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Abstract

Solutions of the stiff system of linear differential equations

ex = Ax +r
are obtained in a form yielding tight estimates of their properties, and conditions are
obtained under which the operator norm of the map from r to the solution x does not
become exponentially large for small values of e&. When these conditions are satisfied, the
solutions are shown to be close to those of Ax + r = 0, save at any singular points of A4,
and in boundary layers. The behaviour of solutions near admissible singular points is
also obtained.

The results are used to characterize those boundary-value problems for the above
system in which the solution defines maps from the data that are of “moderate” operator
norm. This leads to a constructive existence theory for a limited class of boundary-value
problems for the nonlinear system

ex = 1(1, x, ¢).
It is suggested that the treatment of more general classes of boundary-value problems
may be simplified using these results. By the use of simple examples, the problems

involving large operator norms are shown to be related to the stability properties of the
possible branches of the outer solutions close to those of

1(1, x,€) = 0.

1. Introduction

In a previous paper, [6], subsequently to be referred to as Part I, we have
constructed a basis for the solution space of completely stiff homogeneous linear
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systems of ordinary differential equations of the form

ex = Ax, (1.1)
under reasonably general assumptions about the matrix 4 and for suitably
small, positive values of the parameter ¢, In principle, once such a basis has been

constructed, the method of variation of parameters may be used to construct all
solutions of any inhomogeneous system

X = Ax + 1, (1.2)
for any given vector-valued function r.

The problem of solving any boundary-value problem associated with the
system (1.2) is thus, in principle, reduced to that of obtaining answers to certain
algebraic questions. However, as we shall see in the following discussion, a
considerable number of the solutions obtained in this manner have properties
that may be unacceptable within the context of many applications.

To illustrate the nature of the difficulty, we consider the very simple linear

system
X = —x,
& =y, (1.3)
subject to the boundary conditions
y(0,¢) =0,
bx(1,€) + y(1,¢) = ¢, (1.4)

when b and ¢ are given real numbers independent of e, with b non-zero. The
unique solution to this boundary value problem is

x(t, €) = (c/b) exp((1 — 1)/¢),
y(x) =0, , (1.5)

and it is clear that, for any ¢ > 0, the problem is well set in the sense of
Hadamard, if natural norms (that is, uniform and scalar norms) are used. If,
however, the objective was to evaluate x(0,¢) in terms of the parameters
defining the problem then the operator norm of the map so defined becomes
excessively large for small values of ¢ owing to the presence of the factor
exp(1/¢€). In the context of many applications such a sensitive dependence on
data may be unacceptable. It is interesting to note that, as illustrated by an
example given by Eckhaus [3), such sensitivity may be associated with the failure
of heuristic arguments. For stiff systems where errors of numerical integration
will be of the order of a moderate power of the step length, an exponentially
large factor in ¢ would have overwhelming effects. When problems exhibit such
extreme sensitivity to the data defining them there is the possibility of obtaining
“neighbouring” problems which have solutions with moderate operator norms.
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Consider the system

&EX = —X,

g =y — kexp(-1/¢), (1.6)
where k is a parameter independent of €. The unique solution of this system
satisfying the boundary conditions (1.4) is

x = b"'{c+ k— k exp(-1/¢)} exp((1 — 1)/e),
y =~k exp(-(1 — t)/¢) + k exp(-1/¢).
In general, the solution of this problem is subject to the same difficulties as the

earlier example but there is a significant difference—it is possible to choose a
value of k where the problem has a solution with moderate bounds. In the above

example the choice k = —c yields the solution
x = (c/b) exp(-t/e),
y =cexp(-(1 —1)/€) — c exp(-1/¢). (1.7)

Note that a choice of any k + ¢ of the form O(1) exp(—¢ ") has a similar effect.
The significance of such a choice becomes apparent if we consider the
nonlinear problem

ex = —x + e¥(x,y),

=y + eg(xy), (1.8)
with the same boundary conditions as previously. Suppose we were trying to
validate some solution constructed by heuristic means for the above, where f
and g are unbounded for x or y large. To choose the linear system (1.3) as a
dominant for (1.8), while it might appear intuitively obvious, would lead to
considerable difficulties, since (1.3) is not useful in the sense that it produces a
solution x(¢, €) having supremum norm exponentially large as ¢ —» 0. On the
other hand, to choose the system (1.6) as such a dominant would remove this
difficulty, and, provided —c exp(—¢") lies in the range of g, would appear to
offer the possibility of a contraction mapping proof of the existence of a solution
of (1.8) close to (1.7).

The above examples are undoubtedly contrived but they serve to illustrate an
important point. If one is attempting to validate an “approximation”, whether it
be obtained by formal heuristics or numerical integration, for a boundary value
problem involving a stiff nonlinear system, the choice of the linear dominant
system can be of vital importance. Moreover, a satisfactory choice of a linear
dominant cannot be considered in isolation from the boundary conditions. It is
apparent therefore that one would like to distinguish, for an arbitrary linear
boundary value problem, those problems, if any, which do not have over-sensi-
tive dependence on the data. This paper has as its primary objective an
examination of the properties of linear systems which are significant in any
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attempt to characterize the ‘nice’ problems. As we are interested in the genera-
tion of useful approximations to solutions of nonlinear systems we are also
concerned with the implications when no suitable linear dominant is available.

The first step is to develop suitable criteria as to what constitutes “over-sensi-
tive dependence on data”. The Hadamard concept of well-posed problems is the
standard means of attempting to distinguish problems which do not have this
undesirable feature. The examples already cited show that this is not adequate
for our present purposes. A multiplier, exponentially large in e, applied to the’
data is unsatisfactory for our purposes. We therefore introduce the idea of a
reasonably posed problem, in which the solution is not only continuously
dependent on the data, but the norm of the associated operator from data to
solution is “not too large”. Correspondingly, some problems will be unreasonably
posed.

Clearly such a classification can have meaning only once norms have been
defined and a meaning given to “not too large”. We would argue strongly that
the question, as to what is an appropriate definition and an appropriate
meaning, should be resolved within the context of any specific application under
consideration. To give specificity 1o our discussions we have settled on supre-
mum norms and consider algebraically large terms like ¢ for some positive p as
acceptable but not exponentially large terms such as exp(e™"). This choice is
suggested by the results which have already been established in the literature,
and it is also likely that it will be useful in the context of numerical solutions.
We would emphasize that the thrust of our results would not be vitally affected
by a more pragmatic choice.

These simple examples serve to explain the structure of this paper. We begin
in Section 2 by constructing a particular integral of ( 1.2), in a form which gives
us maximal control over the behaviour of all solutions, when only limited
information is available on the function r. This enables us to characterize, for a
given homogeneous linear system (1.1), those functions r for which the corre-
sponding solutions of (1.2) depend reasonably on r. In Section 3, we examine the
structure of these reasonable solutions, and relate them to the results for the
outer solution for (1.2), obtained by standard heuristic methods. Thus we are
able to establish a set of sufficient conditions under which the heuristic argu-
ments used to construct an outer solution lead to a reliable answer.

In Section 4 we consider the question of obtaining solutions of boundary-
value problems for the system (1.2) when the solutions of such a system depend
reasonably on r. This leads us to a characterization of those boundary-value
problems which depend reasonably on the boundary data. The results seem to
emphasize that there is a very strong connection between the reasonable
boundary conditions and the structural properties of the homogeneous system
(1.1). Boundary conditions that lead to reasonable solutions constitute a small
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subset of all boundary conditions which might be imposed. Such conclusions
have significance in any attempt to construct a robust numerical scheme for the
solution of boundary-value problems for stiff systems.

In Section 5 we turn our attention to methods for generating reasonable linear
problems, and show how this leads to questions about the solvability of certain
algebraic equations. In Section 6 we look briefly at the implications of this in the
context of nonlinear singular perturbation theory. There, through simple exam-
ples of first-order systems, we see that the results are natural and are related to
the selection of branches of possible outer solutions for stiff nonlinear systems.
It would appear that the results described here may provide stability criteria for
possible branches of outer solutions and serve to locate “interior layers™. It is
anticipated that the results will permit the discussion of each boundary or
interior layer in isolation of any other. They may also be of advantage in helping
to generate useful numerical methods.

There is one aspect of the method of presentation, for the remaining two parts
of this sequence of papers, which differs markedly from Part I. In that paper,
because we recognized that numerical solutions would be available only for
isolated values of ¢, the theorems were stated in a manner free of the usval order
notation of asymptotic analysis. The complications, which would be involved in
maintaining such a presentation, become even more marked in the following
work. Thus we revert to the standard terminology of asymptotic analysis which
means that the stated assumptions cannot be satisfied by numerically derived
approximations. However it would be possible to restate the assumptions and
results, using the approach in Part I, so that the material is relevant where
information is known only for a finite number of values of &.

