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abstract

We apply the largest-chunk segmentation algorithm to texts consisting 
of  syllables as smallest units. The algorithm was proposed in Drienkó 
(2016, 2017a), where it was used for texts considered to have letters/
characters as smallest units. The present study investigates whether the 
largest chunk segmentation strategy can result in higher precision of  
boundary inference when syllables are processed rather than characters. 
The algorithm looks for subsequent largest chunks that occur at least 
twice in the text, where text means a single sequence of  characters, 
without punctuation or spaces. The results are quantified in terms  
of  four precision metrics: Inference Precision, Alignment Precision, 
Redundancy, and Boundary Variability. We segment CHILDES texts in 
four languages: English, Hungarian, Mandarin, and Spanish. The data 
suggest that syllable-based segmentation enhances inference precision.  
Thus, our experiments (i) provide further support for the possible role 
of  a cognitive largest-chunk segmentation strategy, and (ii) point to the 
syllable as a more optimal unit for segmentation than the letter/phoneme/
character, (iii) in a cross-linguistic context.

keywords :  cognitive/computer modelling, segmentation, language 
acquisition.

1.  Introduction
The problem of  how to segment continuous speech into components dates 
back at least to Harris (1955). Harris used “successor frequencies”, i.e., 
statistics, to predict boundaries between linguistic units, ideally morphemes. 
Saffran, Aslin, and Newport (1996) used syllable-based artificial languages 
to demonstrate that statistical information is indeed available for infants 
acquiring language. Results in language acquisition research indicate that 
speech segmentation is affected by various lexical and sublexical linguistic 
cues (see, e.g., Mattys, White, & Melhorn, 2005). Such cues can readily offer 
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themselves as the base for various cognitive segmentation strategies. The 
distribution of  strong and weak syllables, for instance, may help the language 
learner to use a metrical segmentation strategy (Cutler & Carter, 1987; 
Cutler & Norris, 1988), infants can possibly learn to use stress patterns for 
segmentation (Thiessen & Saffran, 2007), or they can exploit prosodic cues 
like lengthening, or rise in fundamental frequency of  speech sounds (Bagou, 
Fougeron, & Frauenfelder, 2002).

Despite the diverse details that are known about the segmentation process 
(see Sonderegger, 2008, for a review), the question concerning the basic unit 
of  segmentation is still open. Although the linguistic or psycholinguistic 
status of  the syllable is rather complex (e.g., Bell & Hooper, 1978; Cholin, 
2011; Livingstone, 2014) and a generally accepted precise definition is still 
lacking, it is widely assumed that an infant’s language acquisition is based on 
syllables (e.g., Mehler, Dupoux, & Segui, 1990; Jusczyk, Friederici, Wessels, 
Svenkerud, & Jusczyk, 1993; Eimas, 1997). Syllable-based segmentation seems 
to be relevant for artificial languages (Saffran et al., 1996), and for writing 
skills (Liberman, Shankweiler, Fischer, & Carter, 1974) as well.

Drienkó (2016) proposed an algorithm for inferring boundaries of  
utterance fragments in relatively small unsegmented texts. The algorithm 
looks for subsequent largest chunks that occur at least twice in the text. 
The results were interpreted in terms of  four precision metrics: Inference 
Prec i s ion, Al ignment  Prec i s ion,  Redundancy,  and 
Boundary  Variab il ity. In Drienkó (2017a) the largest-chunk algorithm 
was used cross-linguistically to segment CHILDES utterances in four languages: 
English, Hungarian, Mandarin, and Spanish. The author found an Inference 
Precision range of  53.5%–65.6%, which grew when segments of  specified 
lengths were merged. The unit for segmentation was the letter, i.e., the computer 
character, which can be regarded as a rough written equivalent of  the speech 
sound. The advantage of the Lar gest  Chunk  method over other proposed 
segmentation strategies is that it allows direct quantitative results based solely on 
the linguistic structure of the given text without needing further cues like stress 
or metrical features. The strategy is in line with Peters’ (1983) approach to 
language acquisition, where the learner uses various cognitive heuristics to 
extract large chunks from the speech stream and the ‘ultimate’ units of language 
are formed by segmenting and fusing the relevant chunks.

