
Can. J. M a t h , Vol. XXV, No. 2, 1973, pp. 386-396 

ON THE CLOSURE OF THE LINEAR SPAN OF A 
WEIGHTED SEQUENCE IN Z>(0, oo) 

JAMIL A. SIDDIQI 

1. Let }XW} be an increasing sequence of positive numbers. The question of 
the closure in Lp(0, oo ) (1 ^ p ^ oo ) of the linear span of the sequence 
A = {e^x^} has been considered by several authors, notably by Boas (1) 
and Fuchs [3; 4]. (We shall find it a convenient abuse in language to talk of 
the closure of A in L°°(0, oo ) in the sense of the closure in ^ 0 ( 0 , oo ).) Fuchs [4] 
has shown that if {\n} is a sequence of positive numbers such that \n+i — 
\n ^ c > 0, then A is total in L2(0, oo ) if and only if 

where \p is defined as follows: 

oo, 

(2) log*(r) 
f 2Xf\ if r < Xi, 

2 ^ \ f \ if r > Xi. 
^ \n<r 

He has further proved that condition (1) is also sufficient for the sequence A 
to be total in Lp(0, co ) (1 ^ p ^ oo ). 

In this paper, we show first that if the integral in (1) converges, A is not 
total but is topologically linearly independent in Z/(0, oo) (1 ^ p ^ oo). 

It is known (cf. Nachbin [6]) that in a locally convex space E a subset 
{ev)vç.j is topologically linearly independent if and only if there exists in the 
dual space E* a subset { /„} „e/ such that {ev,fv} is a biorthogonal system in the 
sense that /M(e„) = 5MV, and then {fv}v^i is called an orthonormal system 
associated with {ev}vU. Moreover, {e„}„€J remaining topologically linearly 
independent, such an orthonormal system {/„} vei is unique if and only if 
{ev}vç.i is total. If {ev}vei is topologically linearly independent and x belongs 
to the closed linear span of {ev}vU, then x = lim^ X) cvjev implies that for all 
v e I 

lim Cv = f*(x) = cv, 
3 

where {fv}vei i s a n orthonormal system associated with {ev\vU. The cv's are 
uniquely determined independently of the choice of approximating finite 
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linear combinations J2 cv
jev. The formal expansion 

(3) T,Mx)e, 

of x corresponding to the biorthogonal system {ev,fv}vei does not, in general, 
characterize x in the sense that if the formal expansions of two elements 
x and y in the closed linear span of \ev\ vÇ.j coincide, then x = y. 

Next, we construct explicitly an orthonormal system {fk) associated with 
the topologically linearly independent sequence A when 

(4) ^-dr <oo f°+(r) 

and show that each function in the closed linear span of A in Lp (0, oo ) is 
characterized by its formal expansion with respect to the orthonormal system 

The results which we obtain here improve those established earlier by the 
author in [8]. 

2. We begin by proving the following theorem. 

THEOREM 1. If {\n\ is a sequence of positive numbers such that \n+i — 
\n ^ c > 0 and 

(4) !**$*«*>, 
c/i r 

where \p is defined as in (2), then the sequence A = {e~xxXn\ is not total and is 
topologically linearly independent in 1/(0, GO ) (1 ^ p rg oo ). 

In order to prove this theorem, we need the following lemmas due to 
Fuchs [4] (cf. Boas [2], Mandelbrojt [5]). The constants appearing here and 
in the subsequent sections may be different at each appearance. 

LEMMA 1. The function G defined by 

G(z) = A r ^ T e x p ( 2 z / X B ) (z=x+ iy), 
w = l Arc -\- Z 

is holomorphic and satisfies 
\G{z)\ ^ {AHr)}x, 

and 

\G{z)\ â {BHr)}x, 

outside circles of radius c/S with centres at the Xw. 

LEMMA 2. / / (4) holds, there exists a function g holomorphic and without zeros 
in x = Re z > 0 such that 

\g(z)\ ^ {*/iKr)}*. 
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This function is denned by setting g = exp( — u + iv), where 

with yp( — t) = yp{t) and v is the harmonic conjugate of u. 

