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Abstract

Let X be a compact Kähler manifold, endowed with an effective reduced divisor

B =
∑
Yk having simple normal crossing support. We consider a closed form of (1, 1)-

type α on X whose corresponding class {α} is nef, such that the class c1(KX+B)+{α} ∈
H1,1(X,R) is pseudo-effective. A particular case of the first result we establish in this

short note states the following. Let m be a positive integer, and let L be a line bundle

on X, such that there exists a generically injective morphism L →
⊗m T ?X〈B〉, where

we denote by T ?X〈B〉 the logarithmic cotangent bundle associated to the pair (X,B).

Then for any Kähler class {ω} on X, we have the inequality∫
X
c1(L) ∧ {ω}n−1 6 m

∫
X

(c1(KX +B) + {α}) ∧ {ω}n−1.

If X is projective, then this result gives a generalization of a criterion due to Y. Miyaoka,

concerning the generic semi-positivity: under the hypothesis above, let Q be the quotient

of
⊗m T ?X〈B〉 by L. Then its degree on a generic complete intersection curve C ⊂ X is

bounded from below by(
nm − 1

n− 1
−m

)∫
C

(c1(KX +B) + {α})− nm − 1

n− 1

∫
C
α.

As a consequence, we obtain a new proof of one of the main results of our previous work

[F. Campana and M. Păun, Orbifold generic semi-positivity: an application to families

of canonically polarized manifolds, Ann. Inst. Fourier (Grenoble) 65 (2015), 835–861].
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Holomorphic tensors

1. Introduction

Let X be a compact Kähler manifold of dimension n. Let B =
∑

j∈J Yj be a reduced ‘boundary’
divisor on X, whose support has simple normal crossings.

We recall that the logarithmic cotangent bundle T ?X〈B〉 associated to (X,B) is defined as
follows. Let U ⊂ X be a coordinate open set, and let (z1, . . . , zn) be a coordinate system of X
defined on U , such that, say, B ∩ U = (z1z2 . . . zp = 0). Such a coordinate system will be called
adapted to the pair (X,B). When restricted to U , the bundle T ?X〈B〉 corresponds to the locally
free sheaf generated by

dz1

z1
, . . . ,

dzp

zp
, dzp+1, . . . , dzn.

The main topic we will explore in this paper can be formulated as follows. Let m be a positive
integer, and let F be a subsheaf of the bundle

⊗m T ?X〈B〉. Let ω be a Kähler class on X; we
would like to obtain an upper bound of the intersection number∫

X
c1(F) ∧ ωn−1 (1.1)

in terms of the first Chern class of the bundle T ?X〈B〉.
We observe that this kind of question has a meaning in an ‘abstract’ context. Indeed, we

consider the following data. Let (E, hE) be a holomorphic Hermitian vector bundle, and let
(L, hL) be a Hermitian line bundle. We assume that H0(X,E ⊗ L−1) 6= 0, and let u be a
non-identically zero holomorphic section of E ⊗ L−1.

We denote by |u|2 the pointwise norm of u, measured with respect to the metrics we have on
E and L, respectively. Then the analogue of the Poincaré–Lelong formula (cf. [Dem82]) gives

ddc log |u|2 > ΘhL(L)− 〈ΘhE (E)u, u〉
|u|2

. (1.2)

On the other hand, the quantity we are interested in is equal to
∫
X ΘhL(L)∧ωn−1; by inequality

(1.2) combined with Stokes formula we obtain

0 >
∫
X

ΘhL(L) ∧ ωn−1 −
∫
X

〈ΘhE (E)u, u〉
|u|2

∧ ωn−1.

In conclusion, the degree of L with respect to ω is bounded from above as follows:∫
X

ΘhL(L) ∧ ωn−1 6
∫
X

〈ΘhE (E)u, u〉
|u|2

∧ ωn−1. (1.3)

We denote by Λω the contraction operator corresponding to ω; its action on the curvature tensor
is given by the formula

ΘhE (E) ∧ ωn−1

ωn
= ΛωΘhE (E)

so that ΛωΘhE (E) is an endomorphism of E, called the mean curvature of E.
If the bundle E is stable with respect to ω, then it is known (cf. [Don85]) that we can

construct a Hermite–Einstein metric hE so that the endomorphism ΛωΘhE (E) is a multiple of
the identity. In this case, the expression on the right-hand side of (3) is quickly computed in
terms of the ω-degree of E. But in general, the mean curvature term seems to be very difficult
to control.
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In the article [Eno88], Enoki found a very elegant way of dealing with this question. He
observes that if the bundle E coincides with the cotangent bundle of X, then the mean curvature
of E coincides with −Ricω, that is, the curvature of the canonical bundle. In conclusion, via the
Monge–Ampère equation, it would be enough to assume that the canonical bundle of X has a
(weak) positivity property in order to derive a bound for the degree of L with respect to ω.

The approach sketched above, combined with some recent results in the framework of metrics
with conic singularities, allows us to establish the following statement.

Theorem 1.1. Let m be a positive integer, and let F be a torsion free subsheaf of the bundle⊗m T ?X〈B〉. We consider a closed (1, 1)-form α on X whose associated class {α} is nef, and such
that the adjoint class

c1(KX +B) + {α}

is pseudo-effective. Let ω0 be a Kähler class on X; then

1

rk(F )

∫
X
c1(F ) ∧ {ω0}n−1 6 m

∫
X

(c1(KX +B) + {α}) ∧ {ω0}n−1. (1.4)

As a consequence, we obtain a new proof of the following result. Our arguments here are
inspired by the original ones; cf. [CP15].

Theorem 1.2 [CP15]. Let X be a projective manifold; we assume that there exist a positive
integer m and a big line bundle L such that

H0

(
X,

m⊗
T ?X〈B〉 ⊗ L−1

)
6= 0. (1.5)

Then KX +B is big.

In the first part of our note we will briefly recall the notion of pseudo-effective classes in
the Kähler context, as well as a few results concerning the Monge–Ampère equations. The later
topic concerns the so-called metrics with conic singularities; specifically, the result we need was
established in [CGP13]. We remark here that the uniformity of the estimates obtained in [CGP13]
will allow us a ‘smooth’ presentation of the proof.

Roughly speaking, the proof of Theorem 1.1 follows by using the approach initiated by Enoki
mentioned above, combined with the estimates we have at our disposal in the Monge–Ampère
theory. As for Theorem 1.2, we basically follow the ‘second proof’ in [CP15], and use Theorem 1.1
as main technical support, instead of the generic semi-positivity of orbifold cotangent bundles
in the original argument.

Parts of the techniques we will use here are employed by Guenancia in [Gue12] to establish
the stability of the tangent bundle of the canonically polarized manifolds in a singular setting.
Finally, we mention here that in order to obtain a stronger version of Theorem 1.1, the best
one can expect would be to replace ωn−1

0 with a mobile class. Our hope is that the methods we
develop here might be useful in this context.