The present study investigates whether the largest-chunk segmentation 
strategy can result in higher precision of  boundary inference when syllables 
rather than characters are processed.1 We do not distinguish between word 
or utterance boundaries. For the sake of direct comparison, we use the same data 

[1] � Preliminary results were communicated through Drienkó (2017b).
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as Drienkó (2017a), i.e., CHILDES texts in four languages: English (Anne, 
Manchester corpus; Theakston, Lieven, Pine, & Rowland, 2001), Hungarian 
(Miki, Réger corpus; Réger, 1986; Babarczy, 2006), Mandarin Chinese (Beijing 
corpus; Tardif, 1993, 1996), and Spanish (Koki, Montes corpus; Montes, 1987, 
1992). Additionally, we segment two chapters from Gulliver’s Travels by Jonathan 
Swift in order to possibly detect text size effects. The length range of  texts is 
1,743–10,574 syllables, 5,499–43,433 characters.

After a short description of  the algorithm in Section 2, we present our results 
in Section 3. This will be followed by a discussion and some conclusions in 
Sections 4 and 5, respectively.

2.  Description of  the algorithm
Our algorithm is basically identical with that of  Drienkó (2016, 2017a) 
except that there was an additional MERGE component included in that 
work. The basic, CHUNKER, module of  the algorithm looks for subsequent 
largest syllable sequences that occur more than once in the text. Starting 
from the first syllable, it concatenates the subsequent syllables, and if  a 
resultant string si occurs in the text only once, a boundary is inserted before 
its last syllable since the previous string, si–1, is the largest re-occurring one 
of  the i strings. Thus the first boundary corresponds to si–1, our first tentative 
speech fragment. The search for the next fragment continues from the position 
after the last character of  si–1, and so on.

The EVALUATE module computes four precision metrics: Inference 
Precision, Alignment Precision, Redundancy, and Boundary Variability. 
Inference Precision (IP) represents the proportion of  correctly inferred 
boundaries (cib) to all inferred boundaries (aib), i.e., IP = cib / aib. The maximum 
value of IP is 1, even if more boundaries are inferred than all the correct (original) 
boundaries (acb). Redundancy (R) is computed as the proportion of  all the 
inferred boundaries to all the correct (original) boundaries, i.e., R = aib / acb.  
R is 1 if  as many boundaries are inferred as there are boundaries in the 
original text, i.e., aib = acb; R is less than 1 if  fewer boundaries are inferred 
than acb; and R is greater than 1 if  more boundaries are inferred than optimal. 
Alignment Precision (AP) is specified as the proportion of  correctly inferred 
boundaries to all the original boundaries, i.e., AP = cib / acb. Naturally, the 
maximum value for AP is 1. Boundary Variability (BV) designates the average 
distance (in characters) of  an inferred boundary from the nearest correct 
boundary, i.e., BV = (Σdfi) / aib. The above measures are not totally 
independent, since Inference Precision × Redundancy = Alignment Precision, 
but emphasise different aspects of  the segmentation mechanism. Obviously, 
IP = AP for R = 1. The Largest-Chunk (LCh) segmentation algorithm is 
outlined in Table 1.
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For some immediate insight, (1) illustrates how the arrangement of  the 
individual elements in a sequence affect largest-chunk segmentation. Spaces 
correspond to inferred boundaries. Letters a, b, c, d, e, and f can also be seen 
as symbolising syllables. 
	(1)	� a)  �  abcabc → abc abc
	 b)  �  abcab → ab c ab
	 c)  �  abc → a b c
	 d)  �  abccba → a b c c b a
	 e)  �  abcdefefcdab → ab cd ef  ef  cd ab
	 f)  �  abcdefabcdef  → abcdef  abcdef 

In (1b), for instance, the algorithm starts from the first a element, detects 
that a occurs twice in the sequence abcab, so takes the next element, b, detects 
that the corresponding segment, ab, occurs twice, proceeds to consider 
segment abc, detects that it occurs only once and infers a boundary after ab, 
the first largest ‘chunk’. Segmentation then continues from element c. Since c 
has only a single occurrence, a boundary should be inferred before it. 
However, this boundary has already been detected, so nothing happens and 

table  1. The Largest-Chunk Segmentation Algorithm

1. CHUNKER
        input: segmented text T, unsegmented sequence UST of  linguistic symbols  

      (characters) of  text T

        For each syllable position p in UST
              {fragment_candidate=””
                      while the occurrence of  fragment_candidate in UST is > 1
                      {fragment_candidate = fragment_candidate + syllable_at_p}
              fragment_candidate → FRAGMENTS
              p → ALL INFERRED BOUNDARIES: p=p+1 }

