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Abstract. This paper is devoted to determine the geometry of a class of smooth projective rational
surfaces whose minimal models are the Hirzebruch ones; concretely, they are obtained as the blowup
of a Hirzebruch surface at collinear points. Explicit descriptions of their effective monoids are given,
and we present a decomposition for every effective class. Such decomposition is used to confirm the
effectiveness of some divisor classes when the Riemann–Roch theorem does not give information
about their effectiveness. Furthermore, we study the nef divisor classes on such surfaces. We provide
an explicit description for their nef monoids, and, moreover, we present a decomposition for every nef
class. On the other hand, we prove that these surfaces satisfy the anticanonical orthogonal property.
As a consequence, the surfaces are Harbourne–Hirschowitz and their Cox rings are finitely generated.
Finally, we prove that the complete linear system associated with any nef divisor is base-point-free;
thus, the semi-ample and nef monoids coincide. The base field is assumed to be algebraically closed
of arbitrary characteristic.

1 Introduction

In his Ph.D. thesis [36] of 1978, Rosoff studied the following question: given a smooth
algebraic variety defined over an algebraically closed field K, is the effective monoid
of X finitely generated? Here, the effective monoid associated with X is the set of
all effective divisors modulo algebraic equivalence and we denote it by Eff(X). In
particular, Rosoff focused on the case when X is the blowup of the projective plane
P

2
K in at most eight points in general position, he gave a positive answer in this case by

providing the minimal generating set that generates the effective monoid. Such results
were published after in [37]. Nowadays, such problem is still open even in the case of
surfaces, some contributions in this direction are [3, 4, 8–15, 17–19, 21, 30–34].
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In this work, we study this problem for a family of smooth projective rational
surfaces obtained as the blowups of Hirzebruch surfaces at collinear points. Moreover,
we give the minimal generating sets for such effective monoids and a decomposition
for every effective class (see Theorem 2.1). We would like to emphasize that such
decomposition is useful when the Riemann–Roch theorem does not imply the
effectivity of a divisor class (see Section 3). Furthermore, we study the nef classes on
such surfaces in order to compute the dimensions of all complete linear systems, to
conclude that their Cox rings are finitely generated and to conclude that their semi-
ample and nef monoids are equal (see Section 4).

Here, we recall some basic notions of Hirzebruch surfaces that we will need later
on. For a fixed nonnegative integer n, the nth Hirzebruch surface Σn is the rational
ruled surface defined by the locally free sheaf OP1

K
⊕OP1

K
(−n) of rank two on the

projective line P
1
K over an algebraically field K of arbitrary characteristic. It is well

known that {Cn ,F} is a minimal generating set of the Néron–Severi group NS(Σn)
of Σn asZ-module, whereCn is the class of a section Cn of Σn (unique if n is positive; in
this case, such section is usually called the negative section) and F is the class of a fiber
F of Σn . The intersection form on Σn is given by the three equalitiesCn

2 = −n, F2 = 0,
and Cn ⋅ F = 1 (for more details, see, for example, [25, Chapter V, Section 2]).

The notion of collinear points for Σn is motivated by the following two facts. Let r
be a positive integer:
a) Consider r collinear points p1 , . . . , pr contained in a line L of the projective plane

P
2
K . The surface obtained as the blowup of P2

K at p1 is the Hirzebruch surface Σ1,
where the exceptional divisor corresponding to p1 is the negative section C1 of Σ1
and the strict transform L̃ of L is a fiber of Σ1 that contains the points p2 , . . . , pr .
In this way, we can think the blowup of P2

K at r collinear points as the blowup of
Σ1 at r − 1 points contained in a fiber of Σ1 with none of them belonging to C1.

b) Consider a point p inP
2
K , take r points infinitely near to p in the first infinitesimal

neighborhood, and let S be the surface obtained as the blowup of P2
K at such

points. As in the previous case, the obtained surface when we blow up the point
p is Σ1 and the r infinitely near points are contained in the negative section C1.
So, we can obtain S as the blowup of Σ1 at r points lying on the curve C1.

Considering these facts, we introduce the concept of collinearity for a Hirzebruch
surface.

Definition 1.1 Let n be a nonnegative integer. A finite number of points on Σn are
collinear if all of them belong to a fiber or all of them are contained in Cn .