2. Pseudo-effective classes and Monge–Ampère equations

Let (X,ω) be a compact complex manifold endowed with a metric ω, and let {γ} ∈H1,1(X,R) be
a real cohomology class of type (1, 1). By convention, we assume that γ is a closed, non-singular
(1, 1)-form on X; we recall the following definitions.
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Definition 1. We say that the class {γ} is nef (in the metric sense) if for each ε > 0 there exists
a function fε ∈ C∞(X) such that

γε := γ + ddcfε > −εω. (2.1)

The definition above was introduced by Demailly [Dem92] as an analytic counterpart of the
notion of the nef divisor in algebraic geometry.

Definition 2. We say that the class {γ} is pseudo-effective if it contains a closed positive
current. This is equivalent to the existence of a function f ∈ L1(X) such that

T := γ + ddcf > 0. (2.2)

Let {γ} be a pseudo-effective class. If some multiple of it equals the first Chern class of
a Q-line bundle L and if X is projective, then the bundle L is pseudo-effective in the sense of
algebraic geometry: given p a positive integer and an ample line bundle A, there exists a constant
C = C(p,A) > 0 such that

h0(X, k(pL+A)) > Ckn

as k → ∞. In other words, the Kodaira dimension of pL + A is maximal. This statement is a
consequence of [Dem92], and can be seen as a generalization of the Kodaira embedding theorem.
Even if the manifold X is projective, the property of pseudo-effective line bundles (in the sense
of algebraic geometry) revealed by the previous definition is important: such a line bundle may
have negative Kodaira dimension, but nevertheless, its first Chern class carries a closed positive
current.

While dealing with pseudo-effective classes on compact Kähler manifolds, one seldom works
directly with the current T above, mainly because it may be too singular. The regularization
theorem we will state next is therefore very useful. Before that, we recall the following notion.

Definition 3. A function ψ on X has logarithmic poles if for each coordinate set U ⊂ X there
exists a family of holomorphic functions σj ∈ O(U) such that we have

ψ ≡ c log

(∑
j

|σj |2
)

mod C∞(U) (2.3)

where c is a positive constant. In other words, the function ψ is locally equivalent with the
logarithm of a sum of squares of absolute values of holomorphic functions.

The following regularization result will play an important role here.

Theorem 2.1 [Dem92]. Let T = γ + ddcf > 0 be a closed positive current. Then there exists a
sequence (fη)η>0 of functions with logarithmic poles, such that

Tη := γ + ddcfη > −ηω

for all η, and such that fη → f in L1(X).

We recall next a few results in the theory of the Monge–Ampère equations. For the rest of
our paper, the manifold X will be assumed to be compact Kähler, and let ω0 be a fixed, reference
metric on X.
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Theorem 1.1 states that a certain numerical positivity property of the bundle
⊗m T ?X〈B〉

holds, provided that the negative part of the Chern class of KX +B is bounded.
The requirement concerning the bundle KX+B in Theorem 1.1 is equivalent to the existence

of a singular volume element on X, whose associated curvature current is greater than −α.
The link between such positivity (or negativity) properties of the canonical bundle and the
differential geometry of X is given by the Monge–Ampère theory, or, more precisely, by the
Aubin–Calabi–Yau theorem. In its original formulation [Yau78], this result states that given a
non-singular volume element on X, whose total mass is equal to

∫
X ω

n
0 , there exists a Kähler

metric ω ∈ {ω0} whose determinant is equal to the said volume element.
Partly motivated by questions arising from algebraic geometry, many results generalizing the

Calabi–Yau theorem for singular volume elements have recently been established. The following
statement will be the main technical tool in our proof of Theorem 1.1.

Theorem 2.2 [CGP13]. Let (X,ω0) be a compact Kähler manifold, and let

B =
∑
j

Yj

be a reduced divisor, whose support has simple normal crossings. We consider a finite set of
functions (ψr)r=1,...,A ⊂ L1(X) with logarithmic poles, normalized such that

∫
X ψr dV0 = 0 for

each r, where dV0 is the volume element on X induced by the metric ω0. Let Cψ be a positive
constant, such that

Cψω0 + ddcψr > 0.

Then for each set of parameters Λ = (λ, ε, δ) ∈ ] 0, 1 ]A×[0, 1] × ] 0, 1/2 ] there exist a positive
(normalization) constant CΛ and a Kähler metric ωΛ = ω0 + ddcϕΛ, such that

ωnΛ = CΛ

∏
r(λ

2
r + exp(ψr))∏

j(ε
2 + |sj |2)1−δ ω

n
0 , (MA)

and such that the following uniform estimates hold.

(i) There exists a constant Cδ > 0 depending on δ, Cψ and (X,ω0) but uniform with respect
to λ, ε ∈ [0, 1/2]A+1 such that supX |ϕΛ| 6 Cδ.

(ii) For each coordinate system (z1, . . . , zn) adapted to (X,B) on U we have

ωΛ 6 Cδ

( p∑
j=1

√
−1 dzj ∧ dzj

(ε2 + |zj |2)1−δ +
n∑

j=p+1

√
−1dzj ∧ dzj

)
.

In other words, the solution ωΛ is bounded from above by the standard conic metric on each
coordinate set.

(iii) There exists a constant Cλ,δ uniform with respect to ε such that

ωΛ > Cλ,δ

( p∑
j=1

√
−1dzj ∧ dzj

(ε2 + |zj |2)1−δ +
n∑

j=p+1

√
−1dzj ∧ dzj

)
.

In the statement above we denote by sj the section of the bundle O(Yj) whose zero set equals
Yj , and we denote by |sj | the (pointwise) norm of sj measured with a non-singular metric hj on
O(Yj). We denote by θj the curvature of the bundle O(Yj) with respect to hj .
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Remark 2.3. We see that (unlike in all the other recent articles concerning the metrics with conic

singularities) in the statement above we have obtained uniform the estimates with respect to the

parameter ε > 0. This will be play an important role in the next section.