2. Construction of particular integrals

It is the purpose of this section to comstruct particular integrals for the
completely stiff inhomogeneous linear system

ex = A(L, e)x + (1, €), 0<t<T, 2.1)

for a given n X n matrix function 4 and given n-vector function r. Such systems
are an intrinsic part of proof techniques that use the Contraction Mapping
Theorem to validate trial solutions to nonlinear problems, obtained either
analytically or numerically. Because the information supplied for such proofs is
usually limited to bounds on the relevant functions, we will seek those forms for
the particular integrals of (2.1) that will give us the maximum control over the
behaviour of the general solutions of (2.1), while using only this limited data.
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We note in passing that our methods could be applied to systems where
supremum norms were available for functions of the form r(s, €) exp(e'a(, €)),
with somewhat different results. An example to be considered in Section 6 will
demonstrate that there may also be a general class of problems where this
alternative approach may be significant.

We will apply the method of variation of parameters to construct a family of
such particular integrals, and then will make an optimal choice within this
family. The construction depends upon the properties of a fundamental matrix
for the homogeneous system associated with (2.1) and to deal with this we will
make considerable use of the basis for the solution space of this system that was
constructed in Part 1. The assumptions made about 4 in that reference will be
adopted here also, and the reader is referred to that paper for precise details of
these. Briefly, however, the thrust of these assumptions is that 4(¢, €) may be
diagonalized for all (¢, ), with respect to a continuously differentiable basis of
eigenvectors, for which estimates hold that are independent of ¢ in a neighbour-
hood of e = 0. '

By applying these assumptions, we showed in Part I that, on any interval
(which could be a subinterval of [0, T, or the full interval [0, 7]) on which an
unchanging ordering may be defined on the real parts of the eigenvalue
functions of A(¢, €) of A, there exists a basis {x,(¢, ¢)}7., for the solution space
of the homogeneous system associated with (2.1) that takes the particularly

simple form
x(t, &) = X(t,e) exp(§,(t,€)), i=1,...,n, 2.2)
where
G0 = [N, o) s, (23)
0
and
X,(t,€) = s,(t, ) +v(¢, €). (2.4)

Here, s,(¢, €) is a suitably chosen eigenvector function for 4, corresponding to
the eigenvalue function A,(¢, €), while v,(7, €) is a vector function that tends to
zero with ¢, uniformly in ¢, on the relevant interval. In Part I we showed that X,
was the solution of an appropriately chosen integral equation (whose form
changes for each value of i [6, Section 5]), and that as a consequence of the
structure of this equation, v,(¢, €) is continuously differentiable with respect to ¢
for each ¢ > 0. Further, successively closer approximations to v, could be
constructed by the use of a suitably defined iteration scheme. We also showed
that, when the ordering described above changed at a finite number of interior
points of [0, T}, a basis analogous to the above could be constructed, on each
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subinterval where this ordering was unchanged, for which the analogues of the
X, had the property (2.4), and we derived a transformation rule to continue from
subinterval to subinterval.

If we define the matrix X by

X=[XX,...X,], ' (2.5)
and Z by

Z = diag(exp ¢, exp &5 . . ., €xp &), (2.6)
we may apply the method of variation of parameters to the system (2.1), using
XZ as a fundamental matrix, to obtain the representation

x(t, €) = X{Zc +eZf 'z-'X-'r}, @.7)

for any solution x(¢, €) of (2.1) on [0, T'], where the form (2.2) holds there. Here,
c is a constant n-vector (that may vary with £). When changes in the ordering of
eigenvalues occur at interior points of [0, T}, a form analogous to (2.7) holds in
each of the respective subintervals. The lower terminal of the integral in (2.7)
may be chosen arbitrarily so that, in this sense, the second term of (2.7)
constitutes a family of particular integrals of (2.1).

We may note that the ith component of the vector in braces in (2.7) takes the
form

]
ciexp §; + e exp g,.f exp(=$)R,, (2.8)
where the vector R is defined by

R=X"r (2.9
We may exercise our freedom to choose the lower terminal of integration in
(2.8), not only for various vectors ¢, but also for each component ¢; of such a
vector. The exploitation of this freedom amounts, in fact, to a suitable redefini-
tion of the constant ¢; for each component of (2.8). In what follows, we aim to
use this freedom to achieve the best estimates for the particular integral defined

by the second term of (2.7), given limited estimates for the functionr.
At this point we digress to consider the types of integrals that may arise in

such a particular integral. Thus we will concern ourselves with the behaviour, for
small real positive values of the parameter e, of integrals I(¢) of the form

1) = [ "1, &) exp(e™ { w(e) + iv(2)}) at, (2.10)

where f is uniformly bounded on [a, b)], independently of ¢, and p and » are
real-valued functions. It is apparent that the results of this section may be
extended readily to the case where u and » depend on ¢ in a regular manner. If p
is not constant on [a, b], and takes its maximum value at 7, € [a, b], we may
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apply extended forms of the Laplace estimation techniques described in Erdélyi
[4, Section 2.2] to obtain the estimate

1] < K,e* exp{e'u(t,) }II11l, (2.11)
where K, and a are positive numbers independent of ¢, with a dependent on the
nature of the maximum of u(#), while || - || is the usual supremum norm for
continuous functions, taken with respect to ¢ on [a, b]. The form of the result is
unchanged if the maximum value is taken at a finite number of points.

While the above estimate has considerable use, it is possible that it is an
extravagant overestimate in cases where »’(¢) has no zero in a neighbourhood of
each ¢,. For, if f and p + iv were analytic, the method of steepest descents [4,
Section 2.5] would yield an estimate of smaller exponential order
exp(e”!{ u(%g) + iv(tg)}), associated with either a singular point tg of fora
saddle point #g of u + ir. While this estimate is clearly an improvement, it is also
apparent that the benefits obtained from such a procedure may be removed
merely by replacing f by f + 8 exp{—¢'iv(¢)} for any arbitrarily small 8. For,
then, the dominating estimate of an integral of the type of (2.10) could be as
large as

Ke® exp{e'n(1,) }18]. 2.12)

When we consider using such a procedure as the above as part of an
estimation technique to establish a contraction mapping proof in the space of
continuous functions where only || f|| will be available, we are forced to the
conclusion that the estimate (2.11) is the best available. This view is further
reinforced when we consider the situation where f is a function defined by
real-world data, or by numerical means, so that the uncertainty arising in its
values could easily be of the form & exp{-e~'ir»(f)} as given above, with the
result that the tighter estimation procedure above would be rendered inap-
propriate. In fact, the only workable method of improving this estimate would
be when holomorphic functions are involved, and the contour of integration
may be deformed. This method has been utilized by Meyer [7] and Chapman
and Mahony (2] for related problems in a simple case.

Similar considerations apply when pu(#) is constant on the interval so that
while, if »(7) is not constant, stationary phase techniques may show that the
integral is smaller, the “best general” estimate is

1] < K; exp{(e”'p) }(b — a)|| f]|. (2.13)
We now apply the considerations above to an estimation of the functional Ji
defined by
TN &) = exp((s, &) [ (-85, D S(s, e) s, (2.14)
iy
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for some ¢, lying in an interval [a, b). It is clear that, if Re{{ (7, &) — {(s, €)} is
positive for any s in [z, 7], the best estimate, as described by (2.11), will be
exponentially large. Smaller estimates will be obtained if ¢, is chosen so that
Re{{(t, &) — (s, €©)}) < 0 on this interval. Clearly, to make this so, we must
choose ¢, so that ‘

Re §,.(t,, e) = t[nz}’)](Re 8¢, 8). ' (2.15)

When a number of such values exist, any one will suffice for this choice of 7,.
This choice will ensure that the operator norm of J; is not exponentially large,
unless Re §; has a local minimum, at ¢, say, anywhere in (a, b). For, when ¢ and
t, are on opposite sides of ¢, (and there must be such a ¢),

(Jf ), &) ~ exp{§(t, &) — $i(tm ©)}, (2.16)

which is exponentially large as € vanishes. We may summarize these results in
the following lemma.

LeMMA 1. Let any eigenvalue function A(t, €) be such that either Re A, is
one-signed or vanishes identically on [a, b), or Re{;, has at most one local
maximum at t = {,, interior to (a, b), for all 0 < & < &, Then, for the choice

) a ifReA, <0orRe), =0,
t,,=1b  ¥Re) >0, : (2.17)
t, otherwise,

the functional J; is a bounded linear map from the Banach space C, of continuous
Sfunctions on [a, b] into itself, where this space is normed, for each € > 0, by the
supremum norm taken with respect to t. Further, we have

Il < K;e% if Re A, =0, (2.18)
and
IVl € K ifReX, =0, (2.19)
on [a, b], where K,, K, and o; are positive constants independent of e, with
0<a < 1.

Clearly, the constant «; takes the value 1 when the first option in the
hypotheses of the lemma holds while, when its value is less than unity, it is
determined by the nature of the local maximum of Re {; at ¢, .

