ON THE CLOSURE OF THE LINEAR SPAN OF A WEIGHTED SEQUENCE IN $L^{p}(0, \infty)$

JAMIL A. SIDDIQI

1. Let $\left\{\lambda_{n}\right\}$ be an increasing sequence of positive numbers. The question of the closure in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$ of the linear span of the sequence $\Lambda=\left\{e^{-x} x^{\lambda_{n}}\right\}$ has been considered by several authors, notably by Boas (1) and Fuchs $[\mathbf{3} ; \mathbf{4}]$. (We shall find it a convenient abuse in language to talk of the closure of Λ in $L^{\infty}(0, \infty)$ in the sense of the closure in $\mathscr{C}_{0}(0, \infty)$.) Fuchs [4] has shown that if $\left\{\lambda_{n}\right\}$ is a sequence of positive numbers such that $\lambda_{n+1}-$ $\lambda_{n} \geqq c>0$, then Λ is total in $L^{2}(0, \infty)$ if and only if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\psi(r)}{r^{2}} d r=\infty \tag{1}
\end{equation*}
$$

where ψ is defined as follows:

$$
\log \psi(r)= \begin{cases}2 \lambda_{1}{ }^{-1}, & \text { if } r \leqslant \lambda_{1} \tag{2}\\ 2 \sum_{\lambda_{n}<r} \lambda_{n}^{-1}, & \text { if } r>\lambda_{1}\end{cases}
$$

He has further proved that condition (1) is also sufficient for the sequence Λ to be total in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$.

In this paper, we show first that if the integral in (1) converges, Λ is not total but is topologically linearly independent in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$.

It is known (cf. Nachbin [6]) that in a locally convex space E a subset $\left\{e_{\nu}\right\}_{\nu \in I}$ is topologically linearly independent if and only if there exists in the dual space E^{*} a subset $\left\{f_{\nu}\right\}_{\nu \in I}$ such that $\left\{e_{\nu}, f_{\nu}\right\}$ is a biorthogonal system in the sense that $f_{\mu}\left(e_{\nu}\right)=\delta_{\mu \nu}$, and then $\left\{f_{\nu}\right\}_{\nu \in I}$ is called an orthonormal system associated with $\left\{e_{\nu}\right\}_{\nu \in I}$. Moreover, $\left\{e_{\nu}\right\}_{\nu \in I}$ remaining topologically linearly independent, such an orthonormal system $\left\{f_{\nu}\right\}_{\nu \in I}$ is unique if and only if $\left\{e_{\nu}\right\}_{\nu \in I}$ is total. If $\left\{e_{\nu}\right\}_{\nu \in I}$ is topologically linearly independent and x belongs to the closed linear span of $\left\{e_{\nu}\right\}_{\nu \in I}$, then $x=\lim _{j} \sum c_{\nu}{ }^{j} e_{\nu}$ implies that for all $\nu \in I$

$$
\lim _{j} c_{\nu}{ }^{j}=f_{\nu}(x)=c_{\nu}
$$

where $\left\{f_{\nu}\right\}_{\nu \in I}$ is an orthonormal system associated with $\left\{e_{\nu}\right\}_{\nu \in I}$. The c_{ν} 's are uniquely determined independently of the choice of approximating finite

[^0]linear combinations $\sum c_{\nu}{ }^{j} e_{\nu}$. The formal expansion
\[

$$
\begin{equation*}
\sum_{\nu \in I} f_{\nu}(x) e_{\nu} \tag{3}
\end{equation*}
$$

\]

of x corresponding to the biorthogonal system $\left\{e_{\nu}, f_{\nu}\right\}_{\nu \in I}$ does not, in general, characterize x in the sense that if the formal expansions of two elements x and y in the closed linear span of $\left\{e_{\nu}\right\}_{\nu \in I}$ coincide, then $x=y$.

Next, we construct explicitly an orthonormal system $\left\{f_{k}\right\}$ associated with the topologically linearly independent sequence Λ when

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\psi(r)}{r^{2}} d r<\infty \tag{4}
\end{equation*}
$$

and show that each function in the closed linear span of Λ in $L^{p}(0, \infty)$ is characterized by its formal expansion with respect to the orthonormal system $\left\{f_{k}\right\}$.

The results which we obtain here improve those established earlier by the author in [8].
2. We begin by proving the following theorem.

Theorem 1. If $\left\{\lambda_{n}\right\}$ is a sequence of positive numbers such that λ_{n+1} $\lambda_{n} \geqq c>0$ and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\psi(r)}{r^{2}} d r<\infty \tag{4}
\end{equation*}
$$

where ψ is defined as in (2), then the sequence $\Lambda=\left\{e^{-x} x^{\lambda_{n}}\right\}$ is not total and is topologically linearly independent in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$.

