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THE EXPONENT OF THE HOMOTOPY GROUPS OF 
MOORE SPECTRA AND THE STABLE 

HUREWICZ HOMOMORPHISM 

DOMINIQUE ARLETTAZ 

ABSTRACT. This paper shows that for the Moore spectrum MG associated with any 
abelian group G, and for any positive integer «, the order of the Postnikov ^-invariant 
1?+X{MG) is equal to the exponent of the homotopy group TT„MG. In the case of the 
sphere spectrum S, this implies that the exponents of the homotopy groups of S provide a 
universal estimate for the exponent of the kernel of the stable Hurewicz homomorphism 
hn\ TT„X —• E„(X) for the homology theory £*(—) corresponding to any connective 
ring spectrum E such that TTQE is torsion-free and for any bounded below spectrum X. 
Moreover, an upper bound for the exponent of the cokernel of the generalized Hurewicz 
homomorphism h„:En(X) —-> Hn(X; iroE), induced by the 0-th Postnikov section of E, 
is obtained for any connective spectrum E. An application of these results enables us 
to approximate in a universal way both kernel and cokernel of the unstable Hurewicz 
homomorphism between the algebraic A -̂theory of any ring and the ordinary integral 
homology of its linear group. 

0. Introduction. The first purpose of this paper is to show that for the Moore spec­
trum MG associated with any abelian group G, and for any positive integer n, the order 
of the Postnikov ^-invariant k"+l(MG) is exactly equal to the exponent of the homotopy 
group 7rnMG (see Theorem 1.3). 

This equality, in the case of the sphere spectrum S = ML, enables us to prove that 
the exponents of the homotopy groups of S provide a universal approximation of the 
exponent of the kernel of the Hurewicz homomorphism 

hn\TtnX—*En(X) 

for the homology theory £*(—) corresponding to any connective (i.e., (—l)-connected) 
ring spectrum E (for which we assume that 7r0E is torsion-free) and for any bounded 
below spectrumX. More precisely, we obtain the following result (see Theorem 2.2): 

For any (b — X)-connected spectrum X and any integer n>b+\, ifx is an element of 
the kernel ofhn\ ir„X —* En(X), then (p\P2 • • • pn-b)x 0 1 = 0 in 7r„X(g) TTOE, where pj 
denotes the exponent of^jS for j > 1. 

It is also possible to define a generalized Hurewicz homomorphism 

hn:En(X)—*Hn(X;K0E) 
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484 DOMINIQUE ARLETTAZ 

for any connective spectrum E and for any spectrum X. The next goal of the paper is to 
give a universal upper bound for the exponent of the cokernel of this homomorphism 
(see Theorem 3.2): 

For any (b — l)-connected spectrum X and any integer n > b + 2, the cokernel of 
hn\En{X) —> Hn{X\TTQE) satisfies (p\{E)p2(E) • • • pw_/>_i(£))(cokerhn) = 0, where pj(E) 
is the order of the k-invariant ti+l(E)forj > 1. 

In the case of the classical stable Hurewicz homomorphism 

hn:7tnX-^Hn(X;Z) 

for a (b — l)-connected spectrum X, it is known that hn is an isomorphism if n — b and 
an epimorphism if n = b + 1. The above general results imply that the exponents pj of 
the homotopy groups TTJS of the sphere spectrum S (j > 1) produce universal exponents 
for both kernel and cokernel ofhn (see Theorem 4.1): 

For any (b — X)-connected spectrum X, the classical stable Hurewicz homomorphism 
hn: 7rnX—> Hn(X; Z) has the following properties: 

(a) (p\P2 - - - Pn-b)(kerhn) = Ofor all integers n>b+\, 
(b) (p\Pi - • • p„-fc-i)(cokerhn) = Ofor all integers n>b + 2. 

This important fact does not seem to be well-known, although its proof is quite simple. 
Notice that these theorems hold without any finiteness condition on the spectrum X. 

It is for instance interesting to apply these results to the ^-dimensional classical un­
stable Hurewicz homomorphism between the algebraic K-theory of a ring R and the 
ordinary integral homology of the group E(R) generated by elementary matrices with 
coefficients in R (see Corollaries 5.1 and 5.2): for n > 3 its kernel is annihilated by 
the integer p\p2 • • • pn-2, which is independent of R (this extends the results of [2]), 
and we get a relationship between its cokernel and the iterated homology suspension 
an: Hn (E(R)\ l) —^ Hn(XBE(R)+',1)9 where XBE(R)+ is a 1 -connected Q-spectrum associ­
ated with the infinite loop space BE(R)+. 