It is apparent from (2.14) that

I7;l < supexp(Re §(t, €))
[a.8]

J: ‘exp(—Re (s, €)) ds|. (2.20)
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Now consider the image under J; of the particularly simple function f given by

(1, €) = exp(i Im (¢, €)). (2.21)

This function has unit norm and, moreover, we obtain from (2.14) that

sup [(//)(5 ) = I/l sup fexp(Re (1, ) J exp(-Re 8(s, €)) ds\. (2.22)

Combining (2.20) and (2.22) and noting the definition of the operator norm for
bounded linear operators [6, page 94] we arrive at

Iill = sup
[a:6]

exp(Re {(1, €)) f’ 'exp(——Re $:(s, €)) ds‘. (2.23)

When the conditions of Lemma 1 are realized, this expression is bounded
independently of &, or vanishes with ¢ a result entirely consistent with the
findings of that lemma. However, if Re {(¢, ¢) has a local minimum, ¢,,, in (a, 5),
the situation is somewhat different, as we have already noted. For, then, we get

Al = Ce” exp(Re{$(¢,. €) = $i(tn ©))) (2.24)

for constants C and p independent of e. Then, of course, ||J;| is exponentially
large as ¢ tends to zero. This merely serves to make more convincing our earlier
observation regarding this particular case. What is more interesting is the fact
that there is no choice of 7, that will remove this undesirable property. Quite
apart from the effect of such a change on the results of Lemma 1, we can see
from (2.23) that any other choice of ¢, will lead to ||J;|| being exponentially
large. Then results may be stated in the form of a lemma.

LEMMA 2. Let Re {(t, €) have a local minimum at t =t in (a, b) for all
0 <e < ¢y Then, for the choice of t, as given by Lemma 1, the functional J;
satisfies the condition (2.24). Moreover, this exponentially large behaviour cannot
be removed by any redefinition of t,.

The significance of Lemma 2 lies in the fact that there do exist functionals J,
such that no suitably bounded estimate of ||J;|| as given by (2.18) and (2.19) may
be obtained, at least on the full set of continuous functions f(#, €). In a sense,
then, the choice of ¢, given in Lemma 1 is optimal, in that any change in this
choice can only jeopardize the results of that lemma, while doing nothing to
alleviate the difficulties arising in Lemma 2. In subsequent sections, we will take
care to restrict our class of functionals J; so that the unbounded estimates of
Lemma 2 do not arise.

The results obtained above may be applied to the second term in (2.7) to
obtain our first general result of this section.
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LeMMA 3. Let all the eigenvalue functions A(t, €) of A satisfy the conditions of
Lemma 1 on [0, T'), together with the condition that there be no change in the
ordering of these functions on this interval. Let ¥(t, €) be a continuous vector-valued
Junction, normed for each 0 < € < €, by the supremum norm taken with respect to
ton [0, T), and let L, be selected, for each \(t, €), as in Lemma 1. Define x,(t, &)

by
X,(1,€) = e X(JX 1)1 €), (2.25)
where the vector-valued functional J is defined by
(o) = i (2.26)

with J, as defined in Lemma 1.
Then x,(t, €) so defined is a particular integral of the system (1.2) on [0, T that
satisfies the bound

1%, 1l < Ce*~'|ir], (227)

where the norms are the usual supremum norms, while C and a are constants,
independent of €, with C > 0and 0 < a < 1.

ProoF. If we define, for any vector v(t, €), the norm

Ivli* = sup | Xy, (2.28)
(0.7]
it follows from the properties of the basis X that
fivil* = o(W)livll, (2.29)
where the O(1) factor does not vanish with ¢, and || - || is the usual supremum

norm for a vector-valued continuous function. Applying this, the definition
(2.26) and the results of Lemma 1 to the expression in (2.25), we obtain the
result (2.27). :

REMARK. Note that, if all the eigenvalue functions have real parts that are not
identically zero, we have 0 < « < 1 while, if these real parts are all strictly
one-signed on [0, T], we have a = 1.

When we turn to the case where there are points interior to [0, 7] at which the
ordering of the eigenvalue functions changes, the procedure is much the same,
but with added complications. On each subinterval for which the ordering is
constant, there exists a basis of the form of (2.7) for differing vectors X,, and,
using these we may construct a particular integral of the form shown in (2.25).
Further, if x, and X, are any two particular integrals, defined on abutting
intervals [¢,, #,] and [¢,, ¢,] respectively, where ¢, is a point of change of order,
the difference (X,(¢), &) — x,(¢;, €)} is well-defined and is, by the results of
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Lemma 3, at worst O(¢*~ ') for some 0 < a < 1. This presupposes, of course,
that the hypotheses of Lemma 1 are realized on all of [0, ;). We might hope to
remove this discontinuity, and hence to construct a particular integral of (1.2)
over all of {¢, #,] by appending solutions to the homogeneous system (1.1) and
this is, in fact, what we do.

To carry out such a construction, we recall the methods applied in Section 6
of Part I. In Lemma 5 of that reference, a contraction mapping procedure was
described by which constants ¢ k=1,..., n may be constructed such that,
for any vector u, the representation

u= 2 X, (¢, €) + Z ck)—(k(tl, €) (2.30)

holds for all 0 < & < g, Here, X, (t, €) and X, (¢, ¢) are the basis vectors arising
in (2.2) and corresponding to [1,, #;] and [¢,, 1,), respectively, while o, 5 is any
suitable partitioning of the integers 1, ..., n. The vector ¢ with components ¢
was shown to satisfy

le|] < O(1)lul, (2.31)

where the O(1) factor does not vanish with e.
We now apply these results to obtain the following lemma.

LEMMA 4. Let the eigenvalue functions \(t, €) satisfy the conditions of Lemma 1
on [0, T] and let there be a finite number of changes in the ordering of these
Junctions on this interval. For each subinterval on which the ordering is constant,
let t, be defined by (2.17), and let X, exp(%,) be the local basis on such a
subinterval analogous to (2.2). Then, there exists a particular integral of (1.2),
continuously differentiable throughout all of [0, T'), that takes the form

x,(t, €) — X(1, €)Z(¢, ) 2(t,, 8)_‘0 + e7'X(1, €) Z(4, e)f‘Z'lX"r ds,
1
(2.32)
on each such subinterval, where ¢ is a constant n-vector satisfying
c= 0(e* "), (2.33)
Jor some 0 < a < 1, and X is the matrix defined by (2.5).
PROOF. We prove the result for a pair of abutting subintervals [t 1] and

[#1, 1), where ¢, is a point of order change. The extension to the whole of [0, T)
is straightforward.
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We first suppose that x,(¢, ¢) and X, (4, ¢) are the particular integrals con-
structed as in Lemma 3 and corresponding to [f,, ¢,] and {¢,, ¢,], respectively. We
can then define u by

u=xX,(,¢€) — x,(1,¢), (2.34)
and this, by the results of Lemma 3 is, at worst O(e®™ "), for some 0 < a < 1. In
this way, we may construct the constants ¢, defined in (2.30) for the bases
X, exp({,) and X, exp(§,) on each subiniervai, and it oniy remains to choose ihe
partitioning o and 6. We choose ¢ to invoke only those X, such that Re A, > O or
Re A, =0 on [f,, ], and 6 to invoke those X; corresponding to Re A; < 0,
somewhere on this first interval. This choice covers all possibilities, unless there
is no reasonable particular integral on the first interval. Further, if for any i in &,
Re A; becomes positive on [¢,, ¢,], the corresponding §; has Re §; with a minimum
on the joint interval, and is thus to be excluded from our construction, by the
assumptions of the Lemma 3. Then, with the corresponding vector ¢ determined
from u as above, the first term in (2.29) may be continued into [¢,, ¢,] in the

form
x,(t &) = g X (8, &) exp(§i (1, &) — §i (), ) (2.35)
and the second into [¢,, ;] in the form '
lts ) = 6y (t, ) expluls, ) = Gt ), (236)

By the assumptions above, no exponential term is large, so we have the stated
result, with the particular integral over all of [¢#,, ¢,] given by

- x,(t,€) + x)(t,e) fort €1, 1],
X,(1,€) = [

X,(t,€) + xy(t,€) fort €[1, 1,].
The process is obviously continuable to any finite number of subintervals for
which the assumptions of Lemma 3 hold.

(2.37)

3. Relation to the outer solution

There are well-established heuristic methods for generating a formal ap-
proximation, generally known as the outer solution, for the differential system

eEX = Ax +r1 3.1)
when the matrix function A(z, ¢) and the vector function (s, £) are suitably

smooth. Then formal expansions may be obtained by rearranging the equation
(3.1) in the form

x=-A7\(r — &x) (3.2)
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and then solving iteratively. Provided the derivatives involved exist and are
suitably continuous, such an iteration procedure leads to the expansion
N
=-A7r — X "4 (DAY)r + VU (DA )k, (3.3)
n=1}
where, as in the above, D denotes the operation of differentiation with respect to
¢, and N is a selected positive integer.

We are here concerned with the status of the formal approximation obtained
by deleting the last term above, that involves the derivative x. It is obvious that
for some special systems, (DA~')"r may be identically zero for all (¢, ¢) and
some value of N, in which case the above approach will lead to an exact solution
m finite terms. In what follows, we will confine our attention to the cases for
which the formal series does not terminate. _

What is striking about the formal series is that, for any value of ¢, it is only the
properties of A and r at a given point that serve to fix the expansion here. Thus
the formal approximation is defined at any ¢ for smooth 4 and r, provided that
A-is nonsingular there, regardless of whether 4 is singular elsewhere in the
interval. Therefore, it is pertinent to ask questions about the status of the formal
series at points where A is invertible, and the effects on this status of the points
where 4 is singular. Further, if the above series is to be of use, it is desirable to
obtain the corresponding form for the case when A4 is singular at a point. We
will return to this aspect later in this section.

