BASIC p-GROUPS: HIGHER COMMUTATOR STRUCTURE

Dedicated to the memory of Hanna Neumann

PAUL M. WEICHSEL

(Received 9 May 1972)
Communicated by M. F. Newman

1. Introduction

The classification of groups according to the varieties they generate requires the study of a class of indecomposable elements. Such a class is the class of basic groups which have been studied in [4], [5] and [6]. A group is called basic if it is indecomposable qua group; that is, it is critical and indecomposable qua variety; that is, its variety is join-irreducible. In this note we consider the higher commutator structure of basic p-groups. Our main theme is the relation between the formal weight of the higher commutator subgroups and the class of the group. We obtain information about the power-commutator structure of a basic p-group, the kinds of laws that can hold in such a group and the varietal structure of groups of the form: Center-extended-by- X.

We conclude this section with some notation and elementary definitions.
If A and B are subgroups of a group G, then $A \subseteq B$ means that A is a subgroup of B while $A \subset B$ means that A is a proper subgroup of B. If $\left\{a_{1}, \cdots, a_{r}\right\}$ is a set of elements of the group G, then $\left(a_{1}, a_{2}\right)=a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}$ is a simple commutator of weight 2 on $\left\{a_{1}, a_{2}\right\}$. A simple commutator of weight n on $\left\{a_{1}, \cdots, a_{n}\right\}$ is defined inductively by: $\left(a_{\sigma 1}, \cdots, a_{\sigma n}\right)=\left(\left(a_{\sigma 1}, \cdots, a_{\sigma(n-1)}\right), a_{\sigma n}\right)$ with σ a permutation on $\{1, \cdots, n\}$. The r th commutator subgroup, G_{r}, is the subgroup generated by simple commutators of weight r on the elements of G. We say the class of G is $c, c(G)=c$, if $G_{c} \neq 1$ while $G_{c+1}=1$. If A and B are subgroups of G, then $(A, B)=\langle\{(a, b) \mid a \in A, b \in B\}\rangle$, the subgroup generated by all commutators of that form. Similarly, if A, B, C are normal subgroups of G, then $(A, B, C)=((A, B), C)$. If $f\left(x_{1}, \cdots, x_{n}\right)$ is a word on the letters x_{1}, \cdots, x_{n} and A_{1}, \cdots, A_{n} are subgroups of G, then $f\left(A_{1}, \cdots, A_{n}\right)=\left\langle\left\{f\left(a_{1}, \cdots, a_{n}\right) \mid a_{i} \in A_{i}, i=1, \cdots, n\right\}\right\rangle$. The exponent of G is denoted by $e(G)$. For each positive integer $x,(G)^{x}=\left\langle\left\{g^{x} \mid g \in G\right\}\right\rangle$. The center of G is $Z(G)$.

If $u\left(x_{1}, \cdots, x_{n}\right)$ is a word on $\left\{x_{1}, \cdots, x_{n}\right\}$ then we denote by $u\left(x_{i} \rightarrow a\right)$ the
word $u\left(x_{1}, \cdots, x_{i-1}, a, x_{i+1}, \cdots, x_{n}\right)$. A finite p-group G is called regular if for any pair $a, b \in G$ and any positive integer $\alpha,(a b)^{p^{x}}=a^{p^{x}} b^{p^{\alpha}} c^{p^{\alpha}}, c \in\langle a, b\rangle_{2}$.

For the basic terminology concerning varieties of groups, the reader is referred to the book by Neumann [1]. We remind the reader that a group G is called critical if the variety generated by the proper subgroups and quotient groups of G does not contain the group G.

All groups considered are finite.