Note that in the case when n ≥ 1, one has to distinguish between two cases
depending whether there exists a point in the negative section or not. While in the
case n = 0, there is always a fiber in the second ruling containing each of the points.
Hence, for collinear points p1 , . . . , pr on Σn , the following cases occur:
Case a) n = 0 and the points are contained in a fiber of Σ0. Note that in this case,

there is always a curve of the second ruling passing through each point.
Case b) n > 0 and all the points are contained in a fiber of Σn . In such a situation,

one of the following occurs:
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Figure 1: Configurations of collinear points in Σn .

Case b.1) none of them lie on Cn ,
Case b.2) pk lies on Cn for a unique k = 1, . . . , r.

Case c) n ≥ 0 and all the points are contained on Cn .
Thus, the possible configurations for collinearity in Σn are illustrated in Figure 1.

Fix a nonnegative integer n and a positive integer r. Consider r collinear points
p1 , . . . , pr on Σn . We denote by Y r

n the blowup of Σn at p1 , . . . , pr . Our main result
regarding the finite generation of the effective monoid of Y r

n is the following.

Theorem 1.1 (See Theorem 2.1) Let Y r
n be the blowup of the Hirzebruch surface Σn

at r collinear points. Then the effective monoid Eff(Y r
n) of the surface Y r

n is finitely
generated. Moreover, an explicit decomposition for every effective class is given in the
proof of Theorem 2.1.

The technique used to achieve the above result is purely geometric based on the
intersection theory and some special divisors on Hirzebruch surfaces. See the proof
of Theorem 2.1 for the explicit decomposition.

Another question related to the finite generation of the effective monoid is the
finite generation of the Cox ring. In the case of a smooth projective variety X defined
over an algebraically closed field K such that the linear and numerical equivalence are
the same, the Cox ring of X is the K-algebra Cox(X) given by

Cox(X) = ⊕
(n1 , . . . ,n t)∈Zt

H0(X ,Ln1
1 ⊗⋯⊗Ln t

t ),

where L1 , . . . ,Lt form a basis of the Picard group Pic(X) of X. One of the most
interesting problems nowadays is the classification of smooth projective varieties
whose Cox rings are finitely generated and also to determine explicitly the generators
and relations for such K-algebras, this is justified from the point of view of the
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birational geometry classification of varieties. Indeed, Hu and Keel proved in [28]
that there is an equivalence between the finite generation of the Cox ring of X and
the fact that one is able to run the Minimal Model Program for any divisor on X. In
the two-dimensional case, there are some results that ensure the finite generation of
the Cox ring (for example, [1, 2, 6, 7, 16, 26, 29, 40]. However, there does not exist
a complete and concrete classification of smooth projective rational surfaces whose
Cox rings are finitely generated.

One way to achieve the finite generation of the Cox ring for an anticanonical
rational surface (that is, a smooth projective rational surface whose anticanonical class
is effective) is by means of the finite generation of the effective monoid and the so-
called anticanonical orthogonal property.

Definition 1.2 A smooth projective surface S has the anticanonical orthogonal
property whenever every nef divisor on S orthogonal to an anticanonical divisor is
the zero divisor.

Here, a nef divisor D is a divisor on S such that D ⋅ E ≥ 0 for every effective divisor
E on S. Thus, according to Definition 1.2, it is interesting the study of nef classes.
This notion was introduced first in [13] in 2018. Then it was used in the context of
anticanonical rational surfaces in [8, 14], and more generally studied in the context of
regular surfaces in [5].

In our context, the surface Y r
n is anticanonical (see Proposition 4.2), and then we

will prove that anticanonical orthogonal property is satisfied in order to conclude the
finite generation of the Cox ring.

The set of all classes of nef divisors on S will be denoted by Nef(S), and obviously
it has an algebraic structure of a monoid. By a nef class, we mean the class of a nef
divisor. Our main result regarding the nef monoid of Y r

n is the following.

Theorem 1.2 (See Theorem 4.1) Let Y r
n be the blowup of the Hirzebruch surface Σn

at r collinear points. Then the nef monoid Nef(Y r
n) of the surface Y r

n is finitely
generated. Moreover, an explicit decomposition for every nef class is given in the proof of
Theorem 4.1.

In the proof of Theorem 4.1, we present the explicit decomposition for every nef
class. This result along with the one in Theorem 1.1 generalizes the results obtained by
Ottem in [35] regarding the finite generation of the effective and nef monoids.

