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ON THE HOLDER SEMI-NORM OF THE REMAINDER
IN POLYNOMIAL APPROXIMATION

DAVID ELLIOTT

Suppose the gth derivative of a function / is Holder continuous of index a, where
0 < a ^ 1, on the interval [—1,1]. Suppose further that pn is any polynomial of de-
gree at most n such that |r,,(a;)| = |/(z) — pn(x)\ ^ c < max ( (l — z2) /n, 1/n2 j >
on [-1,1]. If

\\rn\\p = sup \rn(x) - rn(y)| / \z - yf ,

then it is shown that

II*-—11/9 ^ cn-q-a+f>, 0 < p ^ 1.

1. INTRODUCTION

Suppose that a function / is Holder continuous of order a, where 0 < a ^ 1, on
the compact interval [—1,1]. That is, there exists a £ (0,1] such that for every pair of
points x,y £ [—1,1] we have

where L is independent of x and y. We write / £ Ha [—1,1]. The Holder semi-norm
\\f\\a *s ^ e smallest L for which (1) is satisfied so that we define

(2) H/IL :=

It also follows that if / £ Ha [-1,1] then / £ Hp [-1,1] for any /? such that 0 < /? < a.
Suppose now that for every n £ N, the set of all natural numbers, / is approxi-

mated on [—1,1] by some polynomial pn say, of degree at most n, and let the remainder
be denoted and defined by

(3) rn := / - pn.
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Obviously if / is in Ha [—1,1] then so is r n .

In this paper we shall discuss estimates for dunlin • where /3 lies in some interval
dependent upon both a and the characteristics of the polynomial approximations p n

to / . Such estimates have proved to be extremely useful, for example, in the approxi-
mate evaluation of Cauchy principal value integrals and the solution of singular integral
equations with Cauchy kernel (see, for example, Elliott and Paget [2] and Elliott [3]).

The first result for ||rn||^ was given by Kalandiya [6].

THEOREM 1 . 1 . Suppose f £ Ha\—1,1]. Tien for every polynomial pn such

that

(4) IknlL ^ 4 i n - \ nGN,

it follows that

(5) \\Tn\\p^A2n-a^,

where 0 < 0 < a/2.

(Note that we shall be introducing a sequence of constants A\,A-i, et cetera
throughout the paper. These will always be positive and independent of n. Note
also that ||-||oo denotes the uniform norm whereas ||-||Q, for 0 < a ^ 1, will always
denote the Holder semi-norm of (2). There should be no confusion.)

The presence of the factor 2/3 instead of /3 in (5) comes about because Kalandiya's
proof uses the well known fact (see, for example, Lorentz [7, Chapter 3, Theorem 5])
that for any polynomial pn of degree n, Wp'nW^ ^ n2 ||pn|loo> with equality occurring
when pn = Tn, the Chebyshev polynomial of the first kind of degree n. Ioakimidis [5],
however, later gave the following result.

THEOREM 1 . 2 . Suppose f e Ha [-1,1]. For each n £ N, tAere exists a polyno-

mial pn such that

(6) K I L ^ Am-"

and for which

(7) IWI, < A,n-a+'>,

where 0 </3 <a.

This result intrigued O.V. Davydov who wondered what condition on pn should
replace (6) so that (7) was true for every such polynomial. Before stating Davydov's
theorem we shall, following Lorentz [7], introduce the function An(z) defined by

(8) A n (z ) :=max
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where — 1 ^ x ^ 1 and n £ N. A slightly modified statement of Davydov's theorem [l]
is given as follows.

THEOREM 1 . 3 . Suppose f £ Ha [ -1,1] , 0 < a ^ 1. For every n G N, and for

every polynomial pn for which

(9) \f(x) - P n ( z ) K A*(An(x))a, - l ^ z ^ l ,

then

(10) \\rn\\p < A5n-a+e,

where

(11) 0 < / 3 ^ a < l , or 0</3 < a < 1.