2. EVALUATE
        For all words w in T
        {boundary_position of  w →ALL CORRECT BOUNDARIES
        }
        acb= the number of  all correct boundaries

        For all boundaries in ALL INFERRED BOUNDARIES and ALL CORRECT  
      BOUNDARIES

        {
        compute the number of  correctly inferred boundaries: cib
        compute boundary_variability, i.e. the average distance (in characters) of  an
        inferred boundary from the nearest correct boundary: bv =Σdfi/aib
        }

        Compute:
              Inference Precision: cib / aib
              Redundancy: aib / acb
              Alignment Precision: cib / acb
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segmentation continues from the next position, a. Again, dual occurrence of  
a is detected, so segment ab is considered. As ab occurs twice, the algorithm 
should step to the next element. However, since b is the last element of  the 
sequence, a boundary is inferred after it. Note that the inference of  the last 
boundary is actually independent of  the number of  occurrences of  the last 
segment. When an element occurs only once, a boundary is inserted before it 
and processing continues from the position immediately after it. As a result, 
any single-occurrence element is treated as a potential meaningful unit. 
An extreme example is given in (1c), where each element occurs only once. 
Recall that the LCh algorithm looks for largest re -o c curring  sequences, 
so single-occurrence units constitute a specific case. Arguably, regarding a 
single-occurrence sequence as a succession of  its single-occurrence elements, 
rather than as a chunk itself, has the practical advantage of  not missing any 
true boundary, and, perhaps more theoretically, it reflects our assumption 
that the ‘atomic’ segmentation elements are somehow – explicitly or implicitly – 
known to the segmenter.

Examples (1d–e) demonstrate a special case where symmetrical 
arrangement can effect ‘minimal largest chunking’. Each element in (1d) 
occurs twice, but there is no re-occurring combination of  at least two 
elements, so a boundary is inferred at each position. This property of  largest 
chunking can result in optimal segmentation for coupled elements. Suppose 
we have the ‘words’ ab, cd, and ef. If  the input sequence is such that it contains 
each word twice, and the arrangement of  letters/syllables is symmetrical, as 
in (1e) – a kind of  ‘central embedding’ – a boundary will be inferred precisely 
after each word. In contrast, the largest chunks of  (1f) conflate the three 
words.

To see how precision values are calculated, consider two mini-sets of  
utterances, {baby is, baby it} and {what about, what a boot}. We provide a 
character-based analysis here, as summarised in Table 2, which will be 
contrasted with the syllable-based case in Section 4.

The baby is baby it text contains four word boundaries, thus acb = 4. The 
Largest-Chunk algorithm infers four boundaries corresponding to segments 
babyi, s, babyi, and t, which entails that aib = 4. Two of  the four inferred 
boundaries are correct, cib = 2, resulting in Inference Precision IP = cib / 
aib = 2 / 4 = 0.5 and Alignment Precision AP = cib / acb = 2 / 4 = 0.5. Since 
the number of  the inferred boundaries equals the number of  the original 
boundaries, aib = acb, Redundancy is 1. The second and the fourth 
boundaries are correct, so their distance from the respective correct 
boundaries is zero, i.e., df2 = df4 = 0. If  we shift the first inferred boundary 
one character to the left, we reach the first correct boundary, following baby. 
If  we shift the first boundary one character to the right, we reach the second 
correct boundary, following is. Clearly, then, df1 = 1. Similarly, df3 = 1 as 
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well, since by shifting the third inferred boundary one character either to 
the left or to the right, we reach the third or the fourth correct boundary, 
respectively. We compute Boundary Variability as BV = (df1 + df2 + df3 + 
df4) / aib = (1 + 0 + 1 + 0) / 4 = 0.5. Note that, when the distance of  an 
inferred boundary is different for the left-side correct boundary and the 
right-side correct boundary, the shorter distance is chosen for df. Thus, for 
example, df1 = 2 for the what about what a boot text because the first inferred 
boundary, corresponding to whatabo is three characters away from the first 
correct left-side boundary, which follows what, and two characters away 
from the first correct right-side boundary, following about, so the right-side 
distance is chosen.