On the other hand, another interesting problem is to determine the dimensions of
the complete linear systems on a smooth projective surface (see, for example, [20, 23,
27, 39] when the surface is P2

K and the points are in general position, and [22] when
the points may be not in general position). In this direction, in [13], the following
notion was introduced.

Definition 1.3 A smooth projective surface S is a Harbourne–Hirschowitz surface if
for every effective and nef divisor H on S, the Z-module H1(S ,OS(H)) vanishes.

The importance of the vanishing of the first cohomology groups for nef divisors is
that one is able to compute the dimension of the complete linear systems. In particular,
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any anticanonical rational surface that satisfies the anticanonical orthogonal property
is a Harbourne–Hirschowitz one (see [13, Theorem 2.5]). Thus, it turns out that our
surfaces Y r

n are Harbourne–Hirschowitz. Moreover, the complete linear system of
every nef divisor on Y r

n is base-point-free (see Theorem 4.6). Thus, every nef divisor
is semi-ample; here, a semi-ample divisor D on a surface S is a divisor such that for
sufficiently large s, the complete linear system ∣sD∣ associated with sD is base-point-
free.

This paper is organized as follows: In Section 2, we prove the finite generation of the
effective monoid of Y r

n , and we give an explicit decomposition for any effective class.
Such decomposition is used in Section 3 to prove that some divisor classes are effective
when the Riemann–Roch theorem is not able to give such information. Finally, in
Section 4, we present a study of nef classes on Y r

n ; concretely, we provide the minimal
generating set for the nef monoid and an explicit decomposition for any nef class, and
we prove that the anticanonical orthogonal property is satisfied and that the complete
linear systems of the nef divisors are base-point-free. The latter implies that the semi-
ample and nef monoids of Y r

n are equal.

2 The minimal generating set of the effective monoid

Recall that for a fixed positive integer r and nonnegative integer n, the surface Y r
n

is the blowup of the Hirzebruch surface Σn at r collinear points p1 , . . . , pr . So,
by construction, we have a birational morphism π ∶ Y r

n → Σn and Y r
n is a smooth

projective rational surface whose Picard number ρ(Y r
n) is equal to r + 2. A minimal

generating set for the Néron–Severi group NS(Y r
n) of Y r

n as Z-module is given by
{Cn ,F,−E1 ,−E2 , . . . ,−Er}, where Cn is the class of the total transform of Cn by π, F
is the class of the total transform of a fiber F of Σn not containing any of the points by π,
and E j is the class of the exceptional divisor corresponding to p j for every j = 1, . . . , r.
The intersection form on Y r

n is given by the following equalities:
• C2

n = −n,
• F2 = 0,
• Cn ⋅ F = 1,
• Cn ⋅ E j = F ⋅ E j = 0 for all j = 1, . . . , r, and
• Ei ⋅ E j = −δ i j for all i , j = 1, . . . , r, where δ i j stands for the Kronecker delta.

In order to prove Theorem 1.1, we have to consider all the possible configurations
of collinear point on Σn as it was given on page 2.

Theorem 2.1 With notation as above, the effective monoid Eff(Y r
n) is finitely gener-

ated and its minimal generating set M is given by the following:
Case a) 1. C0 − Ei for all i = 1, . . . , r,

2. F −∑r
j=1 E j,

3. Ei for all i = 1, . . . , r.
Case b.1) 1. Cn ,

2. F −∑r
j=1 E j,

3. Ei for all i = 1, . . . , r.
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Case b.2) 1. Cn − Ek for the unique index k,
2. F −∑r

j=1 E j,
3. Ei for all i = 1, . . . , r.

Case c) 1. Cn −∑r
j=1 E j,

2. F − Ei for all i = 1, . . . , r,
3. Ei for all i = 1, . . . , r.

Proof Let M be the set described in Theorem 2.1. It is clear that in each case, M
is contained in Eff(Y r

n). Conversely, let D be an element of Eff(Y r
n). So, there exist

integer numbers a, b, c1 , . . . , cr such that D = aCn + bF − c1E1 −⋯− crEr . Without
loss of generality, we assume that D is irreducible and different from the elements of
M in each case.