In the remainder of this section, we will evaluate the curvature of the canonical bundle KX

endowed with the determinant of the metric given by equation (MA). The formula reads

ΘωΛ(KX) = Θ(KX) +
∑
r

ddc log(λ2 + exp(ψr))− (1− δ)
∑
j

ddc log(ε2 + |sj |2), (2.4)

where Θ(KX) := Θω0(KX) is the curvature of the canonical bundle with respect to the volume
element induced by the reference metric ω0. We next expand the Hessian terms in (2.3):

ddc log(λ2 + exp(ψ)) =
exp(ψ)

λ2 + exp(ψ)
ddcψ +

λ2 exp(ψ)

(λ2 + exp(ψ))2

√
−1∂ψ ∧ ∂ψ

= ddcψ +
λ2 exp(ψ)

(λ2 + exp(ψ))2

√
−1∂ψ ∧ ∂ψ − λ2

λ2 + exp(ψ)
ddcψ

and

ddc log(ε2 + |sj |2) =
ε2

(ε2 + |sj |2)2

√
−1∂sj ∧ ∂sj −

|sj |2

ε2 + |sj |2
θj

= −θj +
ε2

(ε2 + |sj |2)2

√
−1∂sj ∧ ∂sj +

ε2

ε2 + |sj |2
θj ,

respectively. Rearranging the terms, we obtain the identity

ΘωΛ(KX) + (1− δ)
∑
j

ε2

(ε2 + |sj |2)2

√
−1∂sj ∧ ∂sj + δ

∑
j

θj

+
∑
r

λ2

λ2 + exp(ψr)
ddcψr − (1− δ)

∑
j

ε2

ε2 + |sj |2
θj

= Θ(KX) +
∑
j

θj +
∑
r

ddcψr +
∑
r

λ2 exp(ψr)

(λ2 + exp(ψr))2

√
−1∂ψr ∧ ∂ψr.

The relationship between this expression and Theorem 1.1 is easy to understand: if we add

the semi-positive form α, the right-hand-side term can be assumed to be positive by choosing ψ

in an appropriate manner (according to the pseudo-effectivity hypothesis). Thus, the curvature

term ΘωΛ(KX) is naturally written as the difference of two semi-positive forms, modulo some

undesirable ‘error’ terms such as

∑
r

λ2

λ2 + exp(ψr)
ddcψr +

∑
j

(
δ − (1− δ)ε2

ε2 + |sj |2

)
θj (2.5)

which will converge to zero, provided that we are choosing the set of parameters Λ properly. It

is at this point that the estimates in Theorem 2.2 are playing a determinant role.
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3. Proof of Theorem 1.1

In this section we will unfold our arguments for the proof of Theorem 1.1; we proceed in several
steps. A first standard observation is that it is enough to prove this statement for F := L a line
bundle on X. The reduction to this case is classical, as follows. If we denote by p the rank of F
at the generic point of X, then we have a sheaf injection

0 → ΛpF →

mp⊗
T ?X〈B〉

and our claim follows by passing to the bi-dual; we refer to [Kob87] for further details.

Step 1. By hypothesis, the class c1(KX + B) + {α} is pseudo-effective. When combined with
Theorem 2.1, we infer the existence of a sequence of functions (fη)η>0 such that the following
statements hold.

(1) For each η > 0, the function fη has logarithmic poles, and
∫
X fη dV0 = 0.

(2) We have Θ(KX) +
∑

j θj + αη + ddcfη > −ηω0 in the sense of currents on X (we are
using here the same notation as in the preceding section). We denote by αη ∈ {α} a non-singular
representative such that αη > −ηω0 on X.

Relation (2) above is equivalent to the positivity of the current

Tη = Θ(KX) +
∑
j

θj + αη + ddcfη + ηω0;

for some technical reasons which will appear later on in the proof, we have to ‘separate’ the
codimension-1 singularities of Tη from the rest. For a general closed positive current this is
indeed possible thanks to a result due to Siu in [Siu87]. In the present situation it is much
simpler, since fη has logarithmic poles; in any case, we write

Tη =

Aη∑
r=1

brη[Wr,η] +R, (3.1)

where the singularities of the closed positive current R are in codimension 2 or higher. Let gr,η
be an arbitrary, non-singular metric on the line bundle O(Wr,η) associated to the hypersurface
Wr,η, and let βr,η be the associated curvature form. We denote by σr,η the tautological section
of O(Wr,η), whose set of zeros is precisely Wr,η, and we define

f̂η := fη −
Aη∑
r=1

brη log |σr,η|2. (3.2)

Since the current R is positive we have

Θ(KX) +
N∑
j=1

θj + αη −
Aη∑
r=1

brηβr,η + ddcf̂η + ηω0 > 0 (3.3)

in the sense of currents on X.
We next apply Theorem 2.2: for each set of parameters

Λ := (ε, λ, η, ρ, δ) ∈ ] 0, 1]×] 0, 1]×] 0, 1]×] 0, 1]×] 0, 1/2],

there exists a Kähler metric

ωΛ := ω0 + ddcϕΛ,

∫
X
ϕΛ dV0 = 0,
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such that

ωnΛ = CΛ
(λ2 + exp(f̂η))

∏
r(ρ

2 + |σr,η|2)b
r
η∏

j(ε
2 + |sj |2)1−δ ωn0 , (3.4)

where CΛ is a normalization constant. By estimate (ii) of Theorem 2.2,

1

Cδ,η
ωΛ 6

p∑
j=1

√
−1dzj ∧ dzj

(ε2 + |zj |2)1−δ +
n∑

j=p+1

√
−1dzj ∧ dzj (3.5)

on a small coordinate set, where (zi) are local coordinates adapted to (X,B).

Remark 3.1. Actually, the constant Cδ,η as above can be assumed to be independent of η,
provided that λ and ρ are small enough (depending on η). This amounts to taking ρ → 0
and λ → 0 before taking η → 0 in the limiting process at the end of the proof. However, the
estimate as stated in (3.5) will be sufficient for us.

Also, by the computations performed at the end of the previous section, the curvature of KX

with respect to the metric ωΛ can be expressed as

ΘωΛ(KX) + (1− δ)
N∑
j=1

ε2

(ε2 + |sj |2)2

√
−1∂sj ∧ ∂sj + αη + ηω0

+
λ2

λ2 + exp(f̂η)
ddcf̂η +

N∑
j=1

(
δ − (1− δ)ε2

ε2 + |sj |2

)
θj +

Aη∑
r=1

brηρ
2

ρ2 + |σr,η|2
βr,η

= Θ(KX) +

N∑
j=1

θj −
Aη∑
r=1

brηβr,η + ddcf̂η + αη + ηω0

+

Aη∑
r=1

brηρ
2

(ρ2 + |σr,η|2)2

√
−1∂σr,η ∧ ∂σr,η +

λ2 exp(f̂η)

(λ2 + exp(f̂η))2

√
−1∂f̂η ∧ ∂f̂η. (3.6)

In the relation above, we remark that the right-hand side is positive definite.

Step 2. As we have seen at the beginning of this section, the sheaf F can be assumed to be a
line bundle, say L. Let

u ∈ H0

(
X,

m⊗
T ?X〈B〉 ⊗ L−1

)
be the holomorphic section corresponding to the injection L 7→

⊗m T ?X〈B〉 whose existence is
ensured by hypothesis. We consider an arbitrary, non-singular metric hL on L.