In order to prove this theorem, we need the following lemmas due to Fuchs [4] (cf. Boas [2], Mandelbrojt [5]). The constants appearing here and in the subsequent sections may be different at each appearance.

Lemma 1. The function G defined by

$$
G(z)=\prod_{n=1}^{\infty} \frac{\lambda_{n}-z}{\lambda_{n}+z} \exp \left(2 z / \lambda_{n}\right) \quad(z=x+i y)
$$

is holomorphic and satisfies

$$
|G(z)| \leqq\{A \psi(r)\}^{x}
$$

and

$$
|G(z)| \geqq\{B \psi(r)\}^{x},
$$

outside circles of radius $c / 3$ with centres at the λ_{n}.
Lemma 2. If (4) holds, there exists a function g holomorphic and without zeros in $x=\operatorname{Re} z>0$ such that

$$
|g(z)| \leqq\{x / \psi(r)\}^{x} .
$$

This function is defined by setting $g=\exp (-u+i v)$, where

$$
u(x, y)=\frac{2 x}{\pi} \int_{-\infty}^{\infty} \frac{\psi(t)}{x^{2}+(t-y)^{2}} d t
$$

with $\psi(-t)=\psi(t)$ and v is the harmonic conjugate of u.
Proof of Theorem 1. Let g be the function as described above. Following Fuchs [4], we define a function J by

$$
\begin{equation*}
J(z)=(2+z)^{-k} g(z+1) H(z) A^{-z-1} \quad(z=x+i y) \tag{5}
\end{equation*}
$$

where $k=2+2 c^{-1}, H$ is the function derived from G on replacing every λ_{ν} by $\lambda_{\nu}{ }^{*}=\lambda_{\nu}+1$ and z by $z+1$, and A is a positive constant as in Lemma 1. The function J possesses the following properties in $x \geqq a>-1$:
(i) J is holomorphic and $J \neq 0$;
(ii) $J\left(\lambda_{\nu}\right)=0$ for $\nu=1,2, \ldots$ and J does not have any other real zeros besides these;
(iii) J is such that

$$
\begin{equation*}
|J(z)| \leqq(x+1)^{x+1}\left\{(x+2)^{2}+y^{2}\right\}^{-k / 2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|J^{\prime}(z)\right| \leqq B(x+1)^{x+1}\left\{(x+2)^{2}+y^{2}\right\}^{-k / 2} \psi(r) \tag{7}
\end{equation*}
$$

All the assertions in (i) and (ii), except (7), follow from Lemma 2 if we observe that, in view of Lemma $1, H$ is holomorphic in $x \geqq-1$ and satisfies the inequality

$$
|H(z)| \leqq\{A \psi(r)\}^{x+1} \quad(x \geqq-1)
$$

Taking the derivative of the logarithm of J, we get

$$
\begin{equation*}
\frac{J^{\prime}(z)}{J(z)}=-\frac{k}{(2+z)}+\frac{g^{\prime}(z+1)}{g(z+1)}+\frac{H^{\prime}(z)}{H(z)}-\log A \tag{8}
\end{equation*}
$$

Since g is holomorphic for $x>0$, so is the function $\log g$. Hence

$$
\frac{g^{\prime}(z)}{g(z)}=-\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}
$$

Using the inequality $\psi(\lambda u)<C \lambda^{2 / c} \psi(u)(\lambda>1)$ and (4), we get

$$
\left|\frac{\partial u}{\partial x}\right|,\left|\frac{\partial u}{\partial y}\right| \leqslant \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\psi(t)}{x^{2}+(t-y)^{2}} d t \leqslant C \psi(r) .
$$

Thus we have for $x>-1$,

$$
\begin{equation*}
\left|g^{\prime}(z+1) / g(z+1)\right| \leqq C \psi(r) \tag{9}
\end{equation*}
$$

Taking the derivative of the logarithm of H, we have

$$
\frac{H^{\prime}(z)}{H(z)}=-2(z+1)^{2} \sum_{n=1}^{\infty} \frac{1}{\left(\lambda_{n}+1\right)\left(\lambda_{n}-z\right)\left(\lambda_{n}+z+2\right)}
$$

so that for $x \geqq-1$

$$
\left|H^{\prime}(z)\right| \leqslant 2|z+1|^{2} \sum_{n=1}^{\infty} \frac{\left|H_{n}(z)\right|}{\left(\lambda_{n}+1\right)\left|\lambda_{n}+z+2\right|^{2}} \exp \left\{2(z+1) /\left(\lambda_{n}+1\right)\right\}
$$

where

$$
H_{n}(z)=\prod_{k \neq n} \frac{\lambda_{k}-z}{\lambda_{k}+z+2} \exp \left\{2(z+1) /\left(\lambda_{k}+1\right)\right\}
$$