Case a) Note that the integer numbers a −∑r
j=1 c j , c i , and b − c i are nonnega-

tive since the intersection numbers D ⋅ (F −∑r
j=1 E j), D ⋅ Ei , and D ⋅ (C0 − Ei) are

greater than or equal to zero for all i = 1, . . . , r. Hence, we can writeD in the following
way:

D =
r−1
∑
j=1

c j (C0 − E j) +
⎛
⎝

a −
r−1
∑
j=1

c j
⎞
⎠
(C0 − Er) + b

⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+ b

r−1
∑
j=1

E j

+
⎛
⎝

a + b −
r
∑
j=1

c j
⎞
⎠
Er .

Case b.1) In this case, we may write D as

D = aCn + b
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r
∑
j=1
(b − c j)E j ,

and every coefficient is nonnegative since D ⋅ (F −∑r
j=1 E j) = a −∑r

j=1 c j , D ⋅ Cn =
b − na, and D ⋅ Ei = c i are nonnegative for all i = 1, . . . , r.

Case b.2) The conditions D ⋅ (F −∑r
j=1 E j) ≥ 0, D ⋅ (Cn − Ek) ≥ 0, and D ⋅ Ei ≥ 0

imply that a −∑r
j=1 c j , b − na − ck , and c i are nonnegative for each i = 1, . . . , r. Then

we have that

D = a (Cn − Ek) + b
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r
∑
j=1
j≠k

(b − c j)E j + (b + a − ck)Ek .

Case c) Finally, in this case, we can consider the next decomposition of D:

D = a
⎛
⎝
Cn −

r
∑
j=1

E j
⎞
⎠
+

r−1
∑
j=1

c j (F − E j) +
⎛
⎝

b −
r−1
∑
j=1

c j
⎞
⎠
(F − Er) + a

r−1
∑
j=1

E j

+
⎛
⎝

a + b −
r
∑
j=1

c j
⎞
⎠
Er .
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Indeed, the integer numbers D ⋅ (Cn −∑r
j=1 E j) = b − na −∑r

j=1 c j , D ⋅ Ei = c i , and
D ⋅ (F − Ei) = a − c i are nonnegative for each i = 1, . . . , r.

This completes the proof. ∎

Remark 2.2 This result generalizes the one obtained by Rosoff in [38] in the case
when we are considering the ruled surface over the projective line P1

K .

3 Dimensions of complete linear systems without the use of the
Riemann–Roch theorem

In this section, we illustrate some examples of effective classes on Y r
n in each of

the cases that we are considering. In all of them, it is given an effective class, fact
that cannot be deduced from the Riemann–Roch theorem, but the decomposition
exhibited in the proof in Theorem 2.1 will do. To clarify the notation below, if D is
a divisor class on Y r

n , then h i(Y r
n ,D) denotes the dimension of the ith cohomology

group of the invertible sheaf associated with a divisor in the class of D for i = 0, 1, 2.
The strategy in all the examples below is as follows: we begin with a divisor class

D such that KY r
n −D is not an effective class; this follows from the fact that F is a

nef class and F ⋅ (KY r
0
−D) < 0. Here, KY r

n stands for the canonical class on Y r
n , and

by [25, Chapter V, Lemma 2.10 and Proposition 3.3], we have that KY r
n = −2Cn − (n +

2)F + E1 +⋯+ Er . This implies that h2(Y r
0 ,D) = 0. Consequently, by the Riemann–

Roch theorem,

h0(Y r
n ,D) − h1(Y r

n ,D) = 1 + 1
2
(D2 −KY r

n ⋅D) .

In the considered examples, the right-hand side will be a negative integer, and thus
the Riemann–Roch theorem cannot conclude that D is an effective class. However,
the decomposition in Theorem 2.1 will imply that our class D is effective.

Example 3.1 In Case a), the following elements of NS(Y r
0 ) are effective:

(1) The class D = r(r + 1)(2r + 1)
6

C0 −∑r
j=1 j2E j . In this case,

h0(Y r
0 ,D) − h1(Y r

0 ,D) = 1 + 1
2

r
∑
j=1
( j2 − j4),

and the number on the right side of the above equation is negative when r ≥ 2.
On the other hand, using the decomposition of this case, we can write

D =
r−1
∑
j=1

j2 (C0 − E j) + r2 (C0 − Er) .