Let M := X\Supp(B), and let Ω ⊂M be an open set, such that

Ω ⊂M.

The restriction bundle
⊗m T ?X〈B〉|M identifies with the tensor power of the usual cotangent

bundle
⊗m T ?X , and we can endow it with the metric induced by ωΛ. Another way of presenting

this is that we endow the bundle
⊗m T ?X〈B〉 with a singular metric given by ωΛ. Let µ be a

positive real number; we have the inequality

ddc log(µ2 + |s|2mδ|u|2Λ) >
|s|2mδ|u|2Λ

µ2 + |s|2mδ|u|2Λ
(ΘhL(L)− δmΘB)− |s|2mδ 〈ΘΛ(Em)u, u〉

µ2 + |s|2mδ|u|2Λ
, (3.7)
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where Em stands for
⊗m T ?X〈B〉, and the symbol ΘΛ(Em) denotes the curvature of Em with

respect to the metric induced by ωΛ. The quantity |u|Λ represents the norm of u measured with
respect to the metric induced by hL and ωΛ. We denote by s the canonical section corresponding
to the boundary divisor B, and by |s| its norm, measured with respect to a non-singular metric;
the associated curvature form is ΘB. We remark that this inequality (valid also if µ = 0) is
nothing but a version of the Poincaré–Lelong formula for vector bundles. On the other hand,
we stress that inequality (3.7) only holds on sets Ω ⊆M , since the quantity |s|2mδ|u|2Λ becomes
meromorphic across the support of B.

Let ξ be a cut-off function, which equals 1 in the complement of an open set containing
Supp(B) and which vanishes in a smaller open set containing Supp(B). Multiplying (3.7) by
ξωn−1

Λ and integrating over
X0 := X\Supp(B),

we have∫
X0

ξddc log(µ2 + |s|2mδ|u|2Λ) ∧ ωn−1
Λ +

∫
X0

ξ
|s|2mδ

µ2 + |s|2mδ|u|2Λ
〈ΘΛ(Em)u, u〉 ∧ ωn−1

Λ

>
∫
X0

ξ
|s|2mδ|u|2Λ

µ2 + |s|2mδ|u|2Λ
(ΘhL(L)−mδΘB) ∧ ωn−1

Λ . (3.8)

Step 3. In the following lines we will evaluate the curvature term 〈ΘΛ(Em)u, u〉 ∧ ωn−1
Λ in (3.8).

To this end, we consider a point x0 ∈ Ω, and we will do a pointwise computation by using
geodesic coordinates at x0 (here we ignore completely the log structure induced by B).

For any set of parameters Λ the metric ωΛ is Kähler, so there exists a geodesic coordinate
system (z1, . . . , zn) centered at x0; that is, near x0 we write

ωΛ =

n∑
q=1

√
−1dzq ∧ dzq +

∑
j,k,α,β

ck
jαβ

zjzk
√
−1dzα ∧ dzβ +O(|z|3). (3.9)

In the expression above, the complex numbers (ck
jαβ

) are defined as

ΘΛ(T ?X)x0 =
∑
j,α,β

ck
jαβ

dzα ∧ dzβ ⊗ dzj ⊗
∂

∂zk
,

that is to say, they are the coefficients of the curvature tensor of (T ?X , ωΛ).
Let

u =
∑

J=(j1,...,jm)

uJdzj1 ⊗ · · · ⊗ dzjm

be the local expression of the section u. By definition, the curvature of
⊗m T ?X〈B〉 acts on u as

follows:

ΘΛ(Em)u =
∑

r,J=(j1,...,jm)

uJdzj1 ⊗ · · · ⊗ΘΛ(T ?X)dzjr ⊗ · · · ⊗ dzjm

=
∑

J=(j1,...,jm)

∑
r,p,α,β

uJc
r
pαβ

dzj1 ⊗ · · · ⊗ dzp ⊗ · · · ⊗ dzjm ⊗ dzα ∧ dzβ.

Therefore at the point x0 we have

〈ΘΛ(Em)u, u〉 ∧ ωn−1
Λ

ωnΛ
=

1

n

∑
J,p,d

uJuJp̂dθ
p
d (3.10)
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where for any index J = (j1, . . . , jm) we denote by Jp̂d the index obtained by replacing jp with
d in the expression of J (the other elements are unchanged), and

θpd :=
∑
α

cpdαα

are the coefficients of the Hermitian form on T ?X induced by the curvature of the canonical bundle
ΘΛ(KX) by contraction with the metric (at this point we are using the fact that the metric ωΛ

is Kähler).
Given any (1, 1)-form γ, we have an associate Hermitian form on T ?X , say Ψγ , obtained by

contraction with the metric ωΛ. This is obtained by ‘raising the indexes’ as follows. Locally near
x0 we write

γ =
∑
p,q

γpqdzp ∧ dzq

and then the induced form Ψγ on T ?X is given by the expression

Ψγ =
∑
p,q,r,s

γpqω
psωrq

∂

∂zr
∧ ∂

∂zs
. (3.11)

We consider formula (3.6), and we introduce the following notation:
• ΨΘλ is the form induced by ΘωΛ(KX);

• Ψα,ε is the form induced by (1− δ)
∑N

j=1 (ε2/(ε2 + |sj |2)2)
√
−1∂sj ∧ ∂sj + αη + ηω0;

• ΨΛ is the form induced by

τΛ :=
λ2

λ2 + exp(f̂η)
ddcf̂η +

N∑
j=1

(
δ − (1− δ)ε2

ε2 + |sj |2

)
θj +

Aη∑
r=1

brηρ
2

ρ2 + |σr,η|2
βr,η.

As we can see from formula (3.10), the curvature term in (3.8) is expressed as∫
X0

ξµ
〈ΘΛ(Em)u, u〉

|u|2Λ
∧ ωn−1

Λ =
1

n

∫
X0

ξµ
ΨΘλ(u, u)

|u|2Λ
ωnΛ, (3.12)

where we denote

ξµ := ξ
|s|2mδ|u|2Λ

µ2 + |s|2mδ|u|2Λ
6 1.

We observe that the form Ψα,ε is positive definite (since αη > −ηω0 by property (1) of
Step 1), and then we have the inequalities

ξµΨΘλ(u, u)

m|u|2Λ
6
ξµ(ΨΘλ + Ψα,ε)(u, u)

m|u|2Λ
=
ξµ(ΨΘλ + Ψα,ε + ΨΛ)(u, u)− ξµΨΛ(u, u)

m|u|2Λ

6 trωΛ

(
ΘωΛ(KX) + (1− δ)

N∑
j=1

ε2

(ε2 + |sj |2)2

√
−1∂sj ∧ ∂sj + αη + ηω0 + τΛ

)
− ξµΨΛ(u, u)

m|u|2Λ
.
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The fact that the third inequality of the preceding relations holds true can be seen as a
consequence of the following elementary result, combined with the fact that the form ΨΘλ +
Ψα,ε + ΨΛ is definite positive, as shown by formula (3.10).