It is easily seen that

$$
\left|H_{n}(z)\right| \leqq\{C \psi(r)\}^{x+1} \quad(x \geqq-1),
$$

so that

$$
\left|H^{\prime}(z)\right| \leqslant 2|z+1|^{2}\{C \psi(r)\}^{x+1} \sum_{n=1}^{\infty} \frac{1}{\left(\lambda_{n}+1\right)\left|\lambda_{n}+z+2\right|^{2}} .
$$

But for $x \geqq-1$, the series on the right is majorized by the series $\sum_{n=1}^{\infty} \lambda_{n}{ }^{-2}$ which converges since $\lambda_{n+1}-\lambda_{n} \geqq c>0$. Hence for $x \geqq a>-1$

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \leqq\{C \psi(r)\}^{x+1} \tag{10}
\end{equation*}
$$

It follows from (8), (9) and (5) that for $x \geqq a>-1$

$$
\begin{aligned}
\left|J^{\prime}(z)\right| & \leqq|J(z)|\left\{B \psi(r)+\left|H^{\prime}(z) / H(z)\right|+C\right\} \\
& \leqq B \psi(r)|J(z)|+|z+2|^{-k}\left|H^{\prime}(z)\right||g(z+1)| A^{-x-1}
\end{aligned}
$$

Using (6) and (10) and the fact that

$$
|g(z+1)| \leqslant\left\{\frac{x+1}{\psi(r)}\right\}^{x+1}
$$

we have

$$
\begin{aligned}
\left|J^{\prime}(z)\right| \leqq & B|z+2|^{-k}(x+1)^{x+1} \psi(r) \\
& +|z+2|^{-k}\{C \psi(r)\}^{x+1}\{(x+1) / \psi(r)\}^{x+1} A^{-x-1} \\
\leqq & B(x+1)^{x+1}|z+2|^{-k} \psi(r),
\end{aligned}
$$

where A is suitably chosen, which establishes (7).
Let

$$
\begin{equation*}
h(t)=t^{-1} \int_{-\infty}^{\infty} J(x+i y) t^{-x-i v} d y \quad(x \geqslant a>-1) \tag{11}
\end{equation*}
$$

It follows from (6) that the integral on the right exists and is independent of x and hence defines the function h unambiguously for all $t \in(0, \infty)$. The same inequality shows that the function $J_{x}: J_{x}(y)=J(x+i y)$ belongs to $L^{p}(-\infty, \infty)$ for all $1 \leqq p \leqq \infty$.

We now prove that for all $x \geqq a>-1$

$$
\begin{array}{cl}
\int_{0}^{\infty} t^{q x+q-1}|h(t)|^{q} d t \leqslant A_{q}(x+1)^{q x+q / 2} & (1 \leqslant q<\infty) \tag{12}\\
\left|t^{x+1} h(t)\right| \leqslant \pi(x+1)^{x+1 / 2} & (q=\infty)
\end{array}
$$

where $p^{-1}+q^{-1}=1$. If we denote by \hat{J}_{x} the Fourier transform of J_{x}, then (12) can be written as

$$
\left\|\hat{J}_{x}\right\|_{q} \leqq A_{q}(x+1)^{x+1 / 2}, \quad(1 \leqq q \leqq \infty)
$$

We first consider the case $1 \leqq p \leqq 2(2 \leqq q \leqq \infty)$. Since $J_{x} \in L^{p}(-\infty, \infty)$ for $1<p \leqq 2$, the function $\hat{J}_{x} \in L^{q}(-\infty, \infty)$ and by the Parseval-Riesz formula, we have

$$
\left\|\hat{J}_{x}\right\|_{q} \leqq(2 \pi)^{1 / q}\left\|J_{x}\right\|_{p} \leqq A_{q}(x+1)^{x+1 / 2} \quad(2 \leqq q<\infty)
$$

where A_{q} is some positive constant depending on q. Since $J_{x} \in L(-\infty, \infty)$,

$$
\left\|\hat{J}_{x}\right\|_{\infty} \leqq \pi(x+1)^{x+1 / 2}
$$

We next consider the case $2<p \leqq \infty \quad(1 \leqq q<2)$. It follows from (7) that $J_{x}{ }^{\prime} \in L^{2}(-\infty, \infty)$ for all $x \geqq a>-1$, where $J_{x}{ }^{\prime}(y)=J^{\prime}(x+i y)$ and that

$$
\begin{align*}
\left\|J_{x}\right\|^{\prime} \|_{2} & \leqslant B(x+1)^{x+1}\left[\int_{-\infty}^{\infty}\left\{(x+2)^{2}+y^{2}\right\}^{-k} \psi^{2}(r) d y\right]^{1 / 2} \\
& \leqslant C(x+1)^{x+1 / 2}
\end{align*}
$$