Proof of Theorem 1. Let g be the function as described above. Following 
Fuchs [4], we define a function / by 

(5) J(z) = (2 + z)~kg(z + l)H(z)A-z-i (z = x + iy), 

where k = 2 + 2c~l, H is the function derived from G on replacing every X„ 
by \„* = Xv + 1 and z by s + 1, and 4̂ is a positive constant as in Lemma 1. 
The function / possesses the following properties in x ^ a > — 1 : 

(i) J is holomorphic and 7 ^ 0 ; 
(ii) J(XV) = 0 for v = 1,2, . . . and J does not have any other real zeros 

besides these; 
(iii) / is such that 

(6) | / ( s ) | ^ (x + l)x+i{ (x + 2)2 + / } - * ' * , 

and 

(7) \J'(z)\ g B(* + l)*+i{(* + 2)2 + y2}-*'Y(r). 

All the assertions in (i) and (ii), except (7), follow from Lemma 2 if we 
observe that, in view of Lemma 1, H is holomorphic in x ^ —1 and satisfies 
the inequality 

\H(z)\ ^ {A*{r)Y+l (x ^ - 1 ) . 

Taking the derivative of the logarithm of / , we get 

,8) Z M = _ * + g ^ + D + g ( g ) _ l o g ^ 
CS) J(z) (2+z) + g(z + 1) + ff(Z) l 0 g ^-
Since g is holomorphic for x > 0, so is the function log g. Hence 

g'(z) _ du . dv_ _ du .du 
g(z) dx dx dx dy * 

Using the inequality \//(\u) < C\2/c\l/(u) (X > 1) and (4), we get 

du 
dx 

du 
dy <!£,•+*(»%'«<<»»• 

Thus we have for x > — 1, 

(9) \g'(z+l)/g(z+l)\^CHr). 
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Taking the derivative of the logarithm of H, we have 

H'(z) _9( , i \ 2 v -
H(z) Z{Z + 1 ; e l (X, + l)(\n -Z)(xn + Z + 2) 

so that for x ^ — 1 

|H'(*)| < 21* + 1 | 2 É / . • i K " ( l ' • o,2exp{2(2 + 1)/(XB + 1)}, 
n=i (An -f- l;|An + z -f- z| 

where 

#.(*) = I l , *? ' exp{2(s + l ) / (X t + 1)}. 

It is easily seen that 

\Hn(z)\ ^ {Ct(r)}*+i (x ^ - 1 ) , 
so that 

lirwi < 2|. + i | ' (««r 'g o. +m».' . , . ,+ „ . • 
But for x ^ — 1, the series on the right is majorized by the series J^n=i \T2 

which converges since \n+i — \n ^ c > 0. Hence for x ^ a > — 1 

(10) \H'{z)\ g {^(0}*+». 

It follows from (8), (9) and (5) that for x ^ a > — 1 

\J'(z)\ s£ \J(z)\{BHr) + \H'(z)/H(z)\ + Q 

g B*(r) | / (*) | + |z + 2|-*|ff'(*)||g(s + 1)M-*-'. 

Using (6) and (10) and the fact that 

iV+1 
jx+ Û l2(2 + 1)l<tW/ • 

we have 
\J'(z)\ ^ B\z + 2\~k(x + 1)*+V(0 

+ \z + 2\-«\C*(r)}*+i{(x + l)/Ur)}'+1A-*-i 

^B(x + l)x+1\z + 2\-*f(r), 

where A is suitably chosen, which establishes (7). 
Let 

(11) h(f) = T 1 J " J(x + iy)rx~iydy (x > a > - 1 ) . 

It follows from (6) that the integral on the right exists and is independent 
of x and hence defines the function h unambiguously for all t Ç (0, oo ). The 
same inequality shows that the function Jx : Xr(:y) = J(x + ^y) belongs to 
Lp( — oo, oo) for all 1 ^ £ ^ oo. 
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We now prove that for all x ^ a > — 1 

(12) J V + * - > ( / ) | ^ < AQ(x + l)qx+q/2 (1< q < oo) 

\tx+1h(t)\ < 7r(x + i r + 1 / 2 fe = oo), 

where p~x + q~~l = 1. If we denote by Jx the Fourier transform of JX} then 
(12) can be written as 

(12') \\J*\\* ^ A«(x + !)*+1/2> (1 ^ (Z ^ oo). 