Lemma 1. Let Θ = (θpd) be a positive definite Hermitian form; then∑
J,r,d

uJuJ(jr,d)θ
d
jr 6 m

(∑
J

|uJ |2
)(∑

j

θjj

)
for any set of complex numbers uJ , where J = (j1, . . . , jm) ∈ {1, . . . , n}m is the set of indices. In
the relation above we denote by J(jr, d) the index (j1, . . . jr−1, d, jr+1, . . . , jm) having the same
components as J except that we replace jr with d.

Proof. For m = 1, the inequality to be proved is∑
j,r

ujurθ
r
j 6

(∑
j

|uj |2
)(∑

j

θjj

)
and the easy verification will not be detailed here. For a general m > 2, we just observe that the
corresponding sum for r = 1 can be written as∑

J ′,p,d

upJ ′udJ ′θ
d
p

where J ′ = (j2, . . . , jm). For each fixed index J ′, the inequality corresponding to m = 1 shows
that ∑

J ′,p,d

upJ ′udJ ′θ
d
p 6

(∑
j

|ujJ ′ |2
)(∑

j

θjj

)
and, summing over all the indices J ′, and then over r = 1, . . .m, we infer the result. 2

These considerations and (3.12) show that∫
X0

ξµ
〈ΘΛ(Em)u, u〉

|u|2Λ
∧ ωn−1

Λ 6 m

∫
X0

(ΘωΛ(KX) + α) ∧ ωn−1
Λ

+m(1− δ)
∫
X0

( N∑
j=1

ε2

(ε2 + |sj |2)2

√
−1∂sj ∧ ∂sj

)
∧ ωn−1

Λ

+m

∫
X0

τΛ ∧ ωn−1
Λ + ηm

∫
X0

ωn0 −
∫
X0

ξµΨΛ(u, u)ωnΛ. (3.13)

We can remove the subscript ‘η’ for the first term on the right-hand side of (3.13) simply because
αη ∈ {α}.

By the computations in Step 2, we have the identity

(1− δ) ε2

(ε2 + |sj |2)2

√
−1∂sj ∧ ∂sj + δθj = (1− δ)ddc log(ε2 + |sj |2) + θj −

(1− δ)ε2

ε2 + |sj |2
θj

for each index j, so by integration over X\Supp(B) and Stokes’s formula (which indeed holds on
the open manifold, since the functions/forms we are dealing with are smooth), inequality (3.13)
becomes
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X0

ξµ
〈ΘΛ(Em)u, u〉

|u|2Λ
∧ ωn−1

Λ 6 m

∫
X

(
Θ(KX) + α+

N∑
j=1

θj

)
∧ ωn−1

0

+m

∫
X

λ2

λ2 + exp(f̂η)
ddcf̂η ∧ ωn−1

Λ

−m
N∑
j=1

∫
X

(1− δ)ε2

ε2 + |sj |2
θj ∧ ωn−1

Λ

+m

Aη∑
r=1

∫
X

brηρ
2

ρ2 + |σr,η|2
βr,η ∧ ωn−1

Λ + η

∫
X
ωn0

−
∫
X0

ξµΨΛ(u, u)ωnΛ. (3.14)

In (3.14) we have used the fact that the singularities of f̂η are in codimension 2 or higher, so
that we have the equality∫

X

λ2

λ2 + exp(f̂η)
ddcf̂η ∧ ωn−1

Λ =

∫
X0

λ2

λ2 + exp(f̂η)
ddcf̂η ∧ ωn−1

Λ .

We next derive an upper bound for the last term in (3.14). By the expression of the form τΛ

we see that for each η > 0 there exist a constant Cη depending on η and a constant C which is
uniform with respect to the set of parameters Λ such that

τΛ > −Cη
(

λ2

λ2 + exp(f̂η)
+
∑
r

ρ2

ρ2 + |σr,η|2

)
ω0 − C

(
δ +

∑
j

ε2

ε2 + |sj |2

)
ω0,

and therefore we infer that

−
∫
X0

ξµΨΛ(u, u)ωnΛ 6 Cη

∫
X

(
δ +

λ2

λ2 + exp(f̂η)
+
∑
r

ρ2

ρ2 + |σr,η|2

)
ω0 ∧ ωn−1

Λ

+Cδ + C
∑
j

ε2

ε2 + |sj |2
. (3.15)

Step 4. We summarize here the conclusion of the computations of the preceding steps. By (3.8),
the quantity ∫

X0

ξ
|s|2mδ|u|2Λ

µ2 + |s|2mδ|u|2Λ
ΘhL(L) ∧ ωn−1

Λ (3.16)

whose limit as ξ tends to the characteristic function of X\Supp(B) and µ tends to zero
respectively is smaller than

m

∫
X

(
Θ(KX) + α+

N∑
j=1

θj

)
∧ ωn−1

0

which is the bound we hope to obtain, modulo the terms∫
X

ε2

ε2 + |sj |2
ω0 ∧ ωn−1

Λ , (3.17)∫
X0

ξddc log(µ2 + |s|2mδ|u|2Λ) ∧ ωn−1
Λ , (3.18)
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as well as

Cη

∫
X

λ2

λ2 + exp(f̂η)
ω0 ∧ ωn−1

Λ , Cη

∫
X

ρ2

ρ2 + |σr,η|2
ω0 ∧ ωn−1

Λ . (3.19)

and ∫
X

λ2

λ2 + exp(f̂η)
ddcf̂η ∧ ωn−1

Λ . (3.20)

In conclusion, Theorem 1.1 will be proved if we are able to show that by some choice of the cut-off
function ξ and the parameters Λ = (ε, λ, ρ, η, δ) respectively, the quantities (3.17), (3.19) and
(3.20) tend to zero, and (3.18) is negative. This will be a consequence of the estimates provided
by Theorem 2.2.

Step 5. We first let ε → 0, while the other parameters are unchanged. The effects of this first
operation are evaluated in what follows.