(2) The class D = (r2 − 1)C0 + F −∑r
j=1 rE j . Here, the right-hand side of the

Riemann–Roch theorem is 1 + 1
2 (3r2 − r3 − 2), which is negative once r ≥ 4.
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In this case, the decomposition of D is equal to

D =
r−1
∑
j=1

r (C0 − E j) + (r − 1) (C0 − Er) +
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r−1
∑
j=1

E j .

(3) The class D = r(r + 1)
2

C0 + F −∑r
j=1 jE j . The right-hand side in the Riemann–

Roch theorem is 1 + 1
2 (2 +∑

r
j=1(3 j − j2)), which is negative when r ≥ 5. How-

ever, it occurs that

D =
r−1
∑
j=1

j (C0 − E j) + r (C0 − Er) +
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r
∑
j=1

E j .

Example 3.2 For Case b), the next elements of NS(Y r
n) are effective:

(1) The class D = Cn + F −∑r
j=1 E j . It follows that

h0(Y r
n ,D) − h1(Y r

n ,D) = 4 − n − r,

and note that 4 − n − r is negative when n + r ≥ 5. However, for Case b.1), we
have that

D = Cn +
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠

,

whereas in Case b.2),

D = (Cn − Ek) +
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+ Ek .

(2) The class D = Cn + rF −∑r
j=1 jE j . In fact, for Case b.1), it occurs that

D = Cn + r
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r
∑
j=1
(r − j)E j ,

whereas for Case b.2),

D = (Cn − Ek) + r
⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r
∑
j=1
j≠k

(r − j)E j + (r + 1 − k)Ek .

In both cases, the right-hand side of the Riemann–Roch theorem is 2 + 2r − n −
1
2 ∑

r
j=1 ( j + j2), which is negative when r ≥ 2.

(3) The class D = Cn + r2F −∑r
j=1 j2E j . Note that the right-hand side of the

Riemann–Roch theorem is 2 + 2r2 − n − 1
2 ∑

r
j=1 ( j2 + j4), which is negative

if r ≥ 2. Moreover, for Case b.1), we have that

D = Cn + r2 ⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r
∑
j=1
(r2 − j2)E j ,
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whereas in Case b.2),

D = (Cn − Ek) + r2 ⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+

r
∑
j=1
j≠k

(r2 − j2)E j + (r2 + 1 − k2)Ek .

Example 3.3 In Case c), the following elements of NS(Y r
n) are effective:

(1) The class D = Cn + (r − 1)F −∑r
j=1 E j . In this case, it follows that

h0(Y r
n ,D) − h1(Y r

n ,D) = r − n,

and the right-hand side of this equation is negative when n ≥ r + 1. However,
using the corresponding decomposition, we have

D =
⎛
⎝
Cn −

r
∑
j=1

E j
⎞
⎠
+

r−1
∑
j=1
(F − E j) +

r−1
∑
j=1

E j .

(2) The class D = Cn + (r2 − 1)F −∑r
j=1 rE j . Indeed,

D =
⎛
⎝
Cn −

r
∑
j=1

E j
⎞
⎠
+

r−1
∑
j=1

r (F − E j) + (r − 1) (F − Er) +
r−1
∑
j=1

E j .

From the right-hand side of the Riemann–Roch theorem, we obtain the quantity
1 + 1

2 (3r2 − r3 − 2n − 2), which is negative whenever r ≥ 4.
(3) The class D = Cn + 3rF −∑r−1

j=1 E j − rEr . For this class, we have that

D =
⎛
⎝
Cn −

r
∑
j=1

E j
⎞
⎠
+

r−1
∑
j=1
(F − E j) + (2r + 1) (F − Er) +

r−1
∑
j=1

E j + (r + 2)Er ,

whereas the right-hand side of the Riemann–Roch theorem 1 + 1
2(9r + 4 −

r2 − 2n) is negative for r ≥ 10.

4 The minimal generating set of the nef and semi-ample monoids

Now, we study the nef classes on the surface Y r
n . First, we determine the generators

of the nef monoid of Y r
n and we present an explicit decomposition for every nef

class. Later on, we prove that Y r
n satisfies the anticanonical orthogonal property (see

Definition 1.2). As a consequence, we conclude that Y r
n is a Harbourne–Hirschowitz

surface (see Definition 1.3) and that the Cox ring of Y r
n is finitely generated. Finally, we

prove that the complete linear system associated with any nef divisor is base-point-
free. It is worth noting that we consider the distinct possibilities that can occur for a
configuration of collinear points, i.e., we consider Cases a), b), and c) stated on page
2.