Since $J_{x} \in L(-\infty, \infty)$ and (6) holds, on intergrating by parts, we get

$$
\hat{J}_{x}(t)=\frac{1}{t} \int_{-\infty}^{\infty} e^{-i t y} J_{x}^{\prime}(y) d y=t^{-1} \hat{J}_{x}^{\prime}(t)
$$

and

$$
\left\|\hat{J}_{x}\right\|_{q} \leqslant\left[\int_{|t|<1}\left|\hat{J}_{x}(t)\right|^{q} d t\right]^{1 / q}+\left[\int_{|t| \geqq 1}\left|\hat{J}_{x}(t)\right|^{q} d t\right]^{1 / q}
$$

Applying Hölder's inequality, Plancherel's theorem and ($13^{\prime \prime}$), we get

$$
\begin{aligned}
I_{2} & =\left[\int_{|t| \geqq 1}\left|\frac{\hat{J}_{x}{ }^{\prime}(t)}{t}\right|^{q} d t\right]^{1 / q} \\
& \leqslant\left[\int_{|t| \geqq 1}|t|^{2 /(q-2)} d t\right]^{(2-q) / 2 q}\left\|\hat{J}_{x}^{\prime}\right\|_{2} \\
& =A_{q}\left\|J_{x}\right\|_{2} \leqslant A_{q}(x+1)^{x+1 / 2},
\end{aligned}
$$

proving (12^{\prime}) since a similar inequality holds for I_{1}, in view of (13').
If $1 \leqq q<\infty$, putting $q x+q-1=n$, it follows from (12) that

$$
\begin{equation*}
\int_{0}^{\infty} t^{n}|h(t)|^{q} d t \leqslant A_{q}\left(\frac{n+1}{q}\right)^{n+1 / 2} \tag{14}
\end{equation*}
$$

If $1<q<\infty$, then

$$
\begin{aligned}
\int_{0}^{\infty} e^{t / p}|h(t)|^{a} d t & =\sum_{n=0}^{\infty} \frac{1}{p^{n} n!} \int_{0}^{\infty} t^{n}|h(t)|^{q} d t \\
& =O\left(\sum_{n=0}^{\infty} \frac{1}{(p q)^{n}} \frac{(n+1)^{n+1 / 2}}{n!}\right) \\
& =O\left(\sum_{n=0}^{\infty}(e / p q)^{n}\right)=O(1),
\end{aligned}
$$

using Stirling's formula.
Consequently we have for $1<q<\infty$

$$
\begin{equation*}
\int_{0}^{\infty} e^{q t}|h(p q t)|^{q} d t<\infty \tag{15}
\end{equation*}
$$

If $q=1, \infty$, using (14), we similarly get

$$
\begin{equation*}
\int_{0}^{\infty} e^{t}|h(\alpha t)| d t<\infty \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{t} h(\alpha t) \in L^{\infty}(0, \infty) \tag{17}
\end{equation*}
$$

respectively, where $\alpha>e$. Let

$$
f(t)= \begin{cases}e^{t} h(p q t) & \text { when } 1<q<\infty \tag{18}\\ e^{t} h(\alpha t) & \text { when } q=1 \text { or } \infty\end{cases}
$$

Since (12) holds, by Mellin's inversion formula, we get

$$
J(z)=\frac{1}{2 \pi} \int_{0}^{\infty} h(t) t^{2} d t \quad(x \geqslant a>-1)
$$

$J\left(\lambda_{n}\right)=0$ and consequently, by (18), we have

$$
\begin{array}{ll}
\int_{0}^{\infty} e^{-t} t^{\lambda_{n}} f(t) d t=0, f \in L^{q}(0, \infty) & (1<q \leqslant \infty) \tag{19}\\
\int_{0}^{\infty} e^{-t} t^{\lambda_{n}} d F(t)=0, F \in V(0, \infty) & (q=1)
\end{array}
$$

for $n=1,2, \ldots$, where

$$
\begin{equation*}
F(t)=\int_{0}^{t} f(u) d u, \quad f \in L(0, \infty) \tag{20}
\end{equation*}
$$

Since $J \neq 0$, the functions f and F are also not identically zero. Thus Λ is not total in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$.
J does not have any real zeros besides $\left\{_{N \nu}\right\}$. Hence the equations (19) and (20) are not satisfied by any λ outside the given sequence. It follows that if $x>0, x \neq \lambda_{n}$ for $n=1,2, \ldots, e^{-t} t^{x}$ does not belong to the closed
linear span of Λ in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$. In particular, none of the elements $e^{-t} \lambda^{\lambda_{n}}$ belongs to the closed linear span of the rest. Thus Λ is topologically linearly independent.