The paper is organized as follows. In Section 1, we establish the correspondence be­
tween the exponent of the homotopy groups of a Moore spectrum and the order of its 
^-invariants. The second section is devoted to the study of the kernel of the Hurewicz 
homomorphism /z*: ir*X—> E*(X) for a connective ring spectrum £. In Section 3, we de­
fine the generalized Hurewicz homomorphism h*: E*(X) —> H*(X; TTOE), for a connective 
spectrum E, and investigate its cokernel. Section 4 formulates the previous results in the 
case of the classical stable Hurewicz homomorphism and presents their consequences 
on the classical unstable Hurewicz homomorphism for infinite loop spaces. The relation 
between algebraic AT-theory and linear group homology is then discussed in Section 5. 
Finally, we mention in Section 6 the analogous assertions for the Hurewicz homomor­
phism with finite coefficients. 

Throughout the paper, we are working in the category of CW-spectra, and we denote 
by H(G) the Eilenberg-MacLane spectrum having all homotopy groups trivial except for 
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THE STABLE HUREWICZ HOMOMORPHISM 485 

G in dimension 0 and, for a spectrum E and an integer m, by am:E —> E[m] its m-th 

Postnikov section (i.e., 7TjE[m] = 0 fory > m and (am)*: TTJE—^irjElm] fory < m). 

I would like to thank Paul Goerss for useful comments. 

1. The Postnikov invariants of Moore spectra. Let G be an abelian group and MG 
the corresponding Moore spectrum (see [1], p. 200): MG is a connective spectrum such 
that H0(MG; Z) ^ G and Hj(MG; Z) = 0 for./ > 1. The Postnikov ^-invariants of the 
spectrum MG are cohomology classes k"+l(MG) G H"+l(MG[n - 1]; TT„MG), for n > 1. 
Since MG is connective, all its ^-invariants are torsion classes according to Theorem 1.5 
of [3]. 

PROPOSITION 1.1. IfXis a (b—\)-connectedspectrum andnan integer> b+l, then 
the classicalHurewicz homomorphism hn\ 7r„X —» Hn(X; Z) satisfies pn(X)(kerhn) = 0, 
where pn(X) is the order of the k-invariant A*+1 (X) in #"+1 (X[n - 1 ]; nnX). 

PROOF. Since X is bounded below, pn(X) is finite and there exists a map of spectra 
fn:X —•> YPH^nX) inducing multiplication by pn(X) on 7rMX(see [3], Lemma 1.1 and 
Theorem 1.5). This map and the Hurewicz homomorphism produce the commutative 
diagram 

7T„X ^ KnLnH(lTnX) 

Hn(X;l) ^ H„(irH(ir„X);Z). 

Therefore, the kernel of hn\ nnX —-> Hn(X; Z) is a subgroup of the kernel of the homo­
morphism (fn\ which is multiplication by pn(X), and consequently, p„(JQ(ker hn) = 0. 

DEFINITION 1.2. For « > 1, let us call p„(G) the order of the ^-invariant k"+x(MG) 
in the cohomology group H"+l(MG[n — 1]; 7rMMG). 

We may deduce from Proposition 1.1 the main result of this section. 

THEOREM 1.3. For any abelian group G and any positive integer n, pn(G) is equal 
to the exponent of the homotopy group 7rnMG. 

PROOF. Since n > 1, the group Hn(MG\ Z) vanishes and Proposition 1.1 implies that 
pn(G)7rnMG = 0. On the other hand, it is clear that pn(G) divides the exponent of 7r„MG, 
because &*+1 (MG) belongs to the group #"+1 (MG[n - 1]; TT„MG). 

EXAMPLE 1.4. For the sphere spectrum S = MZ, the order p„(Z) of the ^-invariant 
k"+l(S) is exactly the exponent of the group irnS = lim nn+kSk, for all n > 1. In the 
remainder of the paper, we shall write pn for p„(Z). 

REMARK 1.5. For any abelian group G, since MG is the cofibre of a map from a 
wedge of sphere spectra to a wedge of sphere spectra (see [1], p. 200), the homotopy 
exact sequence of this cofibration shows that the exponent of TT„MG is bounded by the 
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product pnPn-\, in other words that pn(G) divides pnpn-\ for any abelian group G and for 
all integers n > 2 (it is clear that p\(G) = 1 or 2). 