We first consider the case l ^ £ ^ 2 ( 2 ^ g ^ o o ) . Since Jx Ç Lp( — co , co ) 
for 1 < p ^ 2, the function 7 , G Lff( —oo,oo) and by the Parseval-Riesz 
formula, we have 

\\Jx\\q S (2ir)^\\Jx\\p = Aq(x + l)*+i" (2 = g < oo ), 

where Aq is some positive constant depending on g. Since Jx £ L( —oo, oo ), 

(13') | | 7 , | U = TT(X + 1 ) ^ 2 . 

We next consider the case 2 < £ ^ o o (1 g g < 2). It follows from (7) 
that 7 / G 7 2 ( - o o , oo ) for all x = a > - 1 , where Jx{y) = J'(x + iy) and 
that 

f /»œ ~| i/2 
(13") | | / / | | 2 < 5 ( x + ir+ 1[_ | {(x + 2y+yY*r(r)dy 

< c(* + iy+v\ 
Since J* 6 L( — <x>, oo ) and (6) holds, on integrating by parts, we get 

J,(t) = j £ e-UvJx'(y)dy = r7 , ' (0 
and 

|/*ll«< L t/ui<i J L «/ui^i J ruis 
Applying Holder's inequality, Plancherel's theorem and (13"), we get 

U/ff 

proving (12') since a similar inequality holds for Ji, in view of (13'). 
If 1 S q < °° , putting qx + q — 1 = n, it follows from (12) that 

(14) £tn\h(t)\Sdt < ^ 5 (^ i i ) B + 1 / 2 . 
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If 1 < q < co, then 

etlv\h{t)Ydt = Y,-Jz\ tn\Ht)\adt 
0 n=0 P ^ i «/0 

= o ( S (e/pg)-) = 0 ( 1 ) , 

using Stirling's formula. 
Consequently we have for 1 < q < oo 

(15) Jœ eqt\h(pqt)\qdt < o o . 

If g = 1, oo, using (14), we similarly get 

(16) ^ el\h(at)\dt < oo 

and 

(17) elh(at) e L°°(0, oo) 

respectively, where a > e. Let 

(elh(pqt) when 1 < q < oo, 
^ ' J^' \elh(at) wheng = l o r o o . 

Since (12) holds, by Mellin's inversion formula, we get 

A*) = Ô" r Ht)fdt (x>a> - 1 ) . 

J fan) — 0 and consequently, by (18), we have 

(œ e-HXnf{t)dt = 0 , / G 1/(0, oo ) (1 < ff < oo ) 
(19) J o 

pe'H^dFit) = 0,Fe F(0, oo) (g = 1) 

for 7Z = 1, 2, . . . , where 

(20) F(t) = I f(u)du, f 6 L(0,oo). 
«Jo 

Since J ^ 0, the functions/ and F are also not identically zero. Thus A is not 
total in Lp(0, co ) (1 ^ p ^ oo ). 

J does not have any real zeros besides {Nv}. Hence the equations (19) 
and (20) are not satisfied by any X outside the given sequence. It follows 
that if x > 0, x 9^ \n for n — 1, 2, . . . , e~Hx does not belong to the closed 
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linear span of A in Lp(0, oo ) (1 :g p :g oo ). In particular, none of the elements 

e-t(Kn belongs to the closed linear span of the rest. Thus A is topologically 
linearly independent. 

We note that when the sequence A is total in Lp(0, oo) (1 ^ p ^ oo), it 
remains total if we suppress any one of its elements. Hence, in this case, each 
element depends on the others. 

Theorem 1 taken in conjunction with the theorems of Fuchs stated in the 
beginning of § 1 enables us to assert the following theorem. 

THEOREM 2. If (1) holds, then the sequence A = {e~xxXn} is total and is topo
logically linearly dependent in each Lp(0, oo) (1 ^ p ^ oo). If (4) holds, the 
sequence A is not total but is topologically linearly independent in each Lv (0, oo ) 
(1 ^ p ^ oo). 