It is of some interest to compare the formal expansion (3.3) with the particular
integral of (3.1) obtained in the previous section that has the form

x=exz [z, (34)

where, for the moment, the lower terminals of integration are left arbitrary. In
Section 2, we used the fact that, for certain choices of these terminals, the
contribution from the integral above was dominated by that from a neighbour-
hood of the point ¢. We will need to make use of this here, but will leave these
terminals arbitrary at the moment. For the present, we note that (3.4) may be
expanded by the following procedure. We first note the identity

D{Zzx'xZ} =0 3.5)
and, further, since XZ is a fundamental matrix on each subinterval where the
eigenvalue functions of 4 have no change of order, we have

eD(XZ) = AXZ. (3.6)

Thus we have from the above, provided that the range of integration does not
include a singular point of A4,

X =-XZ f ‘D(Z'X )4, (3.7)
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which becomes, on integration by parts,
X = -XZ[Z7'X'A7"] + XZ f ‘ZXD(47). (3.8)

Obviously, this process may be continued as long as the regularity properties
of 4 and r hold, and will thus lead to an expansion closely related to the formal
series obtained in (3.3). Moreover, for the choice ¢, as the lower limit of
integration, where ¢_ is that value chosen in Section 2, the last term in (3.8) is
clearly

XJ(X'DAr)(¢, ¢), (3.9
where J is the operator of that section, and we may use the norm estimates of
that section to discuss the conditions under which we may confirm the validity
of the formal expansion (3.3) for general r. We emphasize again that there will
be special functions r for which improved result will hold, but we are not
concerned here with such questions.

First, we note that after any given number of steps of the iteration of the
above process (3.8), the contribution from the lower terminal to the terms
removed from the integral is a solution of the homogeneous equation for (3.1),
and can be considered separately. It will become more significant in the context
of a later discussion to be given in Section 4. The exact solution to be described
by the formal series then must be of the form

N-1
x=- 2 e(A'D)'A7'r + XZc¢ + ¥ 'X(JX(47'D)"47r), (3.10)
n=0
for some (not necessarily unique) determination of the constant vector ¢. We can
see from the above that the formal process (3.3) will define an asymptotic
approximation to the solution if and only if there is a choice of constant ¢ such
that

”XZ{c +e / 'z-'x-'(A-‘D)”A-'r} = o™ (A4~ DY¥ar|)), (3.11)

for all (¢, £) and appropriate vector function r(z, ¢).

Recalling that we are still free to choose the lower terminal in the integral
above, we can see that we are here faced with the same problem that arose in
Section 2 and, here, the resolution is much the same as in that section, in that for
a suitable choice of this terminal (and hence ¢) the above relation is realized. To
obtain this, we make the assumptions of Lemma 2 of Section 2, and thus restrict
the above considerations to a subinterval on which the ordering of the real parts
of the eigenvalue functions is constant. Further, the order relation (3.11) may
also be obtained if we have suitably exponentially small estimates on |r||,
although we feel that, in general, this is an unlikely prospect. Thus, we conclude
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that the lower terminal of (3.4) must be chosen to be the 7,(= {t, .}) of Lemma
2, namely such that for each component of the form

exp({,(+, ¢)) f (s, ), ) s, (3.12)

Re §; decreases monotonically away from Re {2, " €), or else Re ¢, is identically
zero on the subinterval concerned. Further, we can use the same arguments as
applied in the proof of Lemma 3 to establish the following theorem, the detailed
proof of which is omitted, as it is essentially repetitious.

THEOREM 1. Let N be a positive integer, and let v and A be N times
differentiable with respect to t on any interval (T,, T,) for which the ordering of the
real parts of the eigenvalue function is preserved. Let A(t, €) be invertible on this
interval for given ¢ > 0, and let | D"r|| and | D"A™"|| be bounded uniformly on
(T, T)), with bounds independent of € and n, for all 0 < n < N. Let no eigenvalue
Junction \(1, €) generate a function (1, €) as defined by (2.3) for which Re $; has a
local minimum in (T, T,).

Then there exists a solution X(1, €) of the differential system (3.1) on this interval

such that
N-1
Hm JleV*e {x + > e"(47'D)"4 “r} =0, (3.13)
e—0 n=0
Jor some a satisfying 0 < a < 1, where || - || is the usual vector supremum norm on

(T, T). For any i such that Re §; has a local minimum in this interval, the result
will hold only for the restricted class of functions r(2, €) for which

IX(IX(47'D)Y4'r)| -0 (3.149)

as e — 0.

REMARKS. Note that the arguments of Section 2 show that this last condition
is very strong. It is also surprising to observe that the heuristic expansion (3.3)
becomes invalid when Re §; has a minimum, even if 4 is nonsingular at such a
point.

When such a particular integral as (3.4) is used in the context of nonlinear
problems, for the purpose of producing a contraction mapping proof, r involves
an error term, and a nonlinear term that involves the unknown x itself. A
bootstrap argument then shows us that the resuits of Theorem 1 will hold
provided r is continuously differentiable once with derivative bounded uni-
formly in ¢ and e. This implies certain differentiability properties of the nonlin-
earity occurring in the equation.
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What is even more striking is the fact that the above result may be extended
to the case where A is singular at an interior point of (7, T,), provided that at
such a point a zero of a real eigenvalue A,(¢, €) corresponds to a maximum of the
relevant {,(¢, €)*. When such a condition holds, the expansion (3.13) is valid
throughout all of (7}, T;,) except within a small neighbourhood of such a
singularity of 4. For we may write the ith component relative to the basis X of
the particular integral (3.4) as

e exp(5i(t ) [ “exp(-E)X ) — exp(8i(1 ) [ (D(ZX A,
(3.15)

for t > t;, where ¢, is suitably chosen and, in this case, ¢, coincides with the
singularity of 4. Clearly, when ¢ < ¢, the second integral does not occur, so that
we are left to consider the first. We may now apply the iteration procedure
described by (3.8) to (3.15) to obtain the second term in the required form (3.13).
Moreover, the first term, for ¢; appropriately bounded away from Ly, is exponen-
tially small so that this term may be absorbed into the remainder. This gives us
the validity of the expansion (3.13) except in these small neighbourhoods of the
relevant zeros of the appropriate eigenvalues A,.

To estimate this solution in the neighbourhood of such a singular point, the
procedure is straightforward. At this point, the reader should note that the
assumptions of Part I do not allow for a complex eigenvalue vanishing at an
interior point of such an interval (T, T;). The ensuing discussion should be
viewed in the light of this fact. The relevant component of this solution is
representable in the form

exp(,(4, £)) [ 'Aexp(—s,.(s, )X 1)(s, ) ds (3.16)

relative to the basis X, where
§/(te,e) =0. (3.17)

All that is necessary to obtain asymptotic estimates as ¢ -» 0 for such an
integral is to use a local approximation to §; in the neighbourhood of t,, and the
results given in Erdélyi [4, page 37] which show the integral to be dominated by
the contribution from the integrand in a suitable neighbourhood of ¢, the
extent of which tends to zero with &. If A, has a simple zero, the unbounded
component of 47'r is replaced by a term that matches smoothly, and which is
such that the local contribution to the particular solution is no larger than
O(e7'/?). There are obvious generalizations to the case of higher-order zeros.
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4. Reasonable linear problems

As we have noted in Section 2, the general solution of the linear equation (2.1)
may be written in the form

x(1,€) = XZc + e X(UX'1)(1, ¢), 4.1

where (Jf)(1, ¢) is the functional defined there, while ¢ = ¢(e) is an n-vector of
constants, and the choice of the lower limit in the integral has been discussed in
that section. For the moment, we will assume that [0, T} is an interval on which
there are no changes in the order of eigenvalues, so that the basis represented by
the square n X n matrix X(¢, €) has the same form throughout this interval, and
is thus of the elementary form given by equations (2.4).

Clearly, the first term in (4.1) defines a one-to-one correspondence between
such vectors ¢ in R" and basis vectors X (t, £) so that, in the discussion that
follows, we will use the same symbol to denote subspaces spanned by selected
subsets of the X (or x;) and the corresponding subspaces in R" of vectors ¢. The
meanning should be clear from the context. We will also adopt the convention
that, while XM represents a matrix for any (possibly nonsquare) compatible
matrix M, this symbol may also be used to denote a subspace of R” consisting
of the appropriate linear combinations of the vectors X;. Again, no confusion
should result, since the context will make the meaning clear.