2. Higher commutator subgroups of basic p-groups: f-class

Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a commutator (not necessarily simple) on the letters x_{1}, \cdots, x_{n} of weight n. Thus each letter appears exactly once. For example, $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\left(x_{4}, x_{2}\right),\left(x_{3}, x_{1}\right)\right)$ is a commutator of weight 4 on $x_{1}, x_{2}, x_{3}, x_{4}$. Let $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ be a sequence of positive integers. Then $f\left(G_{\alpha_{1}}, \cdots, G_{\alpha_{n}}\right)$, sometimes denoted by $f(G, \Lambda)$ is called an f-commutator subgroup of G, or simply a higher commutator subgroup of G. Thus if $f(x)=x$ (a commutator of weight 1) $f\left(G_{\alpha}\right)=G_{\alpha}$ the α th commutator subgroup of G. Now suppose that $f\left(x_{1}, \cdots, x_{n}\right)$ and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ are as above. In analogue with the lower central series cf a group we consider the groups $f\left(G_{\alpha_{1}}, \cdots, G_{\alpha_{-1}}, G_{\alpha_{i+1}}, G_{\alpha_{i+1}}, \cdots, G_{\alpha_{n}}\right)$ for each $i=1, \cdots, n$. We denote the union of these groups by $f(G, \Lambda+1)$ and refer to each as a component of $f(G, \Lambda+1)$. Of particular interest is the case $f(G, \Lambda)$ $\neq 1$ and $f(G, \Lambda+1)=1$ since this resembles the last term of the lower central series. (It should be noted that there exist finite p-groups G such that $f(G, \Lambda)=f(G, \Lambda+1)$ $\neq 1$ for suitable f and Λ). The "weight" of $f(G, \Lambda)$ is given by $\alpha=\sum_{i=1}^{n} \alpha_{i}$ and it is natural to ask whether the integer α depends on Λ for a particular f and how it is related to the class of the group G. It is not difficult to construct examples showing that for a fixed p-group G and fixed commutator $f\left(x_{1}, \cdots, x_{n}\right)$ there exist two sequences $\Lambda_{1}=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ and $\Lambda_{2}=\left\{\beta_{1}, \cdots, \beta_{n}\right\}$ with $\sum_{i=1}^{n} \alpha_{i} \neq \sum_{i=1}^{n} \beta_{i}$ such that $f\left(G, \Lambda_{1}\right) \neq 1, f\left(G, \Lambda_{2}\right) \neq 1$ while $f\left(G, \Lambda_{1}+1\right)=f\left(G, \Lambda_{2}+1\right)=1$. Our first result (2.5) will show that this cannot happen if G is a basic p-group of small class $c(c<p)$ and can happen only under special circumstances if G is basic with no restrictions on its class. In general the integer α is closely related to the class of G.

Definition 2.1. Let $g\left(y_{1}, \cdots, y_{r}\right)$ be a word on the r letters y_{1}, \cdots, y_{r} and let G be a group. We say that g is G-multilinear if for each $i=1, \cdots, r$ and all $y_{1}, \cdots, y_{r}, a \in G, g\left(y_{i} \rightarrow y_{i} a\right)=g \cdot g\left(y_{i} \rightarrow a\right)$.

Lemma 2.2. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a commutator of weight n and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ a sequence of poisitve integers. Then for any group $G,(f(G, \Delta), G) \subseteq f(G, \Lambda+1)$.

Proof. The proof is by induction on n. If $n=1$, then $\Lambda=\left\{\alpha_{1}\right\}, f\left(x_{1}\right)=x_{1}$ and so $f(G, \Lambda)=G_{\alpha_{1}}$. Hence $(f(G, \Lambda), G)=G_{\alpha_{1}+1}=f(G, \Lambda+1)$. Now assume
that the lemma is true for all integers $k, 1 \leqq k<n$. Since f is a commutator we may assume, by reindexing if necessary, that

$$
f\left(x_{1}, \cdots, x_{n}\right)=\left(u\left(x_{1}, \cdots, x_{r}\right), v\left(x_{r+1}, \cdots, x_{n}\right)\right)
$$