3.  The experiments
In our experiments we used data from the CHILDES database 
(MacWhinney, 2000). All files were converted to simple text format, 
annotations were removed together with punctuation symbols and spaces. 
Hyphens were inserted after each syllable, so syllable, word, and utterance 
boundaries were indicated by hyphens. The segmentation problem 
consisted in differentiating word or utterance boundaries from word-
medial syllable boundaries. Mother and child utterances were not separated, 
so the dataset for each language constituted an unsegmented (written) 
stream of  ‘mother–child language’ represented as a single sequence of  
characters. The length range of  the CHILDES texts was 1,743–9,021 
syllables, 5,499–40,864 characters. Segmentation into syllables was  
done with the help of  the Lyric Hyphenator (Juicio Brennan <http://
juiciobrennan.com/hyphenator/>) for English, manually by the author for 

table  2. Calculating precision values (characters)

  baby is baby it   –   4 boundaries, acb = 4
      babyisbabyit →babyi s babyi t
          2 correct of  4 inferred boundaries: cib=2, aib=4,
              IP=cib/aib=2/4=0.5
          2 correctly identified boundaries: AP = cib /acb =2/4=0.5
              R=aib/acb=4/4=1
              BV=(1+0+1+0)/4=0.5

  what about what a boot   –   5 boundaries, acb = 5
      whataboutwhataboot → whatabo u t whatabo o t
          2 correct of  6 inferred boundaries: cib=2, aib=6,
              IP= cib/aib=2/6= 0.33
          2 correctly identified boundaries: AP= cib /acb =2/5=0.4
              R=aib/acb =6/5=1.2 (>1)
              BV=(2+1+0 +2+1+0)/6=1
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Hungarian, and the Spanish syllables were produced by the MARELLO.
ORG syllabifier (<https://marello.org/tools/syllabifier/>). In the case of  
Chinese, syllable boundaries were understood as indicated by tone-
marking numbers (1 to 4) and spaces in the pinyin transcript, so boundaries 
were inserted accordingly.

3 .1 .  exper iment  1  –  Engl ish

In this experiment the first Anne file, anne01a.xml, of  the Manchester 
corpus (Theakston et al., 2001) was analysed. The original text consisted  
of  374 utterances, 1,826 word tokens (acb), and 2,100 syllables. The 
unsegmented version of  the text consisted of  8,899 characters. The 
segmentation algorithm inserted 1,133 boundaries (aib), of  which 1,072 
were correct (cib), thus Inference Precision = cib / aib = 0.946. The other 
precision values were as follows: Redundancy = 0.62, Alignment Precision = 
0.59, Boundary Variability = 0.19. Table 3 contrasts the precision values 
with those obtained in Drienkó (2017a), where the character was regarded 
as the primary segmentation unit. The data reveal that both Inference 
Precision and Alignment Precision are considerably higher for syllables, 
along with almost identical Redundancy values. The IP value approaching 
1 (i.e., cib ≈ aib) entails that Redundancy (R = aib / acb) and Alignment 
Precision (AP = cib / acb) converge (0.62 vs. 0.59). The reduction of  the 
Boundary Variability value indicates that the inferred boundaries are even 
closer to the correct ones in the case of  syllables: on average, for an inferred 
boundary a correct boundary can be found within the distance of  about 
0.19 characters.

3 .2 .  exper iment  2  –  Hungarian

The Hungarian data used in this experiment correspond with the miki01.xml 
file of  the Réger corpus (Réger, 1986; Babarczy, 2006). The original text 
consisted of  589 utterances, 1,541 word tokens (acb), and 2,527 syllables. 
The unsegmented version of  the text consisted of  9,358 characters. The 
segmentation algorithm inserted 1,324 boundaries (aib), of  which 1,020 were 
correct (cib). The precision values were as follows: Inference Precision = cib / 
aib = 0.77, Redundancy = 0.86, Alignment Precision = 0.66, Boundary 
Variability = 0.87. Table 4 contrasts the precision values with those obtained 
in Drienkó (2017a), where the character was regarded as the primary 
segmentation unit. The data reveal that both Inference Precision and 
Alignment Precision are higher for syllables, along with almost identical 
Redundancy values. Boundary Variability is slightly higher for syllables, 
although both values remain below 1.
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3.3 .  exper iment  3  –  Mandarin  Chinese