Now, we prove Theorem 1.2.
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Theorem 4.1 With notation as above, the nef monoid Nef(Y r
n) is finitely generated

and its minimal generating set N is given by the following:
Case a) 1. C0,

2. F,
3. C0 + F − Ei for all i = 1, . . . , r,
4. 2C0 + F − Ei − E j for all 1 ≤ i < j ≤ r,
5. 3C0 + F − Ei − E j − E� for all 1 ≤ i < j < � ≤ r,
⋮

r + 2. rC0 + F − E1 −⋯− Er .
Case b.1) 1. Cn + nF,

2. F,
3. Cn + nF − Ei for all i = 1, . . . , r.

Case b.2) 1. Cn + nF,
2. F,
3. Cn + nF − Ei for all i = 1, . . . , r with i ≠ k,
4. Cn + (n + 1)F − Ek .

Case c) 1. Cn + nF,
2. F,
3. Cn + (n + 1)F − Ei for all i = 1, . . . , r,
4. Cn + (n + 2)F − Ei − E j for all 1 ≤ i < j ≤ r,
5. Cn + (n + 3)F − Ei − E j − E� for all 1 ≤ i < j < � ≤ r,
⋮

r + 2. Cn + (n + r)F − E1 −⋯− Er .

Proof Let N be the set described in Theorem 4.1. For each case, it is clear that N
is contained in Nef(Y r

n). On the other hand, we consider an element D in Nef(Y r
n).

Then there exist integer numbers a, b, c1 , . . . , cr such thatD = aCn + bF − c1E1 −⋯−
crEr . Without loss of generality, we assume that D is irreducible and different from
the elements of N in each case.

Case a) The hypothesis on D implies that D ⋅ (F −∑r
j=1 E j) ≥ 0, i.e., a −∑r

j=1 c i ≥
0. Also, we know that D ⋅ (C0 − Ei) = b − c i ≥ 0 for all i = 1, . . . , r. Without loss of
generality, we can make the assumption c1 ≥ ⋯ ≥ cr , and thus c i − c i+1 ≥ 0 for all i =
1, . . . , r − 1. There are two possibilities that can occur:

Case I: b ≥ ∑r
j=1 c j . For this possibility, we consider the following decomposition:

⎛
⎝

a −
r
∑
j=1

c j
⎞
⎠
C0 +

⎛
⎝

b −
r
∑
j=1

c j
⎞
⎠
F + c1 (C0 +F − E1) +⋯ + cr (C0 + F − Er) =D.

Case II: b < ∑r
j=1 c j . In this case, the following decomposition recovers D:

⎛
⎝

a −
r
∑
j=1

c j
⎞
⎠
C0 + (b − c1)F + (c1 − c2) (C0 + F − E1)

+ (c2 − c3) (2C0 + F − E1 − E2) + (c3 − c4) (3C0 +F − E1 − E2 − E3) +⋯
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+(cr−1 − cr)
⎛
⎝
(r − 1)C0 + F −

r−1
∑
j=1

E j
⎞
⎠
+ cr
⎛
⎝

rC0 + F −
r
∑
j=1

E j
⎞
⎠
=D.

Case b.1) Since D is a nef class, then D ⋅ (F −∑r
i=1 E j) ≥ 0, that is, a −∑r

j=1 c j ≥ 0.
Since D ⋅ Cn ≥ 0, then we have that b ≥ na. Now, note that

c1(Cn + nF − E1) +⋯ + cr(Cn + nF − Er) +
⎛
⎝

a −
r
∑
j=1

c j
⎞
⎠
(Cn + nF) + (b − na)F =D.