REMARK 1.6. The assertion of Theorem 1.3 holds also for any Moore space (instead 
of spectrum), having only one non-trivial reduced integral homology group in dimension 
I, assuming we are looking at an integer n > I + 1 such that the n-th homotopy group of 
the Moore space has finite exponent. However, observe that if this exponent is infinite, 
then the order of the corresponding ^-invariant of the Moore space is also infinite. 

It is possible to generalize the statement of Theorem 1.3 as follows. 

PROPOSITION 1.7. Let Xbea connective spectrum with the property that Hj(X; Z) is 
a group of finite exponent r/jfor allj > 1. Then, for any positive integer n, the exponent 
of 7r„X is a positive multiple of the order pn(X) of the k-invariant &"+i (X) and divides the 
product pn(X)r\n. 

PROOF. If x is an element of -KnX, then r\nx lies in the kernel of h„: 7rnX —> Hn{X\ Z) 
and one obtains from Proposition 1.1 the equality [pn{X)r)n^x = 0. As mentioned in the 
proof of Theorem 1.3, it is again trivial that the exponent of 7r„X is a positive multiple of 
PniX). 

2. The kernel of the Hurewicz homomorphism. Let E be a connective ring spec­
trum with identity /: S —> E. For a spectrum X and an integer «, the E-Hurewicz homo­
morphism is 

hn:nnX= 7rn(SAX) ^ Kn(E AX) = En(X), 

where £*(—) is the homology theory associated with the spectrum E and id: X —> X the 
identity (see [1], p. 58 or [9], p. 290). In the case of the spectrum is = //(Z), hn is the 
classical Hurewicz homomorphism 

hn:7rnX-^Hn(X;Z). 

The objective of this section is to use the result on the sphere spectrum described in 
Example 1.4, in order to approximate the exponent of the kernel of the £-Hurewicz ho­
momorphism hn in a universal way. Notice that, in general, the cokernel of hn may be of 
infinite exponent. For technical reason (see the proof of Theorem 2.2), we shall concen­
trate our attention to spectra E for which TTOE is torsion-free. 

DEFINITION 2.1. For m > 1, let pm = UjL\ Pj, where pj = pj(Z) is the exponent of 
TTjS. Notice that a prime number/? divides pm if and only ifp < ^ . 

THEOREM 2.2. Let E be a connective ring spectrum such that TTOE is torsion-free 
and X any (b — \)-connected spectrum. The kernel of the E-Hurewicz homomorphism 
hn\ 7r„X—> En(X) has the following property: ifx is an element ofkerhn, then 

pn-bX (8) 1 = 0 in 7T„X(g) TTQE 
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for all integers n >b+l. 

PROOF. By Lemma 4.1 of [3], TT„X = 7rn(S A X) ^ S[n - b]n(S A X) and similarly 
E„(X) = irn(EAX) ^ S[n - b]n(E AX), since the spectra SAX and E AXare (Z> - 1)-
connected. Because of Theorem 1.3, the method developed in [4] shows the existence of 
maps of spectra 

S[n - 6 ] - ^ V Y!H(KtS)-^S[n - b] 
t=o 

such that the composition ijjip is homotopic to the (pn_/,)-th power map: S[n — b] —+ 
S[n — b]; for any bounded below spectrum 7, they induce homomorphisms 

S[n - b]n{Y)-^( V S ' i / ^ (7) S © f f n - ^ T T ^ - ^ S l H - b]n(Y) 
\t=0 J n t=0 

such that the composition ^ O is multiplication by p„-b (see Corollary 1.4 and Theo­
rem 2.2 of [4]). Now, consider the commutative diagram 

7rnX ̂  S[n - b]n(S A X) hn=-^d)* S[n -b]n(EAX)^ En(X) 

0 £ o Hn-t(S A X; TT,S) ( i ^ 0 £ j //„_,(£ A X; TT,S). 

For any f withO < / < n-b,thQhomomorphism(iAid\:Hn-t(SAX; Z) —> Hn-t(EAX; Z) 
is the composition of /JJ: Hn-t(X; Z) —-> H„-t(X; T)®-KQE (inducedby /*: 7roS = Z —> 7T0J£) 

with a split injection Hn-t(X; Z) (8) 7rois «—> Hn-t(E A X; Z); since 7rois is torsion-free, 
the same is true for the bottom horizontal arrow in the above diagram. Therefore, if 
x G kerhn, then 0>(x) vanishes under the top horizontal map in the next commutative 
diagram: 

®n
tZ$Hn-t{X^tS) -5-> ®n

tz$Hn-t(X^tS)®T«>E 

J V j TOid 

7T„X > 7TnX<g)TroE9 

and we conclude that pn-bX = ¥$(*) belongs to the kernel of the bottom horizontal 
homomorphism i§. 