We note that when the sequence Λ is total in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$, it remains total if we suppress any one of its elements. Hence, in this case, each element depends on the others.

Theorem 1 taken in conjunction with the theorems of Fuchs stated in the beginning of $\S 1$ enables us to assert the following theorem.

Theorem 2. If (1) holds, then the sequence $\Lambda=\left\{e^{-x} x^{\lambda_{n}}\right\}$ is total and is topologically linearly dependent in each $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$. If (4) holds, the sequence Λ is not total but is topologically linearly independent in each $L^{p}(0, \infty)$ $(1 \leqq p \leqq \infty)$.
3. We now proceed to construct in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$ an orthonormal system associated with the sequence $\Lambda=\left\{e^{-x} x^{\lambda n}\right\}$, assuming that (4) holds.

Let

$$
J_{\mu}(z)=\frac{J(z)}{J^{\prime}\left(\lambda_{\mu}\right)\left(z-\lambda_{\mu}\right)} \quad(z=x+i y)
$$

where J is defined by (5). It follows from Lemmas 1 and 2 that J_{μ} possesses the following properties in $x \geqq a>-1$:
(i) J_{μ} is holomorphic and $J_{\mu} \neq 0$;
(ii) $J_{\mu}\left(\lambda_{\nu}\right)=\delta_{\mu \nu}$ for $\mu, \nu=1,2, \ldots$ and J_{μ} does not possess any other real zeros besides $\left\{\mu_{\nu}\right\}_{\nu \neq \mu}$;
(iii) $\left|J_{\mu}(z)\right| \leqq\left|J^{\prime}\left(\lambda_{\mu}\right)\right|^{-1}(x+1)^{x+1}\left[(x+2)^{2}+y^{2}\right]^{-(k+1) / 2}$.

For $x \geqq a>-1$, if we set

$$
t h_{\mu}(t)=\int_{-\infty}^{\infty} J_{\mu}(x+i y) t^{-x-i y} d y
$$

and repeat the reasoning used in the proof of Theorem 1, we first obtain the inequalities:

$$
\begin{align*}
\int_{0}^{\infty} t^{a x+q-1}\left|h_{\mu}(t)\right|^{q} d t \leqslant A_{q}\left|J\left(\lambda_{\mu}\right)\right|^{-q}(x+1)^{q x+q / 2} & (1 \leqslant q<\infty) \tag{21}\\
\left|t^{x+1} h_{\mu}(t)\right| \leqslant \pi\left|J\left(\lambda_{\mu}\right)\right|^{-1}(x+1)^{x+1 / 2} & (q=\infty)
\end{align*}
$$

valid for $x \geqq a>-1$ and these, in turn, lead to the following inequalities:

$$
\int_{0}^{\infty} e^{q t}\left|h_{\mu}(p q t)\right|^{q} d t \leqslant A_{q}\left|J^{\prime}\left(\lambda_{\mu}\right)\right|^{-q}<\infty \quad(1<q<\infty)
$$

$$
\begin{align*}
\int_{0}^{\infty} e^{t}\left|h_{\mu}(\alpha t)\right| d t \leqslant A_{1}\left|J^{\prime}\left(\lambda_{\mu}\right)\right|^{-1}<\infty & (q=1) \tag{22}\\
\left|e^{t} h_{\mu}(\alpha t)\right| \leqslant A_{\infty}\left|J^{\prime}\left(\lambda_{\mu}\right)\right|^{-1}<\infty & (q=\infty)
\end{align*}
$$

where $\alpha>e$.