Case b.2) Using the fact that D is nef, we have that D ⋅ (F −∑r
j=1 E j) = a −

∑r
j=1 c j ≥ 0. Also, note that D ⋅ (Cn − Ek) = b − na − ck ≥ 0. Thus, we have the equal-

ity

c1 (Cn + nF − E1) +⋯ + ̂ck (Cn + nF − Ek) +⋯ + cr (Cn + nF − Er)

+ck (Cn + (n + 1)F − Ek) +
⎛
⎝

a −
r
∑
j=1

c j
⎞
⎠
(Cn + nF) + (b − na − ck)F =D;

here, the term ̂ck (Cn + nF − Ek) is omitted.
Case c) The condition D nef implies that D ⋅ (Cn −∑r

j=1 E j) = b − na −∑r
j=1 c i ≥

0. In addition, we have thatD ⋅ (F − Ei) = a − c i ≥ 0 for all i = 1, . . . , r. We distinguish
two cases:

Case I: a ≥ ∑r
j=1 c j . Here, we have that

⎛
⎝

a −
r
∑
j=1

c j
⎞
⎠
(Cn + nF) +

⎛
⎝

b − na −
r
∑
j=1

c j
⎞
⎠
F + c1 (Cn + (n + 1)F − E1) +⋯

+cr (Cn + (n + 1)F − Er) =D.

Case II. a < ∑r
j=1 c j . Without loss of generality, we assume that c1 ≥ ⋯ ≥ cr . Hence,

we have that c i − c i+1 ≥ 0 for all i = 1, . . . , r − 1. In this case, we consider the following
decomposition:

⎛
⎝

b − na −
r
∑
j=1

c j
⎞
⎠
F + (a − c1) (Cn + nF) + (c1 − c2) (Cn + (n + 1)F − E1)

+ (c2 − c3) (Cn + (n + 2)F − E1 − E2) + (c3 − c4) (Cn + (n + 3)F − E1 − E2 − E3)

+⋯ + (cr−1 − cr)
⎛
⎝
Cn + (n + (r − 1))F −

r−1
∑
j=1

E j
⎞
⎠
+ cr
⎛
⎝
Cn + (n + r)F −

r
∑
j=1

E j
⎞
⎠

=D.

This completes the proof. ∎

In order to prove the fulfillment of the anticanonical orthogonal property, we
determine a decomposition for the anticanonical class of Y r

n in each of the possible
cases that can occur.
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Proposition 4.2 With the above notation, the surface Y r
n is anticanonical. Moreover,

we can write the anticanonical class −KY r
n using r + 2 classes of smooth rational

curves:
• For Case a),

−KY r
0
= 2 (C0 − E1) + 2

⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+ 3E1 +

r
∑
j=2

E j .

• For Case b.1),

−KY r
n = 2Cn + (n + 2)

⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+ (n + 1)

r
∑
j=1

E j .

• For Case b.2),

−KY r
n = 2 (Cn − Ek) + (n + 2)

⎛
⎝
F −

r
∑
j=1

E j
⎞
⎠
+ (n + 3)Ek + (n + 1)

r
∑
j=1
j≠k

E j .

• For Case c),

−KY r
n = 2

⎛
⎝
Cn −

r
∑
j=1

E j
⎞
⎠
+ (n + 2) (F − E1) + (n + 3)E1 +

r
∑
j=2

E j .

Proof In each case, the elements that appear in the right side of the equalities are
the classes of the exceptional divisors, the class of the strict transform C̃n of the curve
Cn (that is, C0 − E1 in Case a), Cn in Case b.1), Cn − Ek in Case b.2), and Cn −∑r

j=1 E j

in Case c)), and the class of the strict transform F̃ of an adequate fiber in the respective
case: in the Cases a), b.1), and b.2), the fiber containing all the points (that is, the class
of F̃ is equal to F −∑r

j=1 E j), and in the Case c), the fiber containing the point p1 (that
is, the class of F̃ is equal to F − E1). So, we have that such classes are effective. We
conclude the result by [25, Chapter V, Corollary 2.11 and Proposition 3.3]. ∎

Now, we prove that the surface Y r
n satisfies the anticanonical orthogonal property

and some consequences of this fact.

Theorem 4.3 With the above notation, the surface Y r
n satisfies the anticanonical

orthogonal property.