COROLLARY 2.3. IfE is a connective ring spectrum with iroE = Z and X any (b—l)-
connectedspectrum, then the kernel of the E-Hurewicz homomorphism hn: HnX—* En(X) 
satisfies 

pn-b(kQT hn) = 0 

for all integers n > b + 1. 

REMARK 2.4. In the classical case (where E = H(J)\ another way to prove this 
corollary may be deduced from the Atiyah-Hirzebruch spectral sequence argument which 
will be presented in Lemma 3.3 and Remark 3.4. 
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REMARK 2.5. It is sometimes possible to get a better bound on the exponent of the 
kernel of hn. Suppose that TTQE = Z and let X be a (b — l)-connected spectrum, n an 
integer > b+\ and pn(X) the order of the ^-invariant ^+1(JQ in Hr&x{X[n- 1];TT„X), then 
the argument of the proof of Proposition 1.1 shows that the is-Hurewicz homomorphism 
hn:irnX-^En(X) fulfills 

pn(X)(kerhn) = 0. 

Consequently, we may actually improve the statement of Corollary 2.3 as follows: 

gcd(pn-b,Pn(XJ)(ksrhn) = 0. 

Recall that we have defined in [2] and [3] integers RJ9 fovj > 2, with the property that 
pn(X) divides Rn-b+\ for any (b — l)-connected spectrumX. Thus, we can even replace 
gcd(pw_£,pn(X)) by gcd(pn-b,Rn-b+i). 

Theorem 2.2 has a direct consequence on the Hurewicz homomorphism for spaces. 
If K is a CW-complex, let us consider its suspension spectrum S°°(AT) and the iterated 
suspension^: irnK —> 7rnY°°(K). 

COROLLARY 2.6. Let Ebea connective ring spectrum such that TTOE is torsion-free, 
E*(—) the corresponding reduced homology theory, and K a (b — \)-connected CW-
complex with b > 1. For any integer n>b+l,ifxE kQxhn\ixnK —* En(K), then 
Sn(Pn-bX) ® 1 = 0 in ^n^°°{K) ® 7T0E. 

PROOF. The commutativity of the diagram 

En(K) -^ En(X°°(K)) 

shows that if x is an element of the kernel of h„: 7rnK —> En(K)9 then sn(x) belongs to 
the kernel of hn\ 7rwS°°(Ar) -> £„(S°°(X)) and 5„(pn_6x) 0 1 = pn-bsn(x) <g> 1 = 0 in 
7rnI°°(iO ® 7r0£ by Theorem 2.2. 

If « < 2(b — 1), then s„ is an isomorphism by the Freudenthal suspension theorem 
and one obtains the following statement. 

COROLLARY 2.7. Let Ebea connective ring spectrum such that TTOE is torsion-free, 
E*(—) the corresponding reduced homology theory, K a(b— X)-connected CW-complex 
with b > 3, and nan integer such thatb+l <n< 2(b — 1). Ifx £ ker/zw: irnK —> En(K), 
then pn-bX ® l = 0 m 7r„AT (8) 7ro£. 

Let us conclude this section by recalling that it is actually possible to define a more 
general E-Hurewicz homomorphism hn:Fn(X) —> (E A F)«W> f° r a connective ring 
spectrum E and spectra F and X, and for all integers n, as follows (see [9], p. 290): 

hn:Fn(X) = 7rn(FAX) = irn(SAFAX) ° A ^ d ) * ^(EAFAX) = (EAF)n(X). 

We may extend the above results to this homomorphism. 
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COROLLARY 2.8. Let E be a connective ring spectrum such that iroE is torsion-free, 
Fa (c — \)-connectedspectrum andXa (b — \)-connectedspectrum. The E-Hurewicz 
homomorphism hn:Fn(X) —> (E A F)n{X) has the following property: ifx is an element 
ofkerhn, then pn-b-cx <S> 1 = 0 in Fn(X) 0 iroEfor all integersn> b + c+ 1. 

PROOF. The homomorphism hn is in fact the Hurewicz homomorphism hn: 7rn(F A 
X) —> En(FAX). Thus, the assertion is just the application of Theorem 2.2 to the (6+c— 1 )-
connected spectrum F AX. 