When we come to consider boundary conditions relevant to the system (4.1),
we can see that such conditions can take a wide variety of forms, both linear
and nonlinear. Also, in many situations, these may not consist of the same
number of linearly independent conditions as the order n of the original system.
When such situations do arise, we envisage that there are parameters in the
problem where values are to be determined in such a way that such a problem
with otherwise apparently too many boundary conditions has a consistent
solution. While nonlinear boundary conditions do occur, and are of interest in
applications, we will restrict our attention here to linear omes, though the
extension to nonlinear conditions may be made by analogous arguments. Thus,
in this section, we will assume that there are essentially m, linearly independent
boundary conditions applied at # = 0 and m, such conditions at t = 7. We will
suppose that these take the form

Lx(0,¢) =, 4.2)
where L is an m; X n matrix of constants and f is a constant m,-vector, and
Rx(T,¢) = g, (4.3)

where R and g are m, X n matrix and m,-vector respectively, with analogous
properties. We also anticipate that the entries of L and R may vary with ¢ and,
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in such a case, we suppose that these are O(1) for all ¢ in a neighbourhood of
zero, and vanish at most algebraically with e.

In principle, the boundary conditions (4.2) and (4.3) may be applied directly
to the solution (4.1) to yield an equation determining the vector ¢, and whether
or not such a vector exists as a solution to such an equation is an algebraic
question that can be resolved for each £ > 0. However, to determine whether or
not the solutions constructed in this way are reasonable in the sense described in
Section 1, we must examine the structure of this problem in more detail.

Equations (4.1) to (4.3) show us that the map from the data f, g and r of this
boundary-value problem to the solution x(#, €) comprises two components—that
defined by (4.2) and (4.3) mapping f, g and r into ¢ and that defined by (4.1) and
mapping ¢ and r into x. Thus, to establish whether or not this boundary-value
problem is reasonably posed, we only need estimate the norms of these (linear)
maps. Under the criteria laid down in Section 1, we will regard this problem as
being reasonably posed if and only if the estimates of these norms are at worst
algebraically large in ¢ for € in a neighbourhood of zero. It should be recognised
that in doing this, we are seeking sufficient conditions only that such a property
may be held by this problem; there may be reasonably posed problems that lie
outside this definition. In estimating these norms, we will adopt the usual
Cartesian generalizations of the uniform and scalar norms, although these norms
will depend on ¢ in this instance.

The discussion of the earlier sections of this paper, and also those of Part I,
lead us to adopt the classification below for the modes of behaviour of
eigenvalues A(r, ¢) of 4 and the corresponding vectors X (¢, €). Although it
would seem more natural to relate this classification to the eigenvectors s,(¢, ¢),
the property (2.2) of the vectors X,(z, €) shows that they are in one-to-one
correspondence with these eigenvectors, so that the classification may be made
relative to these, without any fear of ambiguity. Since the vectors X; also
span R”, the nett result is a small perturbation of the spaces that would have
resulted from a classification on the basis of the eigenvectors.

Thus we make the decomposition

R"=XO® XM 0 X0 x®), (4.9)
where the component spaces X, X, X©@ and X™® are as defined below:

() X; € XO if and only if Re f3 A, has its maximum value at ¢ = 0 and
possibly a finite number of interior points;

(i) X; € X™*) if and only if Re f{ A; has its maximum value at ¢ = T, and
possibly a finite number of interior points;

(i) X; € X9 if and only if Re [T A, = 0 and Re [} A, is nowhere positive;

(iv) X; € X® if and only if Re f3 A, takes its maximum values at interior
points only. :
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Note that, when viewed as vecfor spaces, these do not vary with (¢, €) in the
sense that they consist of the same array of solutions X; but that, when viewed
as matrices, they display a pointwise variation.

Solutions x(z, €) corresponding to elements of X and X *) display character-
istic boundary-layer behaviour at 7 = 0 and ¢ = T, respectively, and thus corre-
spond to those arising in the more usual cases of eigenvalues having strictly
negative and positive real parts, so common in the literature. Those correspond-
ing to elements of X @ may display this behaviour at either end-point of [0, T],
while those corresponding to elements of X‘® are distinctive in that, when
normalized to be of order unity at either t = 0 or ¢ = T, they display values in
the interior of that interval that are exponentially large. Such solutions appear to
correspond, in the present context, to the “resonance” solutions of Ackerberg
and O’Malley [1], already mentioned in Section 1. We will also find it conveni-
ent to define one other subspace of R” that may have a non-null intersection
with all of the spaces defined above. As we noted in Section 2, the occurrence of
an interior minimum of Re {(¢,¢) led to the second term of (4.1) being
exponentially large, both at 1 = 0 and ¢ = T. Such behaviour is of some interest,
so we will deal with it by introducing the space X,;,, spanned by all those
solutions X,(¢, €) for which the corresponding Re (¢, €) has just such an interior
minimum. Thus, in terms of this definition, our condition that exponentially
large terms do not arise in the particular integral term of (4.1) is that the vector r
have no component in X, ; that is, if we write r = XR, we require that R, = 0
forall X; € X,

Thus, for r satisfying such a condition, we see on an application of Lemma 1
that the second term of (4.1) is bounded above by a term which is, at worst,

O(e™Mlirll, 4.5)
where || - || is the usual norm (3.4). The first term is bounded above by a term of
the form

diag(exp{ sup Re {1, 8)})Icl (4.6)
!

For X; € X© @ X© the first term in (4.6) is O(1) as € — 0. However, for X;
in the other spaces, it will become exponentially large. The only way we can
make this map bounded for given ¢ in a neighbourhood of zero is to rescale the
¢; that is, essentially, choose another norm for ¢. Thus, in what follows, we
replace ¢ by

Dc = diag(exp { —-supRe {(1, ¢) } )c 4.7

but use the same symbol for ¢; only now we seek ¢’s that are O(1). With this
choice, we see that the map (c, r) — x defined by (4.1) is bounded with norm
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bounded by O(e™") at worst. This bound will be improved to O(¢*~") for some
0 < a < 1 if there are no eigenvalue functions A(t, €) for which Re A, =0 on
[0, T]. Note that, for X, € X© @ X, the suprema in (4.7) are both zero, so
that the corresponding components of ¢ are unchanged.

We now apply (4.1) to the boundary conditions (4.2) and (4.3) to obtain

LX(0, €)Z(0, €)Dec + ¢'LX(0, &)(JX 'r)(0, €) =, (4.8)

RX(T, €)Z(T, e)Dc + ¢ 'RX(T, e)(JX 'r)(T,¢) = g, (4.9)
respectively.

Under usual circumstances, we might expect that, at best, components of f, g
and r are algebraically small in ¢ for small € > 0 (or variations in these
quantities display this behaviour). If, then, one of the data terms in (4.8) has a
component in LX ("0, &) or LY®)(0, ¢) that is not approximately exponentially
small, the corresponding component of ¢ is premultiplied by an exponentially
small term so that the map (f, g) — ¢ represented by these equations must have a
norm that becomes exponentially large like exp(e™') as & vanishes. A similar
situation arises for components of g lying in RX (T, €) or RX®X(T, ¢).

We may combine the arguments of this section in the following result.

THEOREM 2. Let the assumptions of Section 2 regarding the matrix A apply, and
suppose that there are no changes in the ordering of the real parts of the eigenvalue
Sunctions \,(¢, €) of A on [0, T). Let the operators L and R and the functions f and
g be as given in (4.2) and (4.3), and suppose that x(t, €) is defined and continuous on

[0, 7.
Let o be an arbitrary n-vector, such that |a| = O(1) as ¢ >0 and define the
vectors p(€) and v(e) by
p = Z(0, e) Da (4.10)
and
v = Z(T, ¢)Da, (4.11)
respectively.

Let the functions {, g and r satisfy the conditions
@) r has no component in X, for all (1, €) € [0, T] X (0, g,
(i) p(e) = f — ¢ 'LX(O, e)JX )0, ) = O(e°LXp) on L(X ) @ X®), and
(i) q(e) = g — e 'RX(T, e)(JX '1X(T, ) = O(e’RXv) on R(XO ® xR,
where a and b are suitably chosen constants, that may be negative.
Then the boundary-value problem (4.1) to (4.3) is reasonably posed if and only if
LX%%¢ + LXO¢ = p, (4.12)
RX™M)e + RXO¢ = q (4.13)
is well-posed in the sense of Hadamard.
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Proor. The well-posed property of (4.12) and (4.13) ensures that it may
tolerate small perturbations to the solution ¢, provided the conditions indicated
hold. Thus the equations (4.8) and (4.9) may be solved iteratively and the
conditions (ii) and (iii) ensure that the norm of the operator (f, g) — ¢ is at most
algebraically large in e as € > 0.

It should be noted that the condition (i) of Theorem 1 is excessive, and the
results obtained in Section 2 show us that, provided r is suitably exponentiaily
small on X, it will not give rise to the unboundedness experienced in that
section. However, we regard this degree of smallness to be so restrictive as to be
unlikely to be establishable in most situations, so we will not pursue this line
here, save to note its implications. This criticism could also be levelled at the
degree of accuracy required in the constraints (ii) and (iii) on f, g and r for
certain subspaces of R”. These conditions in fact imply that these vectors, and
hence the solutions x(, &) corresponding to them, lie on a manifold in R”
defined by them. This is clearly an extension of the basic idea demonstrated by
reference to the elementary example of Section 1. Moreover, the extreme
sharpness of these conditions only serves to demonstrate that, for linear prob-
lems of the form (4.1) to (4.3), many boundary-value problems are unreasonable.