Set

$$
f_{\mu}(t)= \begin{cases}\frac{(p q)^{\lambda_{\mu}+1}}{2 \pi} e^{t} h_{\mu}(p q t) & \text { when } 1<q<\infty \tag{23}\\ \frac{\alpha^{\lambda_{\mu}+1}}{2 \pi} e^{t} h_{\mu}(\alpha t) & \text { when } q=1 \text { or } \infty\end{cases}
$$

It follows from (22) that $f_{\mu} \in L^{q}(0, \infty)$ for $1 \leqq q \leqq \infty$ and that
where $\kappa=p q$ if $1<q<\infty$ and $\kappa=\alpha$ if $q=1, \infty$.
For $f_{\mu} \in L(0, \infty)$, define

$$
\begin{equation*}
F_{\mu}(t)=\int_{0}^{t} f_{\mu}(x) d x \tag{25}
\end{equation*}
$$

We assert that

$$
\begin{array}{ll}
\int_{0}^{\infty} e^{-t} t^{\lambda} \nu & f_{\mu}(t) d t=\delta_{\mu \nu} \tag{26}\\
(1<q \leqslant \infty) \\
\int_{0}^{\infty} e^{-t} t^{\lambda} \nu d F_{\mu}(t)=\delta_{\mu \nu} & (q=1)
\end{array}
$$

In fact, since $J_{x}{ }^{\mu}: J_{x}{ }^{\mu}(y)=J_{\mu}(x+i y)$ belongs to $L^{p}(-\infty, \infty)$ for all $1 \leqq p \leqq \infty$ and (21) holds, by Mellin's inversion formula, we get

$$
J_{\mu}(z)=\frac{1}{2 \pi} \int_{0}^{\infty} h_{\mu}(t) t^{2} d t \quad(x \geqslant a>-1)
$$

Hence

$$
J_{\mu}\left(\lambda_{\nu}\right)= \begin{cases}\frac{(p q)^{\lambda_{\nu}+1}}{2 \pi} \int_{0}^{\infty} t^{\lambda_{\nu}} h_{\mu}(p q t) d t=\delta_{\mu \nu} & (1<q<\infty) \\ \frac{\alpha^{\lambda_{\nu}+1}}{2 \pi} \int_{0}^{\infty} t^{\lambda_{\nu}} h_{\mu}(\alpha t) d t=\delta_{\mu \nu} & (q=1, \infty),\end{cases}
$$

which proves (26) in view of (23) and (25).
4. Let $A^{p}(\Lambda)$ denote the closed linear span of $\Lambda=\left\{e^{-x} x^{\lambda}\right\}$ in $L^{p}(0, \infty)$ ($1 \leqq p \leqq \infty$). If (4) holds, then Λ is topologically linearly independent and, therefore, every $G \in A^{p}(\Lambda)$ has a formal expansion $\sum f_{k}(G) e^{-x} x^{\lambda_{k}}$ corresponding to the associated orthonormal system $\left\{f_{k}\right\}$ as constructed in $\S 3$. Using a technique developed by L. Schwartz in [7], we establish the following representation theorem which enables us to affirm the uniqueness of this expansion.

Theorem 3. Under the conditions of Theorem 1 each function G belonging to the closed linear span of the sequence $\Lambda=\left\{e^{-x} x^{\lambda_{n}}\right\}$ in $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$ possesses the following properties:
(1) G is analytic in $(0, \infty)$ and G can be continued analytically to a function G whose principal branch is holomorphic in the entire z-plane $(z=x+i y)$ except perhaps for the negative real axis $(-\infty, 0]$.
(2) G can be expanded in a convergent series

$$
G(z)=e^{-z} \sum_{k=1}^{\infty} c_{k} z^{\lambda_{k}}
$$

where the c_{k} 's are determined by G and by the topologically linearly independent sequence Λ.
(3) G satisfies the inequality

$$
|G(z)| \leqslant A_{q} e^{-x}\left(\sum_{k=1}^{\infty}\left\{B \psi\left(\lambda_{k}\right)\right\}^{-\lambda_{k}}|z|^{\lambda_{k}}\right) \cdot\|G\|_{p}
$$

where $B>0$ is an absolute constant depending on Λ.
In order to prove the theorem we need the following lemma.
Lemma 3. If (4) holds, the function J defined by (5) satisfies the inequality

$$
\left|J^{\prime}\left(\lambda_{\nu}\right)\right| \geqq\left\{B \psi\left(\lambda_{\nu}\right)\right\}_{\nu}^{\lambda_{\nu}}
$$

where B is a positive constant.
Proof. Since

$$
\frac{J^{\prime}(z)}{J(z)}=-\frac{k}{(2+z)}+\frac{g^{\prime}(z+1)}{g(z+1)}+\frac{H^{\prime}(z)}{H(z)}-\log A
$$

we have

$$
\begin{aligned}
\left|J^{\prime}\left(\lambda_{\nu}\right)\right|= & \left|\frac{J\left(\lambda_{\nu}\right) H^{\prime}\left(\lambda_{\nu}\right)}{H\left(\lambda_{\nu}\right)}\right| \\
\geqslant & \exp \left\{-\frac{2\left(\lambda_{\nu}+1\right)}{\pi} \int_{-\infty}^{\infty} \frac{\psi(t)}{\left(\lambda_{\nu}+1\right)^{2}+t^{2}} d t\right\} \\
& \quad \times\left(\lambda_{\nu}+2\right)^{-k-1} \cdot \prod_{n \neq \nu}\left|\frac{\lambda_{n}-\lambda_{\nu}}{\lambda_{n}+\lambda_{\nu}+2}\right| \exp \left\{2\left(\lambda_{\nu}+2\right) /\left(\lambda_{n}+1\right)\right\}
\end{aligned}
$$