3. The cokernel of the generalized Hurewicz homomorphism. Now, consider a 
connective spectrum E and its associated homology theory £*(—). For a spectrumX and 
an integer n, we can define a generalized E-Hurewicz homomorphism 

hn:En(X)-^Hn(X;7r0E) 

as follows: 

hn:En{X) = 7rn(EAX)(a^* 7rn(H(ir0E) AX) = Hn(X;ir0E), 

where a0: E —> E[0] = H(TTOE) denotes the 0-th Postnikov section of the spectrum E and 
id:X —> Xthe identity. In the case where E is the sphere spectrum S, oc$\ S —> ^(Z) is a 
generator of TTOH(Z) and /z„ is the classical Hurewicz homomorphism 

hn:7rnX—*Hn(X;Z). 

IfXis (6 — l)-connected, it is obvious that the generalized ^-Hurewicz homomorphism 
h„:En(X) —* //W(X; 7To£) is an isomorphism if n = b and an epimorphism if n = b +1 . In 
general, the kernel of hn may be of infinite exponent when n > b +1. The purpose of this 
section is to show that the study of the order of the ^-invariants of E provides universal 
upper bounds for the exponent of its cokernel in all dimensions n. 

DEFINITION 3.1. For m > 1, let pm(E) = UJL\ Pj(E), where pj(E) is the order of the 
^-invariant kJ+l(E) in HJ+l(E\J— 1]; TTJE). Remember that pj(E) is always finite according 
to [3], Theorem 1.5. If E = S, pm(E) = pm because of Theorem 1.3. 

Let X be a (b — l)-connected spectrum and n an integer > b + 2. Notice first that 
En(X) ^ E[n - b]n(X) by Lemma 4.1 of [3]: thus, we may replace E by E[n - b] and 
consider cto:E[n — b] —•> H^KQE). Again, it is possible to use the method introduced in 
[4] to construct a map of spectra 6„:H(7ToE) —> E[n — b] such that the composition 

H(7r0E)-^E[n - b]^H(ir0E) 

is homotopic to the (p„_^(£))-th power map: H(TTOE) —> H(TTOE); consequently, we ob­
tain a homomorphism 0„: Hn(X; TTOE) —•• E[n — b]n(X) = En(X) with the property that 
the composition 

Hn(X'9 7r0E)-^En(X)^Hn(X; TT0E) 
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is multiplication by pn-b{E) on Hn(X; 7r0E) (see Theorems 1.5 and 2.4 of [4]). Therefore, 
we may conclude that 

pn-b(E)(cokerhn) = 0. 

But, it turns out that we can get a slightly better estimate of the exponent of the cokernel 
ofhn. 

THEOREM 3.2. For any connective spectrum E and any (6—1 )-connected spectrum 
X, the cokernel of the generalized E-Hurewicz homomorphism hn:En(X) —* Hn(X\ TTOE) 

satisfies 
pw_6_i(£)(coker hn) = 0 

for all integers n>b + 2. 

The proof of this theorem is based on the following 

LEMMA 3.3. In the Atiyah-Hirzebruch spectral sequence E^t = Hs(X;7rtE) => 
Es+t(X) converging towards the E-homology of any (b — X)-connected spectrum X, the 
edge homomorphism En{X) —» E^0 °-» £^0 = Hn(X\ TTOE) is exactly the generalized 
E-Hurewicz homomorphism hn, for all integers n > b. 

PROOF OF LEMMA 3.3. For an integer I with 0 < t <n - 6, let us denote the fibre 
of the Postnikov section a^_\\E[n — b] —• E[l — 1] by E(£,n — b] and the inclusion 
E(£,n — b] c—> E[n — b] by /^ (E(l, n — b] is the spectrum obtained from E[n — 6] 
by killing its homotopy groups in dimensions < I). The convergence of the Atiyah-
Hirzebruch spectral sequence implies the existence of a filtration 0 C F0 C F\ C • • • C 
Fn-b = En(X) * E[n - b]n(X), such that FJ/FJ-Y * E™bn_b_p which is given by (see 
Section 4 of [10]): 

Fj = image (E(n - b -j, n - b]n(X) ( / ^ * E[n - b]n(XJ) for 0 <j < n - b. 