Condition (9) ensures that the polynomials pn are in general a better approxima-
tion to / near the end points ±1 than are the polynomials which satisfy only (6). The
proof of Davydov's theorem makes use of an interpolation theorem due to Riesz [11]
and follows an argument similar to that given by Nikolskii [10]. Polynomials satisfying
(9) have been discussed by Nikolskii [9] when a — 1 and by Timan [12] for 0 < a < 1.
An explicit construction of such polynomials was given by Grtinwald [4], see Mills and
Varma [8].

So much for the background. The purpose of this note is to give an extension of
Davydov's theorem. We shall now state our principal result.

THEOREM 1.4 . Suppose q e N and /(<7) G Ha[-l,l], where 0 < a ^ 1. For

every n £ K , if pn denotes any polynomial of degree at most n such that

(12) \f(x)-Pn(x)\^A6(An(x))"+a, - l ^ x < l ,

then

(13) IM,, < A-,n-"-a+^,

where 0 < /? ^ 1.

2. PROOF OF THEOREM 1.4

Before giving the proof of theorem 1.4 we need to quote some further results from

Lorentz [7].

LEMMA 2 . 1 . With An(x) defined as in (8),

(14) An(z)/4 < A2n(x) < An(*)/2

for - 1 ^ x < 1, nG N.
PROOF: This is straightforward. D
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LEMMA 2 . 2 . Let r £ No and 0 < a < 1, where No = {0,1,2,.. .}. 1/a
polynomial pn of degree n satisfies

(15) \Pn{x)\< (An(x))r+a, - K z ^ l ,

in en

(16) I P U * ) I < ^ (An(x) ) r - 1 + a , - l ^ x ^ l .

PROOF: See Lorentz [7, Chapter 5, Theorem 3]. D

LEMMA 2 . 3 . Suppose q £ No and /( ') 6 # a [ - l , l ] , 0 < a < 1. Then there

exists a sequence {pn} of polynomials such that

(17) |/(z) - p n ( z ) K A , ( A n ( z ) ) ' + a ,

for —1 ̂  x ^ 1 and n ^ g.

PROOF: See Lorentz [7, Chapter 5, Theorems 1 and 2]. D

We are now in a position to supply the proof of theorem 1.4.

PROOF OF THEOREM 1.4. We first note that lemma 2.3 tells us that a sequence of
polynomials satisfying (12) exists. Since q ̂  1, / ' and consequently r'n exist and are
certainly continuous on [—1,1]. If x and y are any two distinct points of [—1,1] then
the mean value theorem gives

(is) Mx) -
l

where £ is some point between x and y. Now (17) shows that the sequence of poly-
nomials {pn} converges uniformly to / on [—1,1]. In particular, for a given value of
n € N, we can write

(19) / (*) -P»(*) =

Now

|P2*+l»(*) - ?2*n(a;)l = l(ft*+l»(*) ~ /(*)) + (/(*) - P2»n(*))\

^ A6 [(A2 t + 1Jx))'+ Q + (A2kn(x)Y+a] , by (12) ,

^ ^10(A2l+xn(x))9+a, by Lemma 2.1.

From Lemma 2.2 it follows at once that

(20) < AutL^ny1""1, see (8).
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Since q ^ 1 and £ (2fc+1) is convergent it follows by Weierstrass' M-test that
fc=o

(21) r'n(x) = f(x) - pUs) = £ ( P ' 2 * + I » - PUnW).

the convergence of the series being uniform on [—1,1]. Again, using (20) we have that

^+a~1 A..

We are now in a position to prove inequality (13). Firstly, let us suppose that

\x - y\ < I/n. Then from (18) and (22) we have

(23)
N - 2/1

for 0 < /3 ^ 1. Next, suppose that \x — y\ ^ 1/n. Then

( 2 4 )

I* - y \ p

But from (8) and (12) we have

M

for every x G [—1,1]. Consequently,

(25) M z )

\z-y\

From (23) and (25) we have

(26) | | r n | | , = sup
x -

which proves the theorem. U
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