To start with, we recall that by (3.5) we have

1

Cδ,η
ωΛ 6

p∑
j=1

√
−1dzj ∧ dzj

(ε2 + |zj |2)1−δ +
n∑

j=p+1

√
−1dzj ∧ dzj

locally at each point of X, where (zj) are coordinates adapted to the pair (X,B). As a
consequence we infer that

lim
ε→0

∫
X

ε2

ε2 + |sj |2
ω0 ∧ ωn−1

Λ = 0 (3.21)

by a quick computation which will not be detailed here.
We next analyze the quantity (3.18) as ε → 0. Let Λ0 := (0, λ, ρ, η, δ) be the new set of

parameters. We know that

ωΛ → ωΛ0

uniformly on compact sets of X0. Therefore

lim
ε→0

∫
X0

ξddc log(µ2 + |s|2mδ|u|2Λ) ∧ ωn−1
Λ =

∫
X0

ξddc log(µ2 + |s|2mδ|u|2Λ0
) ∧ ωn−1

Λ0
. (3.22)

The important difference between |u|Λ and |u|Λ0 is that the pole order of the latter quantity
along the components of B is smaller than mδ. Indeed,

p∑
j=1

√
−1dzj ∧ dzj

|zj |2(1−δ) +

n∑
j=p+1

√
−1dzj ∧ dzj 6 1

Cλ,ρ,δ,η
ωΛ0 (3.23)

and
1

Cδ,η
ωΛ0 6

p∑
j=1

√
−1dzj ∧ dzj

|zj |2(1−δ) +

n∑
j=p+1

√
−1dzj ∧ dzj , (3.24)

by combining (3.5) with the Monge–Ampère equation verified by ωΛ. The upshot is that the
function

log(µ2 + |s|2mδ|u|2Λ0
)

is bounded by a constant depending on µ,Λ0, but completely independent with respect to the
size of the support of ξ.
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At this stage or our proof, we choose a sequence of cut-off functions

ξ := χτ

as in [CGP13] converging to the characteristic function of the set X\Supp(B), so that (3.18)
becomes ∫

X0

log(µ2 + |s|2mδ|u|2Λ0
)ddcχτ ∧ ωn−1

Λ0
. (3.25)

Indeed, the integration by parts is legitimate, since for every positive τ , the relevant quantities
are non-singular on the support of χτ .

If we let τ → 0, then (3.25) tends to zero, thanks to the computations in, for example,
[CGP13], together with the fact that the bound of the absolute value of the function
log(µ2 + |s|2mδ|u|2Λ0

) is independent of τ .
Also, we remark that the term (3.16) becomes simply∫

X

|s|2mδ|u|2Λ0

µ2 + |s|2mδ|u|2Λ0

ΘhL(L) ∧ ωn−1
Λ0

. (3.26)

As a conclusion of this step, by first letting ε → 0 and then ξ → χX0 as indicated above, we
infer that∫

X

|s|2mδ|u|2Λ
µ2 + |s|2mδ|u|2Λ0

ΘhL(L) ∧ ωn−1
Λ0

6 m

∫
X

(
Θ(KX) + α+

N∑
j=1

θj

)
∧ ωn−1

0

+Cη

(∫
X

λ2

λ2 + exp(f̂η)
ω0 ∧ ωn−1

Λ0

)
+Cη

(∑
r

∫
X

ρ2

ρ2 + |σr,η|2
ω0 ∧ ωn−1

Λ0

)
+C

∫
X

λ2

λ2 + exp(f̂η)
ddcf̂η ∧ ωn−1

Λ0
+ (δ + η)C. (3.27)

We let µ → 0; the left-hand-side term in (3.27) becomes∫
X

ΘhL(L) ∧ ωn−1
0 ,

as we see by the dominated convergence theorem.

Step 6. This is the last step of our proof. We first establish the equalities

lim
λ→0

∫
X

λ2

λ2 + exp(f̂η)
ω0 ∧ ωn−1

Λ0
= 0 (3.28)

and

lim
ρ→0

∫
X

ρ2

ρ2 + |σr,η|2
ω0 ∧ ωn−1

Λ0
= 0 (3.29)

for any set of parameters δ and η. This is quite easy: by the relation (3.24) we have∫
X

λ2

λ2 + exp(f̂η)
ω0 ∧ ωn−1

Λ0
6 Cδ,η

∫
X

λ2

λ2 + exp(f̂η)

dV∏
j |sj |2−2δ

,

and (3.28) and (3.29) follow by the dominated convergence theorem.
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We next treat the remaining term. We claim that

lim
λ→0

∫
X

λ2

λ2 + exp(f̂η)
ddcf̂η ∧ ωn−1

Λ0
= 0 (3.30)

holds for any set of parameters (η, δ) within the range fixed at the beginning of the proof. This
is established as follows:∫

X

λ2

λ2 + exp(f̂η)
ddcf̂η ∧ ωn−1

Λ0
6 Cη,δ

∫
X

λ2

λ2 + exp(f̂η)
(ddcf̂η + Cηωδ,st) ∧ ωn−1

δ,st , (3.31)

where Cη is a constant such that the (1, 1)-form ddcf̂η + Cηωδ,st is definite positive. We use the
same notation as before, namely ωδ,st is the standard metric with conic singularities along B,
with all cone angles equal to 2π(1− δ).

We define
dµη,δ := (ddcf̂η + Cηωδ,st) ∧ ωn−1

δ,st ,

a positive measure of finite mass. Let p : Xη → X be a birational map such that

p?(ddcf̂η + Cηωδ,st) = [E] + γη

where E is a divisor and γη is smooth. The important point about the singularities of f̂η is that
the E is p-contractible. Thus

p?dµη,δ = γη ∧ p?ωn−1
δ,st := dµ̂η,δ,

that is to say, a measure with mild singularities on Xη. In fact, an immediate calculation
shows that the measure dµ̂η,δ is smaller than the determinant of a standard metric with conic
singularities of angles 2π(1 − δ) along the support of the divisor p?(B), modulo some constant
independent of λ. The quantity we have to analyze becomes∫

Xη

λ2

λ2 + exp(f̂η ◦ p)
dµ̂η,δ,

and indeed it converges to zero if λ → 0 by the arguments previously invoked (the dominated
convergence theorem). The assertion is therefore established.

Remark 3.2. We remark that the hypothesis concerning the codimension of the singularities of
f̂η is essential. Indeed, if v is a holomorphic section of an ample line bundle and if we take, for

example, log |v|2 instead of f̂η, we see that (3.30) does not hold!

After this last operation, inequality (3.27) becomes∫
X

ΘhL(L) ∧ ωn−1
0 6 (δ + η)C +m

∫
X

(
Θ(KX) + α+

N∑
j=1

θj

)
∧ ωn−1

0 (3.32)

and Theorem 1.1 is proved, by taking δ, η → 0.

Remark 3.3. It is possible to adapt the previous argument to the case where α is possibly
singular, that is, the class {α} is pseudo-effective rather than Hermitian semi-positive. However,
we have to impose the condition that the generic Lelong number of α along each component of
B is equal to zero. We leave the details to the interested reader.
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Remark 3.4. An important application of our arguments was obtained in [Gue12], where the

stability of the log-tangent bundle with respect to KX +B is proved, under the hypothesis that

the latter bundle is nef and big.