In particular, Fn-b-\ = image ((/3i )* : E( 1, n — b]n(X) —> E[n — b]n(X)) is isomorphic to 
the kernel of the homomorphism hn : En{X) ^ E[n - b]„(X) —> E[0]n(X) 2* Hn(X; TT0E) 

induced by a0 A id, because 

E(l9n-b]-^ E[n - b]-^ E[0] 

is a cofibration. It then clearly follows that E™0 = image hn. 

REMARK 3.4. This lemma also shows that if the homotopy groups itj{E) have finite 
exponents ej forj > 1, then the product e\e2 • • • en-b is an upper bound for the exponent 
of the kernel of hn\En(X) —-> Hn(X;iroE). In the case of the classical Hurewicz homo­
morphism hn\ -KnX -^ Hn(X\ Z), this gives a simple proof of Corollary 2.3. 

PROOF OF THEOREM 3.2. SinceXis (b — 1 )-connected, the Atiyah-Hirzebruch spec­
tral sequence Zs£r = HS(X; irtE) => Es+t(X) has the property that E*st = 0 if s < b and 
E™0 — E^M. According to the previous lemma, the image of hn is E^1*1, which is the 
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subgroup of E2
nQ = Hn(X;7ToE) consisting of the kernel of the differentials d£ 0 : i^ 0 —• 

ETn_rr_x for 2 < r < n — b, and coker/z,, = E2
n0 / E?n~Q*x. However, it follows from 

Proposition 2.1 of [3] that pr-iiE)^ = 0. This implies inductively that the exponentof 
cokerhn is bounded by the product p\(E)p2(E) • • • pn-b-\(E) = pn-b-\(E). 

EXAMPLE 3.5. Consider the Brown-Peterson spectrum BP associated with a prime 
numberp and the generalized BP-Hurewicz homomorphism hn: B?n(X) —> Hn(X\ Z^)). 
It is easy to check that the kernel of hn may be of infinite exponent and, on the other hand, 
to deduce the following result on the cokernel of hn from Theorem 3.2 together with the 
determination of the order of the ^-invariants of BP presented in Section 4 of [4]: ifXis 
a(b — 1)-connected spectrum, n an integer >b + 2, and ifr denotes the integer such that 
2r(p-\)<n-b-\<2(r+\)(p- 1), then 

p^V\cokerhn) = 0. 

REMARK 3.6. In Section 1 of [3], we gave universal upper bounds Rj+\ for the order 
of the ^-invariants of connective spectra E: Rj+\ M+l(E) = 0 for all integersy" > 1. Conse­
quently, we may replace the conclusion of Theorem 3.2 by the following universal asser­
tion (i.e., independent of E): for any connective spectrum E and any (b — \)-connected 
spectrum X, the cokernel of the generalized E-Hurewicz homomorphism h„:En(X) —> 
H„(X; TTOE) satisfies 

(R2R3-Rn-b)(cokerhn) = 0 

for all integers n>b + 2. 
The construction of the generalized 2s-Hurewicz homomorphism may even be done 

in a more general way in order to define homomorphisms 

hn/.En(X)-^Hn-t(X;7rtE) 

for a (b — l)-connected spectrum X, an integer n > b, and for all integers t such that 
0 < / < n — b\ hnt is the homomorphism induced by the map of spectra Xny. E\n — fa\ —> 
Y}H(-KtE) introduced in Theorem 1.5 of [4]. Observe that hn$ = hn. We are also able 
to approximate the exponent of the cokernel of hn^u because Theorems 1.5 and 2.4 of 
[4] establishes the existence of a homomorphism Sn/.Hn-t(X;irtE) —> E„(X) with the 
property that the composition 

//„_,(*; irtE)^En (X)^Hn.t(X; irtE) 

is multiplication by the product pt(E)pt+\(E) • • • pn-b(E) on Hn-t(X\ -ntE). 

THEOREM 3.7. For any connective spectrum E and any (b — \)-connected spec­
trum X, the cokernel of the generalized E-Hurewicz homomorphism hn/.E„(X) —> 
Hn-t(X;>KtE) fulfills 

pt(E)pt+i(E) • • • p„_fc(£)(coker/*„,,) = 0 

for all integers n > b + 1 and for all integers t such that 0 < t < n — b (pj(E) denotes 
the order ofti+x(E); notice that po(E) = I.) 
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4. The classical Hurewicz homomorphism. The results of Section 2 (for E = 
H(Z)) and of Section 3 (for E = S) produce universal upper bounds (independent of X) for 
the exponent of both kernel and cokernel of the classical stable Hurewicz homomorphism 

hn:vnX-^Hn{Xa\ 

for any bounded below spectrumXand for all integers n. Recall that hn is an isomorphism 
if n = ft and an epimorphism if n = b + 1. 