u and v being commutators of weights r and $n-r$ respectively. We now use the "three-subgroup-lemma" of P. Hall [2, Theorem 3.4.7] which states that if A, B and C are normal subgroups of the group G, then each of the subgroups: $(A, B, C),(B, C, A)$ and (C, A, B) is contained in the subgroup generated by the other two. Thus $(f(G, \Lambda), G)=\left(u\left(G, \Lambda_{1}\right), v\left(G, \Lambda_{2}\right), G\right)$ is contained in the join of $\left(v\left(G, \Lambda_{2}\right), G, u\left(G, \Lambda_{1}\right)\right)$ and $\left(G, u\left(G, \Lambda_{1}\right), v\left(G, \Lambda_{2}\right)\right)$ where $\Lambda_{1}=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ and $\Lambda_{2}=\left\{\alpha_{r+1}, \cdots, \alpha_{n}\right\}$. Now $\left(v\left(G, \Lambda_{2}\right), G, u\left(G, \Lambda_{1}\right)\right)=\left(u\left(G, \Lambda_{1}\right),\left(v\left(G, \Lambda_{2}\right), G\right)\right)$ and $\left(G, u\left(G, \Lambda_{1}\right), v\left(G, \Lambda_{2}\right)\right)=\left(\left(u\left(G, \Lambda_{1}\right), G\right), v\left(G, \Lambda_{2}\right)\right)$ and by the induction assumption $\left(u\left(G, \Lambda_{1}\right), G\right) \subseteq\left(G, \Lambda_{1}+1\right)$ while $\left(v\left(G, \Lambda_{2}\right), G\right) \subseteq v\left(G, \Lambda_{2}+1\right)$. Hence $(f(G, \Lambda), G) \subseteq$ $\left(u\left(G, \Lambda_{1}\right),\left(f\left(G, \Lambda_{2}+1\right)\right) \cdot\left(u\left(G, \Lambda_{1}+1\right), v\left(G, \Lambda_{2}\right)\right)\right.$ and clearly both factors of this product are in $f(G, \Lambda+1)$. Hence the lemma follows by induction.

Lemma 2.3. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a commutator of weight n and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ a sequence of positive integers. Then for a fixed group G, the commutator $f\left(y_{1}, \cdots, y_{n}\right)$ with $y_{i}=\left(y_{i 1}, \cdots, y_{i x_{i}}\right), i=1, \cdots, n$ is G-multilinear on the variables $\left\{y_{i_{i}} \mid i=1, \cdots, n, j_{i}=1, \cdots, \alpha_{i}\right\}$ modulo $f(G, \Lambda+1)$.

Proof. The proof is by induction on n. If $n=1$, then $f\left(x_{1}\right)=x_{1}$, $f\left(y_{1}\right)=\left(y_{11}, \cdots, y_{1 \alpha_{1}}\right)$ while $f(G, \Lambda)=G_{\alpha_{1}}$ and $f(G, \Lambda+1)=G_{\alpha_{1}+1}$. Clearly $f\left(y_{1}\right)$ is G-multilinear modulo $G_{\alpha_{1}+1}$. Now assume the lemma for all $k, 1 \leqq k<n$ and $f\left(x_{1}, \cdots, x_{n}\right)=\left(u\left(x_{1}, \cdots, x_{r}\right), v\left(x_{r+1}, \cdots, x_{n}\right)\right)$ (by reindexing if necessary). Choose a fixed pair $j, k, 1 \leqq j \leqq r, 1 \leqq k \leqq \alpha_{j}$ and consider $f\left(y_{j k} \rightarrow y_{j k} z\right)$ $=\left(u\left(y_{j k} \rightarrow y_{j k} z\right), v\right)$. By induction $u\left(y_{j k} \rightarrow y_{j k} z\right)=u \cdot u\left(y_{j k} \rightarrow z\right) b$ with $b \in u\left(G, \Lambda_{1}+1\right), \Lambda_{1}=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ and hence $f\left(y_{j k} \rightarrow y_{j k} z\right)=\left(u \cdot u\left(y_{j k} \rightarrow z\right) b, v\right)$. Using the well-known identities

$$
(c d, e)=(c, e)(c, e, d)(d, e)
$$

and

$$
(c, d e)=(c, e)(c, d)(c, d, e)
$$

we obtain

$$
\begin{aligned}
f\left(y_{j k} \rightarrow y_{j k} z\right)=f \cdot(f, b) \cdot\left(f, u\left(y_{j k} \rightarrow z\right)\right) \cdot\left(f, u\left(y_{j k} \rightarrow z\right), b\right) \cdot \\
f\left(y_{j k} \rightarrow z\right) \cdot\left(f\left(y_{j k} \rightarrow z\right), b\right) \cdot(b, v) .
\end{aligned}
$$