3. We now proceed to construct in 1/(0, o o ) ( l ^ £ : g o o ) a n orthonormal 
system associated with the sequence A = {e~xxu}y assuming that (4) holds. 

Let 

Uz) = !%,)<?- x„) < * - * + *>• 
where J is defined by (5). It follows from Lemmas 1 and 2 that JM possesses 
the following properties in x ^ a > — 1 : 

(i) JM is holomorphic and /M 9e 0; 
(ii) JM(X„) = ôM, for /*, v = 1, 2, . . . and /M does not possess any other real 

zeros besides {nv\V7&n\ 
(hi) \J,(z)\ S l -TMI-K* + l)*+i[(* + 2)2 + 3,2]-(*+D/2B 

For x ^ a > — 1 , if we set 

th,(t) = £ J,(x + iy)rx-ivdy 

and repeat the reasoning used in the proof of Theorem 1, we first obtain the 
inequalities: 

fV+ a->„(0|4^ < AQ\J(\,)\-a(x + \)tx+m ( l< q < oo) 
(21) J o 

\f+\(t)\ < r\J{\>)\-\x + 1) I+1 /2 (<z = oo) 

valid for x ^ a > —1 and these, in turn, lead to the following inequalities: 

jj~ e^Kipqt^dt < AelJ'iX,)]-* < oo ( 1 < q < oo ) 

(22) J " V | ^ ( a O | ^ < AxlJ'iX,)]-1 < oo ( f f = l ) 

| e ^ ( « 0 | < AJJ'iX,)]-1 < co (g = oo), 
where a > e. 
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^ ^ e\(pqt) when 1 < q < oo 
(23) /„(*) = \ 2T 

~ô— g hp(at) when g = 1 or oo . 

It follows from (22) that/M G LQ(0, oo ) for 1 ^ g g oo and that 

(24) ||/M | |, ^ ^ ^ M + V ( X M ) | - I (l^q^co), 

where K = pq it I < q < co and K = a if g = 1, oo. 
For/M G L(0, oo), define 

(25) F,(t) = f'frWdx. 

We assert that 

(26) 
J e-'f%(t)dt = S„, (1< g < oo) 

/•oo 

e'H^dF^t) = «„, (g = 1). 

In fact, since JV* : Jx^iy) — Jn(x + iy) belongs to Lp( —oo, oo) for all 
1 ^ ?̂ ^ oo and (21) holds, by Mellin's inversion formula, we get 

•/•#.(*) = ÏT" I *M(0*** (x > a > - 1 ) . 

Hence 

\(Pq)K+1 

I 2ir t/o 

/.(A,) = i 
xy+i 

VA^+1 /«OO 

tX%(pqt)dt = Sp, (1 <q <co) 
7T t / n 

A y + 1 /»00 

- -— tX%(at)dt = ÔM„ (g = l ,oo), 
^7T »/o 2 

which proves (26) in view of (23) and (25). 

4. Let Av(A) denote the closed linear span of A = {e^x^} in Lp(0, oo) 
(1 ^ p ^ °o )• If (4) holds, then A is topologically linearly independent and, 
therefore, every G £ AP(A) has a formal expansion Yl,h(G)e~xxKk correspond
ing to the associated orthonormal system { fk} as constructed in § 3. Using a 
technique developed by L. Schwartz in [7], we establish the following represen
tation theorem which enables us to affirm the uniqueness of this expansion. 

THEOREM 3. Under the conditions of Theorem 1 each function G belonging to 
the closed linear span of the sequence A = {e_*xXn} in 1/(0, oo) (1 ^ p :g oo ) 
possesses the following properties: 
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(1) G is analytic in (0, co ) and G can be continued analytically to a function 
G whose principal branch is holomorphic in the entire z-plane (z = x + iy) 
except perhaps for the negative real axis ( — oo , 0]. 

(2) G can be expanded in a convergent series 

G(z) = e-'f, ckz
x\ 

k=l 

where the ck
Js are determined by G and by the topologically linearly independent 

sequence A. 
(3) G satisfies the inequality 

\G(z)\ <Aqe~ it 
\ k=i 

{B*(\k)\ -u\z\Xk\ 

where B > 0 is an absolute constant depending on A. 