THEOREM 4.1. For any (b— \)-connected spectrum X, the classical stable Hurewicz 
homomorphism hn\ KnX—•> Hn(X; Z) has the following properties: 

(a) p„_/,(ker hn) = Ofor all integers n>b+\, 
(b) pn-b-\ (coker hn) — Ofor all integers n>b + 2, where pj denotes the exponent of 

71)5 and pm the product p\P2" • Pm 0,m > V-

PROOF. Assertion (a) is given by Corollary 2.3 for E = H(Z) and Assertion (b) is a 
consequence of Theorem 3.2 in the case E = S and of Theorem 1.3. 

Now, if X is a (ft — l)-connected/?-/oca/ spectrum for a given prime number/?, and if 
n is an integer < 2p + b — 4, then p„_^ and pn-b-\ are not divisible by p and we deduce 
the following Hurewicz isomorphism theorem. 

COROLLARY 4.2. IfXisa(b— \)-connectedp-local spectrum for a given prime 
number p, then the classical Hurewicz homomorphism hn: nnX —> Hn(X\ Z) is an iso­
morphism for all integers n such that b<n<2p + b — 4. 

REMARK 4.3. If Xis a (b — l)-connectedp-local spectrum for a given prime/? and 
n an integer satisfying b<n<2p + b — 4, then all ^-invariants of X[n] are trivial 
according to Theorem 1.5 of [3]. Therefore, it turns out thatX[/z] is actually a wedge of 
Eilenberg-MacLane spectra: 

X[n] ^ \ / Z'HiirtX). 
t=b 

If one applies Theorem 4.1 to the suspension spectrum of a CW-complex, one get the 
following improvement of Corollary 2.7 in the classical case (this has also been proved 
independently by J. Scherer, see [7]). 

COROLLARY 4.4. For any (b — \)-connected CW-complex K with b > 3 and any 
integer n such that b + \ < n < 2(b — 1), the classical Hurewicz homomorphism 
hn: 7rnK —> Hn(K\ Z) satisfies pw_^(ker/^n) = 0 and pn-t,-\(cokerhn) = 0. 

Let us conclude this section by looking at the classical unstable Hurewicz homomor­
phism h*for infinite loop spaces. Let K be a (b — l)-connected infinite loop space with 
b > 1 and X& an associated {b — l)-connected Q-spectrum. For any integer n > ft, 
consider the diagram 

lTnK > T^YIXK 

Hn{K;T) ^ H„(XK;Z), 
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where on is the iterated homology suspension. In order to formulate the next result, define 
hn\ 7rnK —> Hn(K; Z)/(kera„) as the composition of the unstable Hurewicz homomor-
phism hn\ 7rnK —» Hn(K; Z) with the quotient map Hn(K; Z) —» Hn(K; Z)/(ker cr„), and 
write dn\ coker(/z„ : 7rnK —+ //„(£; Z)) —> coker(/zw : irnXK —> HU{XK\ Z)) for the homo-
morphism induced by a„. The commutativity of the above diagram implies the following 
consequence of Theorem 4.1. 

COROLLARY 4.5. IfK is a(b — \)-connectedinfinite loop space with b>\, then the 
classical unstable Hurewicz homomorphism h„: 7rnK —* Hn(K; Z) satisfies: 

(a) p„_^(ker/^„) = Ofor all integers n > b + 1, 
(^) pn-b-\(coker hn) = 0 and pw_/,_i(coker hn) C ker a„ybr a// integers n>b + 2. 

5. The Hurewicz homomorphism in algebraic AT-theory. Let R be any ring with 
identity, GL(R) the infinite general linear group (considered as a discrete group) over R, 
E(R) its subgroup generated by elementary matrices, and BE(R)+ the simply connected 
infinite loop space obtained by performing the plus construction on the classifying space 
of E(R). Any simply connected Cl-spectrum XBE(R)+ associated with BE(R)+ is of particu­
lar interest, because Corollary 4.2 shows that its homology detects the algebraic A'-theory 
ofR at large primes. 

COROLLARY 5.1. For any ring R and any integer n > 2, K„(R;Z(p)) = 
Hn{XBE{R)+\ ^(p))for all prime numbers p > | + 1. 