Now it follows from 2.2 that each commutator containing f or $f\left(y_{j k} \rightarrow z\right)$ properly is in $f(G, \Lambda+1)$, while $(b, v) \in\left(u\left(G, \Lambda_{1}+1\right), v\right) \subseteq f(G, \Lambda+1)$. Hence $f\left(y_{j k} \rightarrow y_{j k} z\right)$ $=f \cdot f\left(y_{j k} \rightarrow z\right)$ modulo $f(G, \Lambda+1)$. Now, if we choose the pair j, k so that $r+1 \leqq j \leqq n$ we repeat the above argument for v. Hence the lemma follows by induction.

Lemma 2.4. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a commutator of weight n and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ a sequence of positive integers. Let G be a p-group such that $f(G, \Lambda)$ is regular. Then $f^{p^{\beta}}\left(y_{1}, \cdots, y_{n}\right)$ with $y_{i}=\left(y_{i 1}, \cdots, y_{i \alpha_{i}}\right) i=1, \cdots, n$ is G-multilinear on the variables $\left\{y_{i j_{i}} \mid i=1, \cdots, n, j_{i}=1, \cdots, \alpha_{i}\right\}$ modulo $f^{p^{\beta}}(G, \Lambda+1)$ for any positive integer β.

Proof. It follows from 2.3 that $f\left(y_{1}, \cdots, y_{n}\right)$ is G-multilinear modulo $f(G, \Lambda+1)$. Thus $f^{p \beta}\left(y_{j k} \rightarrow y_{j k} z\right)=\left(f \cdot f\left(y_{j k} \rightarrow z\right) \cdot b\right)^{p^{\beta}}$ in the notation of the proof of 2.3. Now since $f(G, \Lambda)$ is regular it follows that $\left(f \cdot f\left(y_{j k} \rightarrow z\right) \cdot b\right)^{p^{\beta}}$ $f^{p^{\beta}} \cdot f^{p^{\beta}}\left(y_{j k} \rightarrow z\right) \cdot b^{p^{\beta}} \cdot c^{p^{\beta}}$ with c in the commutator subgroup of $f(G, \Lambda)$ and hence by 2.2 in $f(G, \Lambda+1)$. This completes the proof.

We now answer the question, raised earlier, about the "weight" of $f(G, \Lambda)$, its dependence on Λ and its relation to the class of G.

Theorem 2.5. Let G be a p-group of class c such that $\operatorname{var} G$ is join-irreducible. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a commutator of weight n and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ a sequence of positive integers such that $f(G, \Lambda) \neq 1$ but $f(G, \Lambda+1)=1$. Then if $\alpha=\sum_{i=1}^{n} \alpha_{i}, \alpha \equiv c(\bmod p-1)$.