For the particular case of the homogeneous problem (r = 0), the manifold
mentioned above centres on

f=00onL(XM® X®), g=00nRX" S XNR), 4.19)
and has a diameter that is exponentially small as ¢ — 0, so that the correspond-
ing reasonable solutions x(¢, €) centre on solutions vanishing on these spaces.
This is, of course, as would be expected.

We may also compare the results of this section with those commonly
occurring in the literature. When Re A; do not change sign on [0, T], the Re §;
are monotone there, and thus the spaces X @, X® and X, are empty. Under
these circumstances, the conditions of Theorem 1 reduce to the condition that
r(¢, €) be bounded uniformly in (¢, €) and that f and g be exponentially small on
LX™ and RX©), respectively. When we compare these with those conditions
usually assumed in the literature, namely that f and g vanish on these spaces, we
can see that the thrust of much of the work to date has been to construct
solutions that are reasonable in the sense of this paper, without viewing them as
solutions imbedded in a much wider class.

If we assume that A(¢, €) is invertible, as well as some other differentiability
properties about 4 and r, we may write the conditions of Theorem 1 in terms of
-A7'r, the outer solution of the equation (3.1).

COROLLARY 1. Let A(t, €) be invertible for all (t,€) € [0, T] X (0, &}, and let
A7'r have a derivative with respect to t that is continuous in t and uniformly
bounded with respect to (¢, €). Further, suppose that X, is empty.
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Define the function ®(t, €) by
®(1, &) = —A~'(1, &) + X(s, e)JX"%(A"r)(t, ). (4.15)

Then the conditions (i), (ii) and (iii) of Theorem 1 hold if and only if

@O ple) =1 — L0, &) = O(e°LXp) on L(X ) & XP), and

(i) g(e) =g — RW(T, ¢) = O(e’RXv) on R(XO ® XP), respectively, where
a, b, u and v are as before.

Proor. Clearly (i) is removed by assuming that X, is absent. We will thus be
able to prove the desired result if we can show that L®(0, ¢) and
e'LX(0, e)(JX "'r)(0, &) differ by a term of the form of the right-hand side of (i)
on the relevant domain.

Using the analysis of Section 3, we obtain, on integrating by parts,
e X(IXTr)(1, &) = B(1, €) + X(1, £)Z(1, €)Z7\(4,, e)X"(t,,, e)A"r(t‘, e),

(4.16)

where @ is as defined above.
Now it is clear from the discussion of Section 2 that D = Z7X(¢,, €) and thus
we have, on noting the assumptions regarding 4 and r,

Z(0,e)Z7'(¢,, €) = O(p) 4.17)
and
Z(T,e)Z7\(t,, €) = O(v), (4.18)

and thus the result is proved by applying these to the conditions (ii) and (iii) of
Theorem 1.

The results of this corollary merit a closer examination. First, it is clear from
(4.15) that @ consists of the formal “outer solution” —A4~'r together with a
correction factor. Moreover, under the assumption made, this factor is O(eB) for
some 0 < B < 1, so that it represents a small “outer correction”. The results (i)
and (ii) of the corollary thus give clear-cut conditions on the end-values LgX0, ¢)
and RI(T, ¢) in appropriate domains, such that the resulting solution to the
boundary-value problem be reasonably posed. It should be noted that these
conditions show that it is the values of this corrected outer solution that
determine which problems are reasonably posed and not the end-values of the
full solution, as one might have thought. What this result demonstrates is that
both ® and the full solution have end-values lying in the manifold of reasonable
solutions mentioned earlier, under the conditions of the corollary.

The results of Corollary 1 may also be interpreted in another manner that has
some significance for nonlinear problems. They show that, given an outer
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solution, in this case —4 ~'r, we may construct a correction so that the resulting
outer solution provides the basis for a reasonable solution of the boundary-value
problem. In this case, the rule for the construction of this correction is clear and
explicit, and no difficulties would be anticipated. Thus, this gives a means of
“regularizing” an unreasonable problem, namely that of just using -4 'r in the
boundary conditions. We will return to this in the next section, where we apply
it to nonlinear problems. .

Where there are changes in the ordering defined on the real parts of the
eigenvalue functions A, the results of Theorem 1 require amendment. As we
have shown in Part I, there is a well-defined algebraic process for continuing
basis solutions across such points of order change. The rules for the selection of
the continuation may be quite complex, depending on the number and manner
of order changes. Once they have been implemented, however, they serve merely
to modify the allocation of any basis solution to the spaces X ©, X (¥, x @ x ®
and X .. Thereafter, the analysis is essentially the same, with these redefinitions
of the partitioning into subspaces. The reader is referred to Part I for some
examples illustrating how the order changes can affect the partitioning. These
also show that the effective dimension of the solution space may be changed
after such a change of order, which affects the possible choices of boundary
values that give rise to reasonably posed problems. They may also vary the
number and location of reasonable boundary conditions.

5. Possible regularizations

As we have pointed out in the Introduction, it may be possible to make a
minor modification to a linear system that transforms an unreasonable problem
into a reasonable one. This could be useful in generating a contraction mapping
proof for the existence of the solution of a nonlinear system close to a given
candidate approximation. For such an iterative proof, the modification referred
to above will change at each step, so that the resultant modification for the
dominant linear system must be seen as part of the solution process. Thus the
overall contractive process must also apply to this “regularization correction” as
well as to the solution of the problem itself.

We thus start with the assumption that we are provided with a candidate
approximation, w, to the solution y of the nonlinear system

ey =1(t,y,e), 0<:<T, (5.1)

together with the linear boundary conditions (4.2) and (4.3), and seek to show
that there is an exact solution w + z of the full nonlinear boundary-value
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problem close to it. The standard approach to such a problem is to compute the
errors by which the candidate w fails to satisfy the required conditions.

Thus, let
ew —f(t,w,e) =, ' (5.2)
Lw(0,e)=f+h (5.3)
and
Rw(T,e) =g +k, (5.9)

where L and R are the boundary operators introduced in Section 4, while f and
g are known constant vectors.
For w + z to be an exact solution, then,

e(w+i) —f(t,w+2¢) =0, (5.5)
Lz(0,e) =h (5.6)

and
Rz(T,¢) =k, 5.7

where h and k are known constant vectors, usually vanishingly small in . If
(¢, y, €) admits of a representation

f(e, w+z,¢) =1(t,w,e) +(t, W, e)z + Q(1, W, 2, ¢), (5.8)
where Q is a nonlinear term satisfying

Il < Kjiz|)'** (5.9)

for some p > 0, where the norms are the uniform norms, and KX is a positive
constant independent of e, it follows that the nonlinear problem has a solution
close to w if and only if there exists a solution z to

€z = fy(t, w,ez+Q—r (5.10)

for which |jz|| = o(1) as e - 0 and for which z satisfies the boundary conditions
(5.6) and (5.7).

It is a straightforward process to show that if the linear part of (5.10), and
hence the linear dominant of the nonlinear system, is a reasonable boundary-
value problem (both with respect to the boundary conditions (5.3) and (5.4), and
the inhomogeneity occurring in (5.10)), then there is such a z. The following
theorem is one such result of the many possible, that may be established by the
methods noted above.

THEOREM 3. Let w(t, €) be an approximate solution to the nonlinear problem
(5.1), in the sense of (5.2) to (5.4), and suppose that

h=¢fhy, k=_¢efk .11)
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and
r(t, &) = e'rg(t, €), (5.12)
Jor positive constants B and vy, and constant O(1) vectors hy and ky, together with a
continuous uniformly bounded (independently of €) vector function 1y Let the
assumptions of Theorem 2 regarding the matrix A(t, €) = {,(t, W, €) and its eigen-
value functions apply, and assume that no eigenvalue function \(t, €) is such that
Re {(2, €) has a local minimum interior to [0, T).
Define, for all continuous function (1, €) such that ||\§|| < M, where the norm is
the uniform norm, and M is independent of e, the vectors p(t) and g(e) by
p(e) = h — ¢'LX(0, e)(JX ' (Q(t, W, & €) — 1))(0, €) (5.13)
and

q(e) = k — e 'RX(T, e)(JXH(Q(t, w, £ &) — ))(T, ¢), (5.14)

respectively. Assume that, for M sufficiently small, p(€) and q(€) obey the conditions
(ii) and (iii) of Theorem 2 while the equations (4.12) and (4.13) have a unique
solution for each such pair p and q, that satisfies
|e| = O(max{|pl, lal}), (5.15)
Sor small values of ¢.
Let the constants B and vy satisfy the condition
B>pt' and y>1+p. (5.16)
Then the nonlinear problem (5.1) has a unique solution y(t, €) which satisfies the
boundary conditions (4.2) and (4.3) and which is such that
y(t, €) = w(t, €) + O(eP), (5.17)

uniformly in t and .