In this experiment we segmented Mandarin Chinese text included as bb1.xml 
in the Beijing corpus (Tardif, 1993, 1996). The file contains the pinyin 
transcription of  the utterances. The original text consisted of  2,118 utterances, 
7,064 word tokens (acb), and 9,021 syllables. The unsegmented version of  
the text consisted of  40,864 characters. The segmentation algorithm inserted 
4,636 boundaries (aib), of  which 4,271 were correct (cib). The precision 
values were the following: Inference Precision = 0.92, Redundancy = 0.66, 
Alignment Precision = 0.60, Boundary Variability = 0.34. Table 5 contrasts 
the precision values with the character-based results. It can be seen that both 
Inference Precision and Alignment Precision are higher for syllables, whereas 
Redundancy values are nearly the same. Boundary Variability is reduced by 
almost 50% for syllables.

3 .4 .  exper iment  4  –  Spanish

The Spanish data for this segmentation experiment came from the Koki 
material contained in the 01jul80.cha file of  the Montes corpus (Montes, 
1987, 1992). The original text consisted of  398 utterances, 957 word 
tokens (acb), and 1,743 syllables. The unsegmented version of  the text 
consisted of  5,499 characters. The segmentation algorithm inserted 641 
boundaries (aib), of  which 521 were correct (cib). The precision values were 
the following: Inference Precision = 0.81, Redundancy = 0.67, Alignment 
Precision = 0.54, Boundary Variability = 0.54. Table 6 contrasts the 
precision values with the character-based results. It can be seen that both 
Inference Precision and Alignment Precision are higher for syllables, 
whereas Redundancy values are nearly the same. Boundary Variability is 
slightly higher for syllables.

table  4. Precision values for Experiment 2 (Miki)

IP R AP BV

Characters 0.53 0.82 0.44 0.85
Syllables 0.77 0.86 0.66 0.87

table  3. Precision values for Experiment 1 (Anne)

IP R AP BV

Characters 0.66 0.62 0.41 0.53
Syllables 0.95 0.62 0.59 0.19

https://doi.org/10.1017/langcog.2018.5 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2018.5


lar gest-chunk  strategy  for  syllables

399

3.5 .  exper iment  5  –  Gull iver

Switching from letters to syllables naturally reduces the number of  linguistic 
units. For instance, the 8,899 characters of  the English text in Experiment 1 
represented 2,100 syllables. To have some insight on how the change in the 
number of  processing units might affect segmentation precision in the case of  
the same language, we analysed an English text whose number of  syllables 
is comparable to the number of  characters in the Anne text of  Experiment 1. 
We chose Chapters 1 and 2 from Gulliver’s Travels by Jonathan Swift. The 
two chapters were merged into a single text containing 7,765 word tokens, 
238 utterances, and 10,574 syllables.2 The unsegmented version of  the 
text consisted of  43,433 characters. The segmentation algorithm inserted 
6,078 boundaries (aib), of  which 5,125 were correct (cib). The precision values 
were the following: Inference Precision = 0.84, Redundancy = 0.78, Alignment 
Precision = 0.66, Boundary Variability = 0.62. Table 7 contrasts the precision 
values with the character-based results. It can be seen that both Inference 
Precision and Alignment Precision are higher for syllables, whereas Redundancy 
values are nearly the same. Boundary Variability is lower for syllables. The 
quantitative results from all the experiments are summarised in Figure 1.

4.  Discussion
Our segmentation experiments allow the following observations: 
	1.	� Inference Precision is higher for syllables.
	2.	� Redundancy is almost the same.
	3.	� Alignment Precision is also higher for syllables.

table  6. Precision values for Experiment 4 (Koki)

IP R AP BV

Characters 0.64 0.65 0.42 0.51
Syllables 0.81 0.67 0.54 0.54

table  5. Precision values for Experiment 3 (Beijing)

IP R AP BV

Characters 0.6 0.62 0.37 0.65
Syllables 0.92 0.66 0.60 0.34

[2] � The text contained 31 ‘Lilliputian’ word tokens, which were not hyphenated.
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	4.	� When measured in characters, Boundary Variability can be both higher and 
lower for syllables – on average, it is lower – but the values stay below 1. 

