \equiv c \pmod{p-1}$. But $i + j + k \leq c$ and so either i + j + k = c or else $2 + 2r \leq i + j + k \leq c - (p-1)$. But the second alternative implies that $c \geq 2r + p + 1$, a contradiction, and so i + j + k = c. Hence since one of i, j, k is 2 it follows that the sum of the remaining subscripts is c - 2 and hence that one of them is $\geq (c-2)/2 \geq s$. Thus, for example, if j = 2 and $i \geq (c-2)/2$, $k \geq r$ and hence $(G_i, G_j, G_k) \subseteq (G_s, G_2, G_r) = 1$, a contradiction. In this way we are able to conclude that the set S consists of the trivial subgroup, and hence that $(G_r, G_r, G_2) = 1$.

References

- [1] Hanna Neumann, Varieties of Groups (Ergeb. Math. 37, Springer, Berlin, 1967).
- [2] W. R. Scott. Group Theory (Prentice-Hall, Englewood Cliffs, N. J., 1964).
- [3] A.G.R.Stewart, 'On center-extended-by-metabelian groups', Math. Ann. 185 (1970), 285-302.
- [4] Paul M. Weichsel, 'On critical p-groups', Proc. London Math. Soc. (3) 14 (1964), 83–100.
- [5] Paul M. Weichsel, 'Critical and basic p-groups', Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, August 1965, 367-371, (Gordon and Breach, New York, 1967),
- [6] Paul M. Weichsel, 'Basic p-groups', J. Algebra 11 (1969), 331-337.

University of Illinois Urbana, Illinois, U. S. A.