ProoF. Using the results of Section 4, we may invert the boundary value
problem for z(1, €), defined above, to form the nonlinear integral equation

z(t,€) = XZDc + e X(JX'{Q(1, w, z, ) — r})(4, €), (5.18)

where c¢ is constructed from the boundary conditions (5.6) and (5.7). Under the
assumptions of the theorem, the right-hand side of (5.18) has norm bounded by
a term of the form

O(e?) + O(e* "*7) + O(e* Mljz||' **, (5.19)
for some a satisfying 0 < a € 1. The conditions. (5.16) are sufficient to ensure
that (5.19) is bounded above by a term of the form O(1)||z|| for any z lying in a

ball ||z|| = O(e”). Thus the right-hand side of (5.19) maps this ball of functions z
into itself. Moreover, this map is a contraction on this ball, as the specific form
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of Q ensures. An application of the contraction mapping theorem now shows the
existence of the required solution z(¢, €) of (5.18), satisfying ||z|| = O(e?).

As we noted above, the hypotheses of Theorem 3 are restrictive, and are
sufficient only to ensure that the iterative procedure defined in the contraction
mapping process should converge. There are obviously many relaxations of
these conditions that could be made with a corresponding existence result being
obtained. Those adopted are only significant in that, apart from giving a useful
existence-uniqueness result, they ensure that in the iterative process z, -z
n=201,2, ..., defined by

n+ 1>

ez, =f(t, w,e)z,,, — 1+ Q(t, W, Z,, ¢), (5.20)

together with boundary conditions (5.6) and (5.7) for z,, ,, the (linear) boundary
value problems determining each z, are reasonable in the sense of Section 4.

This constructive method of determining a solution of the nonlinear boundary
value problem can also be utilized when the linear boundary value problems are
not reasonable. However, in such circumstances, much tighter conditions are
needed on the accuracy to which the trial approxifnation satisfies the differential
equation and boundary conditions. As an illustration we consider the case where
one eigenvalue function J; is such that the (necessarily) real §; has a minimum at
t,. Using the best estimates of solutions of the linear differential equation, we
have been able to establish we can show that the contraction mapping proof will
be possible in a ball

iz — wil = O(e” exp(-B/ 1))

where, assuming {(T, ¢) is negative, 8 = {(T, ¢) — {(t,, €), and 7 is any positive
constant such that 7 > p~'(1 — a). In order that the errors lead to a z lying in
this ball the errors must be such that

Ib), [k| = O(e™ exp(-B/p)) and ||r|| = O(e” exp((1 + p7")B)).

Thus any trial approximation, which generates an unreasonable linear prob-
lem, can be justified by this means only if it can be constructed with suitable
exponentially small errors. We know of no general means of generating such
trial approximations as the standard heuristic arguments normally only reduce
the errors to successively smaller algebraic orders. We believe that constructive
methods are unlikely to be effective in such cases and we suspect that other
fixed point methods will be needed. We will return briefly to this question after
we have considered some simple examples in the next section. These serve to
illustrate the fact that unreasonable linear problems can be associated with
well-posed nonlinear boundary value problems.
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6. Relevance to heuristic or numerical methods

We now consider briefly the implications of these results for practical meth-
ods of solution of the completely stiff nonlinear system

ey =1(1,y, €). 6.1)

If any solution exhibits significant sustained oscillatory behaviour, any useful
candidate approximation Y must do the same and hence, in general, so will the
entries of (7, Y, ¢€), so that none of our theory (recall the basic assumptions of
Part I) is likely to be applicable. Any other solution type would have y mainly
small, so that candidate approximations will therefore be largely associated with
the solutions of

£(s,y,€) = 0. (6.2)

We would expect this association to be tempered by local failure in a number
of boundary or interior layers, in which y is large. At each ¢, equation (6.2) may
be expected to define a number of possible values of the approximate solution
Y, and, by the Implicit Function Theorem {5, page 316}, at any (¢, Y,) at which
the Jacobian derivative 3f /9y is nonsingular, we may expect, under relatively
weak conditions, to be able to define continuous functions associated locally
with each Y,. The possibility of obtaining one or more global solutions with the
desired properties is easy to establish if this Jacobian matrix is nonsingular and’
the real parts of eigenvalue functions do not change sign. For, then, we may
generate improved approximations to this Y,, by applying the linearization
methods of Section 5, seeking small solutions for the difference Y, — y, and thus
constructing a solution to the nonlinear system (6.1). Further, if the actual
boundary conditions to be imposed were of a form which could be generated
within the limits of Theorems 2 or 3, we would then have established the
existence of a solution or solutions of the full boundary-value problem for (6.1).
It is worth noting that these assumptions regarding eigenvalues and boundary-
values form the basis of most of the hypotheses involved in the current literature
on this topic.

We anticipate, however, that it would be rare that any of the functions Y, so
constructed would satisfy the boundary conditions imposed to the precision
demanded by Theorem 2 and thus the total solution to the problem must be
sought in a broader context in which genuinely nonlinear boundary or interior
layers (that is, layers in which the solution changes rapidly so that our assump-
tions regarding 4 = f (¢, y,, €) must almost certainly fail) may occur. What then
is the role or value of the theory we have developed to this stage? We regard the
theory as presented as providing the necessary basic stability theory for the
outer solutions Y, as constructed above. Where the eigenvalue functions of A all
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have one-signed real parts, our Theorem 3 serves to establish the forms of small
linear boundary perturbations to such outer solutions which will lead to reasona-
ble solutions, as defined earlier, over the major portion of the interval. Providing
then that such approximations lie within the manifold of reasonable solutions
described in Section 4, it will be possible to generate an exact solution of the
system by the simple expedient of appending suitable boundary layers. Each
boundary layer at f; may thus be considered separately by assuming a local
solution of the form

y(t, €) = Y,(t5, €) + u(7), (6.3)

where u depends on an appropriate local scaling of ¢, so that we have an
approximate boundary layer equation of the form

ea = (0, Y +u). (6.4)

If we choose the boundary condition with the time scaled appropriately by
means of T = t/¢* for some a > 0, we know that, if, for 1 — * oo, u lies much
outside the range of boundary conditions appropriate for reasonably posed
problems, as described in Section 4, the outer solution already constructed will
be unacceptable. For the differences between boundary values would be mag-
nified exponentially within the zone where the outer solution was expected to
hold, and any contraction mapping construction based on a linearization about
this outer solution might be expected to fail.

Thus our results serve to provide boundary conditions for the boundary layers
at each end that are of a precise and reliable nature, provided the real parts of
the eigenvalue functions are one-signed or whenever the only change of sign of
an eigenvalue A, is associated with a maximum of the function {;. Then the
boundary layers may be considered locally and independently. Moreover, if one
could establish suitable trials for these boundary layer solutions, and could
establish contraction proofs for the local boundary layer problems as described
above, then the composite approximations given by (6.3) could probably be
shown to be a genuine approximation to some solution y(¢, €). In such circum-
stances, our method provides a reliable technique for dealing with very small
terms, which might play an extremely significant role, while working to only
moderate accuracy.

Where, however, there are eigenvalue functions A; such that Re {; has an
interior minimum, the unreasonable nature of many linear boundary value
problems does not necessarily carry over to nonlinear problems. For many
unreasonable problems the difficulty is associated with a zero of some eigen-
value function of the linear operator A which we have seen is associated with the
Fréchet derivative of f. Thus, at points where this is singular, we can expect that
different branches of the outer solutions come together or terminate. Certainly
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there is no a priori reason to believe that, in such circumstances, the linear
dominant based on the Fréchet derivative on an arbitrarily selected branch is
necessarily appropriate. We believe that it is instructive to consider the proper-
ties of solutions of a few simple first-order systems as a guide to what might be
expected in higher order systems. For these systems, simple geometric and
continuity arguments may be used to obtain the qualitative properties of any
solution. We will not give the details of such arguments, but will present our
results diagramatically. Note also that the results of these geometric demonstra-
tions are entirely consistent with the stability-type arguments we have contem-
plated above.

The principal components of the arguments used relate to the sign of the
slopes of the outer curves, the fact that these slopes must be large if the solution
curve is not close to an “outer branch”, and whether or not the solution curve
will cross “outer branches”. Close to the outer branch, the behaviour of the
actual solutions may be deduced from our earlier results for linear systems, with
the observation that this may not hold near singular points. Note that in the
figures we have not used very large slopes to indicate boundary or interior
layers.

ExamPLE 1.
& =y2— 1 on(-a,b),
for positive a and b, with a > b. Here, possible outer solutions are y = + ¢ and,
moreover, there is an open question as to the selection of one of these branches
near ¢ = 0. For the present, we will take the smooth continuations of these, so
that our linearized forms about these selected outer solutions are given by

ex = *2tx, (6.5)
together with the correction
e =2z + 22 F e (6.6)

There are two functions A, given by *2¢ respectively, so that the two

functions {. are given by

$. = xe7N(? - aY), (6.7)
respectively. Here, the zeros of the {’s have been chosen so that both ¢ +and
are non-positive on the interval.