Proof. Let F be the relatively free group in $\operatorname{var} G$ of the same rank as that of $G . F$ therefore generates var G and satisfies: $f(F, \Lambda+1)=1$. Now consider $f(F, \Lambda) \cap F_{c}$. Since $f(G, \Lambda) \neq 1$, then also $f(F, \Lambda) \neq 1$. Clearly $F_{c} \neq 1$. Since $\operatorname{var} G=\operatorname{var} F$ is join-irreducible it follows from [6, Theorem 1.6] that $f(F, \Lambda) \cap F_{c} \neq 1$. Hence there is $d \in f(F, \Lambda)$ and $h \in F_{c}$ such that $d=h \neq 1$ and we may assume from the multilinearity of $f\left(y_{1}, \cdots, y_{c}\right)$ and $\left(x_{1}, \cdots, x_{c}\right)$ that both d and h may be expressed as products of powers of elements of the form $f\left(\left(y_{11}, \cdots, y_{1 \alpha_{1}}\right), \cdots,\left(y_{n 1}, \cdots, y_{n \alpha}\right)\right)$ and $\left(w_{1}, \cdots, w_{c}\right)$ respectively in a set of free generators of F. Hence, since F is relatively free this relation is a law in F and hence in G. Thus if we replace each generator z_{i} by z_{i}^{l}, l is a positive integer and use the fact that $f(F, \Lambda)$ is central in F (or that $f(G, \Lambda)$ is central in G) we obtain the equations

$$
d=h \text { and } d^{l^{\alpha}}=h^{l c} .
$$

Therefore

$$
h^{l c-I \alpha}=1
$$

and since h is not trivial, $p \mid l^{c}-l^{\alpha}=l^{\alpha}\left(l^{c-\alpha}-1\right)$. Now we insert the requirement that l be a primitive root of p, whence $p \mid l^{c-\alpha}-1$ and $p-1 \mid c-\alpha$; that is

$$
\alpha \equiv c(\bmod p-1)
$$

This completes the proof.
It thus follows that, modulo $p-1$, the integer α is independent of Λ and in fact of f itself, as long as the condition: $f(G, \Lambda) \neq 1, f(G, \Lambda+1)=1$ is satisfied in a basic p-group G.

The next result is an analogue of [6, Theorem 2.5].
Corollary 2.6. Let G be a p-group of class c such that $\operatorname{var} G$ is join-irreducible. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a commutator of weight n and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ is a sequence of positive integers such that $f(G, \Lambda)$ is regular and nontrivial. If $e(f(G, \Lambda))=p^{\gamma+1}>e(f(G, \Lambda+1))$ and $\alpha=\sum_{i=1}^{n} \alpha_{i}$, then $\alpha \equiv c(\bmod p-1)$.

Proof. Consider $f^{p^{\nu}}$. Clearly $f^{p^{\nu}}(G, \Lambda+1)=1$ and 2.4 applies. Hence we may repeat the proof of 2.5 replacing f by $f^{p^{\nu}}$ and the result follows.

3. Center-extended-by-f groups

As a result of 2.5 we can now state a decomposition theorem for p-groups which satisfy $f(G, \Lambda) \neq 1, f(G, \Lambda+1)=1$.

Theorem 3.1. Let G be a p-group of class $c, f\left(x_{1}, \cdots, x_{n}\right)$ a commutator of weight n and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ a sequence of positive integers with $\alpha=\sum_{i=1}^{n} \alpha_{i}$. If $f(G, \Lambda) \neq 1$ while $f(G, \Lambda+1)=1$, then $\operatorname{var} G=\operatorname{var}\{A, B\}$ with $f(A, \Lambda)=1$ and $c(B) \equiv \alpha(\bmod p-1)$.

Proof. Since G is a finite p-group, $\operatorname{var} G$ is generated by the finite set of basic groups it contains, each satisfying $f(G, \Lambda+1)=1$. Let A be the direct product of all basic groups H in var G which satisfy $f(H, \Lambda)=1$. Each remaining basic group M in $\operatorname{var} G$ satisfies $f(M, \Lambda) \neq 1$ and $f(M, \Lambda+1)=1$. Thus by 2.5 $c(M) \equiv \alpha(\bmod p-1)$. Hence the class of the direct product B of all such basic groups will likewise satisfy the same congruence.