Remark 3.5. By the same arguments it is possible to obtain a more general version of

Theorem 1.1 for pairs (X,B) whose boundary B =
∑

j(1 − νj)Yj has rational coefficients

belonging to the interval ] 0, 1 ] and snc support. The only change required is to replace the

definition of the logarithmic cotangent bundle T ?X〈B〉 with the one defined in [CP15].

Let N be a positive integer, which is divisible by all the denominators of the coefficients (νj)

of B. There exist a non-singular manifold XB and a finite map π : XB → X such that π?Yj is

divisible by N , and such that π?(
∑

j Yj) is snc. If (zj = 0) is a local equation of the hypersurface

Yj , then we remark that the multi-valued function z
1−νj
j becomes holomorphic when pulled back

via π. This observation allows us to define the cotangent bundle (and any holomorphic tensor)

corresponding to (X,B). We obtain the analogue of Theorem 1.1 by using the full force of

Theorem 2.2 (and its generalization to the case of arbitrary coefficients; cf. [GP16]).

4. Proof of Theorem 1.2

In this part of our paper we will prove Theorem 1.2. As we have already mentioned, the result

itself is already known: its proof in [CP15] is based on a the generic semi-positivity result for the

cotangent of the orbifold pairs whose canonical bundle is pseudo-effective. The proof we present

here follows essentially the same ideas, modulo the fact that we are using Theorem 1.1 instead

of the aforementioned result concerning the orbifold cotangent bundle.

4.1 Continuity method

For the rest of this paper the manifold X is assumed to be projective. Let A be ample on X

such that KX +B +A is ample. We consider the interval

J := {t ∈ [0, 1] : KX +B + tA is big}. (4.1)

It is clear that J is non-empty and open. We next show that J is closed, provided that there

exists an injection

L →

m⊗
T ?X〈B〉

for some m > 0, where L is a big line bundle on X.

Let (tk) ⊂ J , converging to a real number t∞. We have to show that the limit R-bundle

KX +B+ t∞A is big. The first observation is that this bundle is at least pseudo-effective, given

that it is a limit of big bundles.

As a warm-up, we first discuss a very particular case, namely we assume that the limit

KX +B + t∞A is nef. Then we argue as follows: for each k the bundle KX +B + tkA is ample,

and by Theorem 1.1 we have the numerical inequality∫
X
c1(L) ∧ c1(KX +B + tkA)n−1 6 m

∫
X
c1(KX +B + tkA)n, (4.2)

where we stress on the fact that m is a purely numerical constant, and in particular it is

independent of k.
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Since L is big, we certainly have∫
X
c1(L) ∧ c1(KX +B + tkA)n−1 > C(L)

∫
X
c1(A) ∧ c1(KX +B + tkA)n−1

for some constant C(L) depending exclusively on L.

On the other hand, by the Hovanski–Teissier concavity inequality,∫
X
c1(A) ∧ c1(KX +B + tkA)n−1 >

(∫
X
c1(A)n

)1/n(∫
X
c1(KX +B + tkA)n

)(n−1)/n

. (4.3)

By inequalities (4.2) and (4.3) we infer that∫
X
c1(KX +B + tkA)n > C0 > 0

for some constant C0 which is independent of k; hence, the same will be true for the limit, so

the R bundle KX +B + t∞A is big, and the proof of this particular case is finished.

We will prove the general case of Theorem 1.2 by means of arguments along the same

lines. The bundle KX + B + t∞A is no longer assumed to be nef, but it is nonetheless at

least pseudo-effective, and the idea is to decompose it into two orthogonal pieces, a nef part and

an effective part. For an arbitrary big line bundle, this cannot be done in a sufficiently accurate

way so as to be relevant for us (the approximate Zariski decomposition is not useful here, as we

will comment at the end of this paper). However, the bundle we are dealing with is an adjoint

bundle and the additional techniques required to treat this case are explained in the following

paragraphs.

4.2 Desingularization and Zariski decomposition

In this section we collect a few important facts concerning the principalization of the ideals

of holomorphic functions. They will be used in conjunction with the finite generation result in

[BCHM10].

Let I ⊂ OX be an ideal sheaf, and let x ∈ X be a point. The vanishing order of I at x is

defined as

ordx(I) := max{r : I ⊂ mr
x},

where mx is the ideal sheaf of x. Given Z ⊂ X a submanifold, the order of I along Z is defined

as the vanishing order of I at the generic point of Z. Finally, the maximal order of I along Z

is equal to the maximum of the numbers ordx(I) for all x ∈ Z.

A marked ideal (I,m) is a couple consisting of an ideal sheaf I together with a positive

integer m. Let Z be a smooth subvariety of X such that the order of I along Z is at least m. The

inverse image of the ideal I with respect to the blow-up π : X̂ → X of X along Z can be written

as the product of the principal ideal corresponding to the exceptional divisor to the power m,

multiplied by an ideal of holomorphic functions on X̂. The latter is called the proper transform

of the marked ideal (I,m).

Let E := (E1, . . . , Es) be a set of non-singular hypersurfaces of X, such that
∑

j Ej is a

simple normal crossing divisor. Following [Kol07], we call (X, I,m,E) a triple.

A smooth blow-up sequence of order at least m of the triple (X, I,m,E) is a sequence

(Xj , Ij ,m,E(j))j=0,...,r satisfying the following requirements.
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(1) For each j = 0, . . . , r we have Ij ⊂ OXj .
(2) We have (X0, I0,m,E(0)) := (X, I,m,E) and for each j = 1, . . . , r the map Xj → Xj−1 is

the blow-up of a smooth center Zj−1 ⊂ Xj−1 such that ordZj−1(Ij−1) > m, and such that
Z has only simple normal crossings with the components of E(j).

(3) For each j = 1, . . . , r the ideal Ij is the proper transform of the marked ideal (Ij−1,m) with
respect to the map Xj → Xj−1.

(4) For each j = 1, . . . , r, the set of hypersurfaces E(j) is the birational transform of E, together
with the exceptional divisor of the map Xj → Xj−1.

In this context, we quote a result from [Kol07, p. 41].

Theorem 4.1 [Kol07]. Let X be a smooth projective manifold, and let 0 6= I ⊂ OX be an ideal
sheaf. Let m be a positive integer assumed to be smaller that the maximal order of I along X,
and let E be a simple normal crossing divisor. Then there exists a smooth blow-up sequence of
order at least m of the triple (X, I,m,E) such that the proper transform of I by the resulting
map X̂ → X is an ideal whose maximal order along X̂ is strictly smaller than m.

As a consequence of the algorithm described in the previous theorem (with m = 1) we have
the following result.