In order to prove the theorem we need the following lemma. 

LEMMA 3. / / (4) holds, the function J defined by (5) satisfies the inequality 

|j'(x,)| è {W,)}S 
where B is a positive constant. 

Proof. Since 

k 

we have 

I AX,) | = 
J(\,)H'(\,) 

(2 + z) + g(z + 1) + H(z) l°gA' 

> exp^ -
2( \ ,+ 1) Hi) 

_œ (X, + 1)' + t 
odt 

X (X, + 2) - t - i n x« — x» 
Xw + X„ + 2 

exp{2(X, + 2 ) / (X w + 1)}. 

In the above inequality, the first factor on the right is bounded below by 
J3-X„-I a n c j by Lemma 1, the second factor is bounded below by {C\l/(\v)}

x*>. 
Hence the result follows. 

Proof of Theorem 3. If G Ç AV(A), there exists a sequence 

such that 

(27) G(x) = l i m ^ c , ( B ) e - V 
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in the norm of Lp(0, oo ) (1 g £ ^ oo). Since A is topologically linearly 
independent, 

lim ck
n) = ck 

n->oo 

exists. If we construct the orthonormal system { fk) and [dFk] associated with 
A as described in § 3 above, we get 

(28) ck = J°° G(x)fk(x)dx. 

Hence, for 1 ^ p g co, 

(29) W < | | G ] | P | | / , | | 5 < ^ ^ - | | G | U 

where p~l + q~l = 1. 
Consider the series Y^=i CjcZXk- Using (29) and Lemma 3, we get 

o o o o I I ^A; 

Lk.lWx*<^-l|G||,Z " *=i •• ,fcl{5^(X»)}x* 

If J2 X*-1 = °° > the series 
CO l« I^A 

V — M _ -
lfa{i^(X*)}X* 

converges for all 2 and it converges uniformly in each circle {z : \z\ ^ R}. In 
fact, since \n ^ en, given any z, there exists a positive integer TV such that for 
all k > N 

oo II *k oo oo 

^ TR7J\ \\H ^ Z^ (2) ^ 2 ^ (2) 
iV+1 { ^ ^ ( A A ; ; } * N+l N+l 

and from this the assertion follows. 
If we put G\(z) = SS=i cke~zzXk, then Gi is a function defined for all values 

of z and its principal branch is holomorphic in the entire s-plane except 
perhaps for the negative real axis ( — 00, 0]. Hence 

(30) IG1GOI < Ajrt, {BH^)r*"\z\U • \\G\\P. 
k=l 

We now show that G\(x) = G(x) a.e. Since for 1 ^ k ^ mn 

ck - c*(m) = §*Mx){G(x) - ck
(n)e~xxu}dx 

Xoo i mn J 

M*)\G(x) -^cv
(n)e-xxXvjdx, 

and for k > mn 

J|oo /»co / w w "\ 

fk{x)G(x)dx = f*(x)<G(x) - X) C / W 7 & , 
0 J o I *=i ; 
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we have for x ^ 0 

1 mn 

1 k=l 

mn 

k=l 

< Ate'z 

ck
M\e~xxu+ £ \ck\e~xxu 

U»oo I m n \v \ IIP 

\G{x) - 2 > / V V & \ d x > . 
It follows that the sequence of polynomials 

converges pointwise to G\ and hence Gi = G a.e. 
If Z) A*"1 < oo, we can enlarge the sequence {\k} into {A/} in such a way 

that the new sequence satisfies (4) and X) A/ - 1 = oo. If G G ^4P(A) is given 
by (27), then G £ AP(A'), where A' = {erxx*1} and (28) is replaced by 

/•oo 

c& = J G(x)fh(x)dx, 

\ fi} being an orthonormal system associated with A' as described in § 3. A 
repetition of the preceding analysis from this point onwards enables us to 
establish the properties (1) to (3) of Theorem 3. We need only observe that 
the inequality 

| c* |<wi)F l |G | |p' 
which holds when ^ is defined with respect to {A/}, holds a fortiori when \p is 
defined with respect to its subsequence {A*}. 
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