The relationship between algebraic K-theory and linear group homology is described 
by the Hurewicz homomorphism 

h„:KnR <* 7rnBE(R)+ — Hn(BE(R)+;Z) £*Hn(E(R);Z) 

for n > 2 (see [2] for other results on this homomorphism). Obviously, hi is an iso­
morphism and hi is surjective, and it is known that 2(ker/z3) = 0 (see [8], p. 370, [6], 
Proposition 2.5, and [2], Corollary 1.8 and Remark 1.9). The next result follows directly 
from Corollary 4.5 and Corollary 5.1. 

COROLLARY 5.2. For any ring R, the Hurewicz homomorphism h„:KnR —> 
H„(E(R); Z) has the following properties: 

(a) pw_2(ker/z„) = 0 for all integers n > 3, 
(b) for any integral homology class x G Hn (E(R); Z), n > 4, there exists an element 

y in the image of hn and an element z in the kernel of the iterated homology 
suspension a„:H„(E(R); Z) —> H„(XBE(R)+', Z) such that pn-?>x =y + z, 

(c) for any integer n > 2, h„:K„(R; Z^ —> H„(E(R); Z^ is a split injection for 
all prime numbers p > | + 1. 

For small values of n, the odd primary part of the universal upper bound for the expo­
nent of the kernel of hn given by Assertion (a) is better than the approximation obtained in 
[2]. However, note that the modifications mentioned in Remarks 2.5 and 3.6 may be used 
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here again; in particular, we can replace Assertion (a) by: gcd(pw_2,^w-i)(ker/zw) = 0 
for any ring R and for all n>3, where the integers Rn-\ are defined in [2] and [3]. 

Assertion (b) is a generalization of the description of the cokernel of hn we established 
for n = 4 in Section 3 of [2]. Take for instance R — Z and n = 14: it is known that K\4Z 
is a finite abelian group and that H\4(SL(Z); Z) = Z 0 (finite abelian group), because 
Kjl <g> Q = 0 for/ ^ 1 mod4 and#*(SL(Z); Q) ^ A(JC5,X9, . . . ,jc4y+i,...) by [5]; then, a 
generator* of the infinite cyclic summand of H\4 (SL(Z); Z), which represents an element 
of cokerAi4, has the property that o\4{x) is a torsion class. This situation happens more 
generally if R is a number field or the ring of algebraic integers in a number field. 

Observe that the integers pn-i and pn-i occuring in the statement of Corollary 5.2 are 
independent of the ring R. Similar results hold, of course, for the infinite general linear 
group GL(R) and the infinite Steinberg group St(R) (by setting b = 1, respectively b = 3 
in Corollary 4.5). 

6. The Hurewicz homomorphism with finite coefficients. Let us finally consider 
the E-Hurewicz homomorphism with coefficients in Z/pd for a spectrum X: 

hPd: 7rn(X; Z/pd) *< M(Z/pd)n(SAX) ( ^ l * M(Z/pd)n(E AX) = E(Z/pd)n(X), 

where p is a prime number, d a positive integer, E a connective ring spectrum with 
identity i:S —> E, M(Z/pd) the modpd Moore spectrum, and where E(Z/pd) denotes 
E A M(Z/pd). In particular, for E = H(Z), we get again the classical modpd Hurewicz 
homomorphism 

hPd: 7rn(X; Z/pd) — , Hn(X; Z/pd\ 

since H(Z)(Z/pd) = H(Z/pd). 

DEFINITION 6.1. For m > 1, let pmpd = UJL\ Pj(%-/pd), where pj(Z/pd) is the expo­
nent Of 7TjM(Z/pd). 

The argument of the proof of Theorem 2.2 (in which S should be replaced by M(L jpd)) 
and Theorem 3.2 (for E — M(Z /pd)) together with Theorem 1.3 give the following result. 

THEOREM 6.2. Let X be any (b — \)-connected spectrum, p a prime number andd a 
positive integer. 

(a) For any connective ring spectrum E with iroE torsion-free, ifx belongs to the ker­
nel of the modpd E-Hurewicz homomorphism h% : TT„(X; Z/pd) —* E(Z/pd)n(X), 
then 

Pn-bptx ® 1 = 0 in 7rn(X; Z/pd) ® ir0E 

for all integers n > b + 1. 
(b) The cokernel of the classical mod// Hurewicz homomorphism h% : 

irn(X; Z/pd) -+ Hn{X\ Z/pd) satisfies 

for all integers n > b + 2. 
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