Proof Let H be a nef divisor on Y r
n , and denote its class in NS(Y r

n) byH. Then there
are nonnegative integers a, b, c1 , . . . , cr such that H = aCn + bF −∑r

i=1 c iEi . Now,
assume that −KY r

n ⋅H = 0. Using this hypothesis, the corresponding decomposition
of the anticanonical class of Proposition 4.2 in each case, and the fact that the
intersection number of H with each component of −KY r

n is equal to zero (since H

is nef), we conclude that the class H is equal to zero. Indeed,
Case a) In this case, the equation −KY r

0
⋅H = 0 implies the conditions (C0 − E1) ⋅

H = 0, (F −∑r
j=1 E j) ⋅H = 0, and Ei ⋅H = 0 for every i = 1, . . . , r. So, b − c1 = 0, a −
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∑r
j=1 c j = 0, and c i = 0 for every i = 1, . . . , r. Thus, the integers a, b, c1 , . . . , cr are zero.

Therefore, H = 0.
Case b.1) Here, we have the conditions Cn ⋅H = 0, (F −∑r

j=1 E j) ⋅H = 0, and Ei ⋅
H = 0 for every i = 1, . . . , r. These imply that b = na, a −∑r

j=1 c j = 0, and c i = 0 for
every i = 1, . . . , r. Consequently, H is equal to zero.

Case b.2) In this case, the conditions (Cn − Ek) ⋅H = 0, (F −∑r
j=1 E j) ⋅H = 0, and

Ei ⋅H = 0 for every i = 1, . . . , r hold. Hence, b = na + ck , a −∑r
j=1 c j = 0, and c i = 0

for every i = 1, . . . , r. So, H = 0.
Case c) For the last case, we know that (Cn −∑r

j=1 E j) ⋅H = 0, (F − E1) ⋅H = 0,
and Ei ⋅H = 0 for every i = 1, . . . , r. Hence, b = na +∑r

j=1 c j , a − c1 = 0 and c i = 0 for
every i = 1, . . . , r. Therefore, H is the zero class.

In all cases, we obtain that H = 0; therefore, we conclude that H = 0. ∎

Corollary 4.4 With the above notation, the surface Y r
n is Harbourne–Hirschowitz.

Proof The surface Y r
n satisfies the anticanonical orthogonal property by the above

theorem. We conclude the statement by [13, Theorem 2.5]. ∎

Corollary 4.5 With the above notation, the Cox ring of Y r
n is finitely generated.

Proof The surface Y r
n has a finitely generated effective monoid (see Theorem 2.1)

and satisfies the anticanonical orthogonal property (see Theorem 4.3). So, we are done
using [7, Theorem 1]. ∎

Theorem 4.6 With the above notation, if H is a nef divisor on Y r
n , then the complete

linear system ∣H∣ is base-point-free.

Proof Let H be a nonzero nef divisor on Y r
n . By Theorem 4.3, the integer −KY r

n ⋅H
is greater than zero. There exist nonnegative integers a, b, c1 , . . . , cr such that H =
aCn + bF −∑r

i=1 c iEi , where H is the class of H in NS(Y r
n). By [24, Theorem III.1(a)],

it is sufficient to ensure that the intersection number of −KY r
n and H is greater than

or equal to 2. So, we proceed by contradiction: suppose that −KY r
n ⋅H = 1. Again, we

use the decomposition of the anticanonical class given in Proposition 4.2 and the fact
that the intersection number of H with only one of the components of −KY r

n is equal
to one, whereas the other intersection numbers are equal to zero (since H is nef).

Case a) Here, we have the existence of i = 2, . . . , r such that Ei ⋅H = 1 and E j ⋅H =
0 for j = 1, . . . , r with j ≠ i, and also we have that (C0 − E1) ⋅H = 0 and (F −∑r

j=1 E j) ⋅
H = 0. From these equalities, it follows that H = C0 − Ei , but such class is not nef.
Indeed, the self-intersection of C0 − Ei is negative.

Case b) The condition −KY r
n ⋅H = 1 is impossible because the coefficients in the

decomposition of the anticanonical class in both Cases b.1) and b.2) are larger than
one.

Case c) The only possibility that may occur is Ei ⋅H = 1 for some i = 2, . . . , r, E j ⋅
H = 0 for every j = 1, . . . , r with j ≠ i, (Cn −∑r

j=1 E j) ⋅H = 0, and (F − E1) ⋅H = 0.
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Thus,Hwould be equal toF − Ei , but the latter is not nef. Indeed, the self-intersection
of F − Ei is negative.

In all cases, we obtain a contradiction. Therefore,−KY r
n ⋅H is at least equal to 2. ∎

Corollary 4.7 With the above notation, the semi-ample and nef monoids of Y r
n are

equal.
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