It follows from 2.2 that a group G which satisfies $f(G, \Lambda) \neq 1$ and $f(G, \Lambda+1)=1$ is a central extension of a group A such that $f(A, \Lambda)=1$. Unfortunately, the condition that $f(G, \Lambda+1)=1$ in 3.1 cannot be replaced by the condition that $f(G, \Lambda)$ is central in G. For the one hand there are easy examples of groups G for which both $f(G, \Lambda)$ and $f(G, \Lambda+1)$ are central and non-trivial. Moreover A. G. R. Stewart [3] has given an example of a nonmetabelian, center-extended-by-metabelian group of exponent $p(p>5)$ which is basic and of class 5 . Such a group G satisfies $\left(G_{2}, G_{2}\right)=f(G, \Lambda) \neq 1$ and central with $f=\left(x_{1}, x_{2}\right)$ and $\Lambda=\{2,2\}$ but clearly fails to satisfy the conclusion of 3.1. The difficulty is that while $\left(G_{2}, G_{2}\right) \neq 1$ and central, $\left(G_{2}, G_{2}\right)=\left(G_{3}, G_{2}\right)=f(G, \Lambda+1) \neq 1$. (Perhaps such groups should be called "center-extended-by- $f(G, \Lambda$)' groups, giving the "maximal" Λ possible.)

If we add the condition $f(G, \Lambda) \supset f(G, \Lambda+1)$ to the requirement that $f(G, \Lambda)$ be central we can obtain a similar congruence on α. The reader should note that in the proof that follows we utilize for the first time the fact that a basic group is critical. In fact we need only the weaker condition that G is monolithic.

Corollary 3.2. Let G be a basic p-group of class c. Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a
commutator of weight n and $\Lambda=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ a sequence of positive integers such that $f(G, \Lambda)$ is central in G and $f(G, \Lambda) \supset f(G, \Lambda+1)$. Then $\alpha \equiv c(\bmod p-1)$ with $\alpha=\sum_{i=1}^{n} \alpha_{i}$.

Proof. Since G is basic it is critical and hence $Z(G)$ is cyclic. $f(G, \Lambda)$ is a subgroup of $Z(G)$ and so $e(f(G, \Lambda))>e(f(G, \Lambda+1))$ since $f(G, A) \supset f(G, \Lambda+1)$. Clearly $Z(G)$ is regular and so 2.8 applies. Thus $\alpha \equiv c(\bmod p-1)$.

4. Higher commutator laws of basic p-groups

In this section we investigate some consequences of laws of the form $f(G, \Lambda)=1$ in basic p-groups. We begin with the simplest non-trivial case: $f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$ and $\Lambda=\left\{\alpha_{1}, \alpha_{2}\right\}, \alpha_{1}, \alpha_{2} \geqq 2$.

Theorem 4.1. Let G be a basic p-group of class c. If $\left(G_{r}, G_{s}\right)=1$ with

$$
2 \leqq r \leqq s \leqq \frac{c}{2}<\frac{p+2 r-1}{2}
$$

then $\left(G_{r}, G_{r}\right)=1$.
Proof. Assume that $\left(G_{r}, G_{r}\right) \neq 1$. Now let i, j be chosen so that $i, j \geqq r$, $\left(G_{i}, G_{j}\right) \geqq 1$ and $i+j$ is maximal with these properties. Thus if $f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$ and $\Lambda=\{i, j\}$ it follows that $f(G, \Lambda) \neq 1$ while $f(G, \Lambda+1)=1$. Hence we can apply 2.5 and conclude that $i+j \equiv c(\bmod p-1)$. Now $i+j \leqq c$ and so either $i+j=c$ or else $2 r \leqq i+j \leqq c-(p-1)$. But the second alternative implies that $c \geqq 2 r+p-1$, a contradiction. Thus $i+j=c$. Therefore, either $i \geqq c / 2$ or $j \geqq c / 2$. We may choose either possibility since $\left(G_{i}, G_{j}\right)=\left(G_{j}, G_{i}\right)$. Thus assume that $j \geqq c / 2$. Then $G_{j} \subseteq G_{s}$ and $G_{i} \subseteq G_{r}$ by assumption, and so $\left(G_{i}, G_{j}\right) \subseteq\left(G_{r}, G_{s}\right)=1$, a contradiction. Hence it follows that $\left(G_{r}, G_{r}\right)=1$.