In the above inequality, the first factor on the right is bounded below by $B^{-\lambda_{\nu}-1}$ and by Lemma 1, the second factor is bounded below by $\left\{C \psi\left(\lambda_{\nu}\right)\right\}^{\lambda_{\nu}}$. Hence the result follows.

Proof of Theorem 3. If $G \in A^{p}(\Lambda)$, there exists a sequence

$$
\left\{\sum_{1}^{m_{n}} c_{k}{ }^{(n)} e^{-x} x^{\lambda_{k}}\right\}
$$

such that

$$
\begin{equation*}
G(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{m_{n}} c_{k}^{(n)} e^{-x} x^{\lambda_{k}} \tag{27}
\end{equation*}
$$

in the norm of $L^{p}(0, \infty)(1 \leqq p \leqq \infty)$. Since Λ is topologically linearly independent,

$$
\lim _{n \rightarrow \infty} c_{k}^{(n)}=c_{k}
$$

exists. If we construct the orthonormal system $\left\{f_{k}\right\}$ and $\left\{d F_{k}\right\}$ associated with Λ as described in § 3 above, we get

$$
\begin{equation*}
c_{k}=\int_{0}^{\infty} G(x) f_{k}(x) d x \tag{28}
\end{equation*}
$$

Hence, for $1 \leqq p \leqq \infty$,

$$
\begin{equation*}
\left|c_{k}\right|<\|G\|_{p}\left\|f_{k}\right\|_{q} \leqslant \frac{A_{q} \kappa^{\lambda^{\lambda_{k+1}}}}{\mid J^{\prime}} \frac{\left(\lambda_{k}\right) \mid}{\left(\lambda_{k}\right)}\|G\|_{p}, \tag{29}
\end{equation*}
$$

where $p^{-1}+q^{-1}=1$.
Consider the series $\sum_{k=1}^{\infty} c_{k} z^{\lambda k}$. Using (29) and Lemma 3, we get

$$
\sum_{k=1}^{\infty}\left|c_{k}\right||z|^{\lambda_{k}} \leqslant A_{q} \cdot\|G\|_{p} \sum_{k=1}^{\infty} \frac{|z|^{\lambda_{k}}}{\left\{B \psi\left(\lambda_{k}\right)\right\}^{\lambda_{k}}} .
$$

If $\sum \lambda_{k}{ }^{-1}=\infty$, the series

$$
\sum_{k=1}^{\infty} \frac{|z|^{\lambda_{k}}}{\left\{B \psi\left(\lambda_{k}\right)\right\}^{\lambda_{k}}}
$$

converges for all z and it converges uniformly in each circle $\{z:|z| \leqq R\}$. In fact, since $\lambda_{n} \geqq c n$, given any z, there exists a positive integer N such that for all $k>N$

$$
\sum_{N+1}^{\infty} \frac{|z|^{\lambda_{k}}}{\left\{B \psi\left(\lambda_{k}\right)\right\}^{\lambda_{k}}} \leqslant \sum_{N+1}^{\infty}\left(\frac{1}{2}\right)^{\lambda_{k}} \leqslant \sum_{N+1}^{\infty}\left(\frac{1}{2}\right)^{c n}
$$

and from this the assertion follows.
If we put $G_{1}(z)=\sum_{k=1}^{\infty} c_{k} e^{-z^{\lambda} z_{k}}$, then G_{1} is a function defined for all values of z and its principal branch is holomorphic in the entire z-plane except perhaps for the negative real axis $(-\infty, 0]$. Hence

$$
\begin{equation*}
\left|G_{1}(z)\right| \leqslant A_{q} e^{-x} \sum_{k=1}^{\infty}\left\{B \psi\left(\lambda_{k}\right)\right\}^{-\lambda_{k}}|z|^{\lambda_{k}} \cdot\|G\|_{p} . \tag{30}
\end{equation*}
$$