Theorem 4.2. Let (X,B) be a smooth log-canonical pair, and let 0 6= I ⊂ OX be an ideal sheaf.
There exists a birational map p : X1 → X such that the inverse image of I with respect to p
is a principal ideal, whose zero loci plus the inverse image of the boundary divisor B defines a
normal crossing divisor. Moreover, p can be chosen so that the next property is satisfied.

Let x ∈ X be an arbitrary point, and let (f1, . . . , fg) be the local generators of the ideal
I on an open set U centered at x. Then the support of the relative canonical bundle KX1/X

intersected with the inverse image of U is contained in the set
⋂g
j=1(fj ◦ p = 0).

We next consider the context of the adjoint bundles, in which we have the following important
result. This represents the second main technical point in the proof of Theorem 1.2.

Theorem 4.3 [BCHM10]. For each k > 1, the algebra Rk of pluricanonical sections
corresponding to KX +B+ tkA is finitely generated. In particular, the Q-bundle KX +B+ tkA
admits a Zariski decomposition obtained by considering a desingularization of the ideal defined
by the generators of Rk.

We consider the generators (u
(k)
j )j=1,...,gk of the algebra Rk; we assume that they are sections

of the bundle mk(KX +B+ tkA). Let Tk be the curvature current of the metric on KX +B+ tkA
induced by the generators above. There exists a modification of X, say pk : Xk → X, such that

p?k(Tk) = ωk + [Nk]

where ωk is a semi-positive (1, 1)-form on Xk corresponding to the Q-bundle Pk on Xk, and Nk

is an effective divisor, such that

Vol(KX +B + tkA) =

∫
Xk

ωnk .

The finiteness of the algebra Rk is equivalent to the equality above; in general, we only have an
approximation of the volume by the top power of ωk.
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Combined with Theorem 4.2 above, we obtain the next statement.

Corollary 1. For each k > 1 there exist a non-singular manifold Xk and a birational map
pk : Xk → X such that the following statements hold.

(a) We have p?k(KX +B+ tkA) = Pk+Nk, where Nk is effective, Pk is big, without base points,
and such that

Pnk = Vol(KX +B + tkA).

(b) The orthogonality relation holds true: Pn−1
k ·Nk = 0.

(c) We have Supp(KXk/X) ⊂ Supp(Nk).

For the crucial point (b) we refer to the orthogonality lemma in [BDPP13]. Point (c) is a
direct consequence of Theorem 4.2 discussed above.

4.3 Conclusion of the proof

We denote by (Ξ
(j)
k )j=1,...,ik the support of the exceptional divisor of the map pk. By the inclusion

(c) above, together with the orthogonality relation (b) of Corollary 1, we obtain

Pn−1
k · Ξ(j)

k = 0 (4.4)

for each j = 1, . . . , ik. This is an important fact, since it will allow us to ‘ignore’ the presence of
the exceptional divisors, and argue in what follows basically as in the nef case explained at the
beginning of our proof.

Let B = Y1 + · · ·+ YN . We have the change of variables formula

p?k(KX +B) = KXk +Bk − E2
k (4.5)

where Bk :=
∑N

j=1 Yj + E1
k . Here we denote by Yj the proper transform of Yj and E1

k , E
2
k are

effective divisors, such that their support is contained in the exceptional divisor of pk. The divisor
E1
k is reduced, thanks to the fact that (X,B) is an lc pair. Moreover, we have

Supp(Bk) ⊂ Supp(p?k(B)). (4.6)

By hypothesis, we have an injection

L →

m⊗
T ?X〈B〉

where L is a big line bundle. We consider the pk-inverse image of this injection and we get

p?k(L) →

m⊗
T ?Xk〈Bk〉, (4.7)

where Bk is the reduced part of the inverse image of the divisor p?k(B).
The bundle KXk + Bk + t∞p

∗
kA is pseudo-effective, as it follows from (4.5) combined with

(4.6). Indeed, as a consequence of these relations we infer that the difference Bk−Bk is effective
and pk-exceptional.

Moreover, the bundle Pk is nef, so by Theorem 1.1 we obtain the inequality∫
Xk

p?k(L) · Pn−1
k 6 m

∫
Xk

(KXk +Bk + t0p
∗
kA) · Pn−1

k . (4.8)

By (4.5) and (4.6), together with the definition of Bk, we infer that

(KXk +Bk + t∞p
∗
kA) · Pn−1

k = p?k(KX +B + t∞A) · Pn−1
k . (4.9)
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By statements (a) and (b) in Corollary 1,

p?k(KX +B + t∞A) · Pn−1
k = Pnk − (tk − t∞)p?k(A) · Pn−1

k . (4.10)

Since the bundle L is big, we certainly have p?k(L) · Pn−1
k > ε0p

?
k(A) · Pn−1

k for some positive ε0,
so all in all we obtain

Pnk > mp?k(A) · Pn−1
k . (4.11)

We use the Khovanskii–Teissier inequality as in the nef case discussed previously, and as a
consequence we get

p?k(A) · Pn−1
k > (An)1/n · (Pnk )(n−1)/n. (4.12)

The conjunction of (4.11) and (4.12) gives

Pnk > C(m) > 0 (4.13)

uniformly with respect to k, so Theorem 1.2 is proved. 2

5. Further remarks

We consider the exact sequence

0 → L →

m⊗
T ?X〈B〉→ Q → 0 (5.1)

where (X,B) is a pair with the properties stated in Theorem 1.1, and L is a line bundle. Let
{α} be a semi-positive class of (1, 1)-type, such that c1(KX +B) + {α} is pseudo-effective.

As a consequence of Theorem 1.1, we infer∫
X
c1(Q)∧ωn−1 >

(
nm − 1

n− 1
−m

)∫
X

(c1(KX +B) + {α})∧ωn−1− nm − 1

n− 1

∫
X
α∧ωn−1 (5.2)

for any class ω belonging to the closure of the Kähler cone of X.
We remark that even if α = 0, so that KX + B is pseudo-effective, inequality (5.2) is more

precise than the one derived from Miyaoka’s result in [Miy87] as soon as m > 2.
The next result is an easy consequence of (5.2).

Theorem 5.1. Under the hypothesis above, we assume that∫
X
c1(Q) ∧ ωn−1 = 0

for some Kähler metric ω. Then KX +B is numerically trivial.

If L in (5.1) is a sheaf of arbitrary rank, say r, then we obtain a weaker inequality,∫
X
c1(Q) ∧ ωn−1 > −n

m − 1

n− 1

∫
X
α ∧ ωn−1. (5.3)

Other applications will be discussed in a forthcoming publication.
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metrics (Birkhäuser, Basel, 1987).

Yau78 S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–
Ampère equation. I., Comm. Pure Appl. Math. 31 (1978), 339–411.

Frédéric Campana Frederic.Campana@univ-lorraine.fr

Institut Elie Cartan, Nancy, Université de Lorraine, France
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