The “positive branch” leads directly to an unreasonable linear problem and
the qualitative arguments on slope show that there is no solution close to the
positive branch throughout the whole interval. This demonstrates that the
existence of a formal solution with a small error does not guarantee that there is
a neighbouring outer solution. However, as the Jacobian matrix is singular at
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t =0,y = 0, it is possible to generate alternative possible outer solutions y = ||
and y = —|7]. The coefficients in the dominating linear equation are only
piecewise continuously differentiable so that minor extensions of our earlier
results would be required. We may note that, for ¢ < 0, the outer branch ¢ is
stable to the imposition of boundary conditions at t = —a and error term
integration from ¢ = —a, while the branch —¢ is stable to boundary conditions at
t = 0, and error term integration from ¢ = 0. The opposite behaviour holds for
both on ¢ > 0. Thus boundary values at t = —g which can reach ¢ near ¢t = —a
lead to solutions following this outer solution and differing from it by a small
amount, until 7 = O is reached. Thereafter, qualitative arguments applied to the
original equation imply a switch to the branch —¢. The end-values of these
solutions are exponentially close together, as can be seen by using the values at

= (0 and the appropriate integral equations on (-a, 0). However, whereabouts
this narrow band of end-values lies can only be fixed to algebraic order in e.
This is why the constructive contraction mapping proof is so elusive. Elementary
qualitative analysis of the full nonlinear system then reveals that the boundary
layers that may be appended to yield solutions of this form must have initial
values at 1 = —¢g lying in the domain y(-a) < a — §, for some §, positive and
suitably chosen. In a like manner, we may construct solutions having end-values
at t = b, and following ¢ to ¢t = 0 and there switching to —¢, with terminating
values lying in an exponentially small neighbourhood of this function. The
schematic representation of these results is given in Figure 1.

By continuity arguments we predict that there are very small ranges of
boundary values close to those of the reasonable solutions described above,
from which solutions emanate being close to *¢ on one or the other of the
subintervals (-a, 0) or (0, b) and which fill the triangular regions shown in the
figure. For clarity, these regions have been left clear in the present diagram. We
note that the only admissible boundary values at ¢t = —a, apart from an ex-
ponentially small set near y = g, are those corresponding to solutions which
move rapidly to an exponentially small neighbourhood of y = ¢, which is the
branch of the outer solution which is stable to small errors introduced at the left.
The very small set of solutions close to y = —¢ everywhere, for which Theorem 3
applies, delineates the domains of boundary values on left and right for which
there is vastly different qualitative behaviour. We expect manifolds of such
solutions to be extremely helpful in higher-dimensional problems.

EXAMPLE 2.
& =y(y*— 1) on(-a,b).

We consider an example where branches terminate, so that we are faced with
bifurcation phenomena.
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y
3

y=a
-3 rf
y=-a A—y=-t

Figure 1. Solutions for & = y? — 2,

On ¢ < 0, there is only one possible outer solution, namely y = 0, and the

linear dominant equation is

eX = —ix, (6.8)
so that the sense of integration must be from ¢ = 0, when we consider remainder
terms associated with nonhomogeneous equations.

On ¢ > 0, there are three possible outer branches, 0 and + V7. The first,
y =0, leads to a linear system which has reasonable solutions only for integra-
tion from ¢# = 0. Both the other branches, = V¢, are stable for integration from
the right, so that boundary conditions may be prescribed there. Moreover, apart
from exponentially small neighbourhoods of ¢ = 0, only boundary values ap-
plied at this end lead to bounded solutions. The situation is shown in Figure 2,
for the upper half of the plane, the lower half being a mirror image. Almost all
boundary conditions applied to the left lead to ill-posed problems.

Note that there is a marked solution y = 0 close to the branches which lead
directly to unreasonable boundary value problems, but that there is a solution to
the nonlinear system close to it. It has boundary values which form a manifold
separating significantly different solutions.
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b~

| y=it

/

-3 0] b
Figure 2. Solutions for ey = y(y? — 1).

EXAMPLE 3.
& = -t(y*> — g*), on(-a,b),
where g is a positive function with g’ > 0.
The possible outer solutions are
y~=g
and the linear dominant equation is

ex = F2ug(n)x.

Figure 3. Solutions for gy = —¢(y? — g?%).

https://doi.org/10.1017/5033427000000014X Published online by Cambridge University Press

(33]

(6.9)

(6.10)


https://doi.org/10.1017/S033427000000014X

[34] Stiff systems of equations. II 169

The branch y = g has Re { with a maximum, so that there is a marked
solution close to y = g. The branch y = —g, for r <0, is an attractor for
boundary conditions at ¢ = —a such that y(-a) <y,(-a), where y, is the
marked solution. There is a small range of values exponentially close to y,(-a)
that induce solutions that do not get close to y = —g. The solutions that have
moved close toy = —g in ¢ < O transfer to a neighbourhood of y = gin¢ > 0.

Careful analysis of the type used in Example 1 yields the diagram as shown in
Figure 3 and from this it is easily seen that the natural place for the boundary
conditions to be applied is at 1 = —a. As before, there are exponentially small
ranges of boundary values, close to the reasonable solutions constructed, for
which the resulting solutions fill the region ¢t < 0, | y| < g.

Note that the interior layer is almost always located near ¢ = 0 and it is only
for the exponentially small ranges of special boundary values where this is not
s0.

It is striking to contrast this behaviour with that of the slightly modified
problem with g = 1. The problem can then be solved exactly and the position is
then as illustrated in Figure 4.

+1

-

; ] \
Figure 4. Solutions for ey = ~#(y? — 1).

Here, the interior layer is not associated with the change of sign of the
eigenvalue, but with the change of sign of {. The reason for this is that, for each
branch of the outer solution (%1 in this case), the correction equation is
€ = * 21z ¥ 2 1z% in which there is no algebraically small error term, and so it
is possible to establish the fact that z is not merely small, but is exponentially
small like exp(—e™'f’, 25 ds).

https://doi.org/10.1017/5033427000000014X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000014X

170 J. J. Mahony and J. J. Shepherd [3s]

This serves to emphasize that there are marked differences of behaviour
between branches in which Y, the outer solution, is constant, and branches in
which the outer solution Y varies with ¢. Then, Y satisfies the differential
equation exactly and adjustments are necessary only to cope with boundary
conditions. Colloquially speaking, the system is then able to remember exponen-
tially small terms, and these control the position of the interior layers. Where the
outer solution varies, so that

(1, Y,) = —Y,_,
continues to lead the algebraic order terms, the interior layers would appear to
be expected to occur at the singular points of f,,. '

Of course, the above arguments are merely plausible indications as to the
results to be expected in general, together with some prescriptions as to methods
of attack to be applied. However, we believe that they provide a more natural
framework within which to work than has been available previously. They serve
to indicate which branches of f(#, Y) = 0 should be selected, where to make the
transfers, and what are the appropriate boundary conditions to apply to any
boundary or interior layer. On occasions, this guide may prove to be fallible, in
that it will lead to a boundary layer problem which cannot be solved. However,
if it can be solved with reasonable solutions, then a contraction mapping
argument ought to be usable. In general nonlinear systems, of course, we may
not infer that this solution is the only solution or that it is the desired solution in
any given application.

These examples serve to illustrate the fact that branches that are such that
they will not allow us to construct an exact solution to the problem close to a
given trial approximation with an error of algebraic order in ¢ may or may not
be close to an actual solution. It is significant that, if there is a solution,
solutions corresponding to quite closely neighbouring boundary values have
markedly different behaviour. Note that this is not a serious disadvantage for
the use of shooting methods in numerical integration, provided there is only one
solution in this neighbourhood. The qualitatively different behaviour of
neighbouring initial-value problems offers the potential for establishing a dichot-
omy from which the existence of at least one solution might be inferred.
However, where more than one solution might be involved, as in the example

65)” = —y{g(x)z o yz}, 0 <x < 1,
with
»(0,¢) =y(l,e) =0 and g(x) >0,

there may be significantly different solutions with neighbouring initial values.
There is a positive solution which is close to g(x) almost everywhere, and other
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solutions with a small number of zeros lie close to y = + g(x) almost every-
where. Since the values of y’(0, €) distinguishing these solutions will be very close
together, shooting methods would not seem appropriate.

There is no general reason to rule out of practical interest those boundary-
value problems in which very special values of boundary data are required for
the existence of a solution of a given type. The results we have obtained here,
and the above examples suggest that constructive methods of the usual type are
not likely to be satisfactory for existence proofs of these “special solutions”. It
would appear that other forms of fixed-point theorems may be more useful. One
approach that may be useful is to demonstrate that there exist marked solutions
of the system obtainable in such a form that

Q(’,W,Z,E)—r=0

on such appropriate subspaces as will allow the solution of the equation (5.18)
together with (5.13) and (5.14) to be constructed by the usual method. As we can
see, this condition will define a manifold of solutions. If we can establish the
existence of a dichotomy of solutions centred on this, we may be in a position to
infer an existence theorem for solutions in a suitable neighbourhood.

Such arguments cannot fix the number of solutions. However, if these solu-
tions are close over the whole range, this will not matter, unless a count on the
number of solutions is required.
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