We now show that $G_{1}(x)=G(x)$ a.e. Since for $1 \leqq k \leqq m_{n}$

$$
\begin{aligned}
c_{k}-c_{k}^{(\boldsymbol{(s)}} & =\int_{0}^{\infty} f_{k}(x)\left\{G(x)-c_{k}^{(n)} e^{-x} x^{\lambda k}\right\} d x \\
& =\int_{0}^{\infty} f_{k}(x)\left\{G(x)-\sum_{\nu=1}^{m_{n}} c_{\nu}^{(n)} e^{-x} x^{\lambda \nu}\right\} d x
\end{aligned}
$$

and for $k>m_{n}$

$$
c_{k}=\int_{0}^{\infty} f_{k}(x) G(x) d x=\int_{0}^{\infty} f_{k}(x)\left\{G(x)-\sum_{\nu=1}^{m_{n}} c_{\nu}^{(n)} e^{-x} x^{\lambda \nu}\right\} d x,
$$

we have for $x \geqq 0$

$$
\begin{aligned}
&\left|G_{1}(x)-\sum_{k=1}^{m_{n}} c_{k}^{(n)} e^{-x} x^{\lambda_{k} \mid}\right| \leqslant \sum_{k=1}^{m_{n}}\left|c_{k}-c_{k}^{(n)}\right| e^{-x} x^{\lambda_{k}}+\sum_{m_{n}+1}^{\infty}\left|c_{k}\right| e^{-x} x^{\lambda_{k}} \\
& \leqslant A_{q} e^{-x}\left(\sum_{k=1}^{\infty}\left\{B \psi\left(\lambda_{k}\right)\right\}^{-\lambda_{k}} x^{\lambda_{k}}\right) \\
& \times\left\{\int_{0}^{\infty}\left|G(x)-\sum_{k=1}^{m_{n}} c_{k}^{(n)} e^{-x} x^{\lambda_{k}}\right|^{p} d x\right\}^{1 / p}
\end{aligned}
$$

It follows that the sequence of polynomials

$$
\left\{\sum_{k=1}^{m_{n}} c_{k}^{(n)} e^{-x} x^{\lambda_{k}}\right\}
$$

converges pointwise to G_{1} and hence $G_{1}=G$ a.e.
If $\sum \lambda_{k}{ }^{-1}<\infty$, we can enlarge the sequence $\left\{\lambda_{k}\right\}$ into $\left\{\lambda_{l}\right\}$ in such a way that the new sequence satisfies (4) and $\sum \lambda_{l}^{\prime-1}=\infty$. If $G \in A^{p}(\Lambda)$ is given by (27), then $G \in A^{p}\left(\Lambda^{\prime}\right)$, where $\Lambda^{\prime}=\left\{e^{-x} x^{\lambda}\right\}$ and (28) is replaced by

$$
c_{k}=\int_{0}^{\infty} G(x) f_{l_{k}}(x) d x
$$

$\left\{f_{l}\right\}$ being an orthonormal system associated with Λ^{\prime} as described in §3. A repetition of the preceding analysis from this point onwards enables us to establish the properties (1) to (3) of Theorem 3 . We need only observe that the inequality

$$
\left|c_{k}\right| \leqslant \frac{A_{q}}{\left\{B \psi\left(\lambda_{k}\right)\right\}^{k}} \| G| |_{p}
$$

which holds when ψ is defined with respect to $\left\{\lambda_{l}{ }^{\prime}\right\}$, holds a fortior when ψ is defined with respect to its subsequence $\left\{\lambda_{k}\right\}$.

References

1. R. P. Boas, Jr., Density theorems for power series and complete sets, Trans. Amer. Math. Soc. 61 (1947), 54-68.
2. - Entire functions (Academic Press, New York, 1954).
3. W. H. J. Fuchs, A theorem on finite differences with an application to the theory of Hausdorff summability, Proc. Cambridge Philos. Soc. 40 (1944), 189-196.
4. - On the closure of $\left\{e^{-t} t^{a_{\nu}}\right\}$, Proc. Cambridge Philos. Soc. 42 (1946), 91-105.
5. S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications (Gauthier-Villars, Paris, 1952).
6. L. Nachbin, Elements of approximation theory (Van Nostrand Company, Princeton, 1967).
7. L. Schwartz, Etudes des sommes d'exponentielles (Hermann, Paris, 1958).
8. J. A. Siddiqi, Sur la quasi-analyticité généralisée et les problèmes qui s'y rattachent, D. Sc. Thesis, Université de Paris, 1953.

Université de Sherbrooke,
Sherbrooke, Québec;
Université Paris-Sud, 91-Orsay, France

[^0]: Received January 20, 1972 and in revised form, October 19, 1972. This research was supported by NRC Grant A-4057.