The theorem can be restated in terms of laws as follows:
Corollary 4.2. Let G be a basic p-group of class c. If $\left(\left(x_{1}, \cdots, x_{r}\right),\left(y_{1}, \cdots, y_{s}\right)\right)$ $=1$ is a law of G with $2 \leqq r \leqq s \leqq c / 2<(p+2 r-1) / 2$, then $\left(\left(x_{1}, \cdots, x_{r}\right)\right.$, $\left.\left(y_{1}, \cdots, y_{r}\right)\right)=1$ is a law of G.

Generalizations of 4.1 can be carried out in a number of different directions. We give one example in the case: $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, x_{3}\right)$.

Theorem 4.3. Let G be a basic p-group of class c.If $\left(G_{r}, G_{s}, G_{2}\right)=\left(G_{r}, G_{2}, G_{s}\right)$ $=1,2 \leqq r \leqq s \leqq(c-2) / 2<(2 r+p-1) / 2$, then $\left(G_{r}, G_{r}, G_{2}\right)=\left(G_{r}, G_{2}, G_{r}\right)=1$.

Proof. Since $\left(G_{s}, G_{2}, G_{r}\right)$ is contained in the subgroup generated by $\left(G_{2}, G_{r}, G_{s}\right)$ and $\left(G_{r}, G_{s}, G_{2}\right)$, and since $\left(G_{2}, G_{r}, G_{s}\right)=\left(G_{r}, G_{2}, G_{s}\right)$ it follows that $\left(G_{s}, G_{2}, G_{r}\right)=1$. Thus under all permutations of $2, r, s$ the triple commutator subgroup composed of $\left(G_{2}, G_{r}, G_{s}\right)$ is trivial.

Now consider the set $S=\left\{\left(G_{u}, G_{v}, G_{w}\right) \mid\right.$ one of u, v or w is 2 and the others are $\geqq r\}$. Let $\left(G_{i}, G_{j}, G_{k}\right) \in S$ such that $\left(G_{i}, G_{j}, G_{k}\right) \neq 1$, and $i+j+k$ is maximal with this property. Let $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, x_{3}\right)$ and $\Lambda=\{i, j, k\}$. Then $f(G, \Lambda) \neq 1$ and $f(G, \Lambda+1)=1$. Thus it follows from 2.5 that $i+j+k \equiv$ $c(\bmod p-1)$. But $i+j+k \leqq c$ and so either $i+j+k=c$ or else $2+2 r \leqq$ $i+j+k \leqq c-(p-1)$. But the second alternative implies that $c \geqq 2 r+p+1$, a contradiction, and so $i+j+k=c$. Hence since one of i, j, k is 2 it follows that the sum of the remaining subscripts is $c-2$ and hence that one of them is $\geqq(c-2) / 2 \geqq s$. Thus, for example, if $j=2$ and $i \geqq(c-2) / 2, k \geqq r$ and hence $\left(G_{i}, G_{j}, G_{k}\right) \subseteq\left(G_{s}, G_{2}, G_{r}\right)=1$, a contradiction. In this way we are able to conclude that the set S consists of the trivial subgroup, and hence that $\left(G_{r}, G_{r}, G_{2}\right)=1$.

References

[1] Hanna Neumann, Varieties of Groups (Ergeb. Math. 37, Springer, Berlin, 1967).
[2] W. R. Scott. Group Theory (Prentice-Hall, Englewood Cliffs, N. J., 1964).
[3] A. G. R. Stewart, 'On center-extended-by-metabelian groups', Math. Ann. 185 (1970), 285-302.
[4] Paul M. Weichsel, 'On critical p-groups', Proc. London Math. Soc. (3) 14 (1964), 83-100.
[5] Paul M. Weichsel, 'Critical and basic p-groups', Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, August 1965, 367-371, (Gordon and Breach, New York, 1967),
[6] Paul M. Weichsel, ‘Basic p-groups’, J. Algebra 11 (1969), 331-337.

University of Illinois
Urbana, Illinois, U. S. A.