Let us consider these observations in more detail below. 
	1.	� The Inference Precision values are remarkably higher for syllables. 

The 53%–66% IP value range, averaging 59%, for characters rose to 
77%–95%, averaging 86%, in the case of  syllables (cf. Table 8).

	2.	� Redundancy is almost the same for characters and for syllables – 
although slightly higher for syllables (cf. Table 9). The average R value is 
3% higher in the case of  syllables. This means that switching to syllables 
as basic segmentation units does not notably change the proportion of  
inferred boundaries. It is perhaps worth noting that the R values stay 
below 1, i.e., fewer boundaries are inserted than would be required by the 
original segmentation, by the number of  words in the original texts.

	3.	� Alignment Precision is higher for syllables (cf. Table 10). The 41% 
average of  AP values for letters became 61% in the case of  syllables. 

Fig. 1. Precision values for all the texts used in the segmentation experiments. (IP: Inference 
Precision; R: Redundancy; AP: Alignment Precision; BV: Boundary Variability)

table  7. Precision values for Experiment 5 (Gulliver)

IP R AP BV

Characters 0.53 0.75 0.4 0.8
Syllables 0.84 0.78 0.66 0.62
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This is the consequence of  the relation AP = IP × R and the fact that 
R is about the same for characters and syllables. If  IP is greater for 
syllables, then multiplying by about the same R entails that AP will be 
greater as well. In other words, if  a larger proportion of  the inferred 
word boundaries is correct for syllables than for letters, then a larger 
proportion of  the original boundaries will be detected correctly for 
syllables if  the same percentage of  boundaries is inserted as for letters.

	4.	� The Boundary Variability values do not show a consistent pattern. 
They can be both higher and lower for syllables – on average, they are 
16% lower (cf. Table 11). However, the values stay below 1, which 
means that for any inferred boundary a correct boundary can be found 
within the average distance of  less than one character, i.e., a correct 
boundary can be reached by shifting the boundary less than one 
character, on average, to the left or to the right. 

Note that we measured Boundary Variability in characters, not in syllables. 
We believe that this gives a more precise picture of  the segmentation process 
since syllables can vary in length, and they are composed of  letters/phonemes 
anyway. However, Table 12 displays BV values measured in syllables as well 
(cf. the BV(syllables)s row). The data show that BV is much lower when 
measured in syllables: a correct boundary can be reached by shifting the 
incorrect boundary 0.148 syllables, on average, to the left or to the right. 

table  8. IP values across texts

Anne Miki Beijing Koki Gulliver Average

IP (Characters) 0.66 0.53 0.6 0.64 0.53 0.59
IP (Syllables) 0.95 0.77 0.92 0.81 0.84 0.86

table  9. R values across texts

Anne Miki Beijing Koki Gulliver Average

R (Characters) 0.62 0.82 0.62 0.65 0.75 0.69
R (Syllables) 0.62 0.86 0.66 0.67 0.78 0.72

table  10. AP values across texts

Anne Miki Beijing Koki Gulliver Average

AP (Characters) 0.41 0.44 0.37 0.42 0.4 0.41
AP (Syllables) 0.59 0.66 0.60 0.54 0.66 0.61
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Table 12 also illustrates that a rough estimate for Boundary Variability in 
terms of  syllables can be calculated by dividing the BV value measured in 
characters (first row of  Table 12) by the average syllable length for the given 
text (third row). See ‘Appendix’ for an explanation.

To illustrate the basic information gain effected by the transition to 
syllables from characters, consider the examples of  Table 2 (repeated here as 
Table 13).

The Largest Chunk segmentation algorithm possibly inserts boundaries 
syllable-medially as, e.g., babyi exemplifies. Such errors are naturally ruled out 
in syllable-based segmentation: no boundary can be inserted into the smallest 
unit. As a consequence, we see an increase in precision values. In the case of  the 
ba-by-is-ba-by-it text, for example, all boundaries are correct, which amounts 
to 100% Inference Precision, all the other values being optimal (cf. Table 14).

On the other hand, the syllable-based LCh algorithm still may undesirably 
infer word-medial syllable boundaries. For instance, the first inferred boundary, 
after what-a- in the what-a-bout-what-a-boot- text is incorrect since it divides 
a-bout- into two. Such errors reduce the effectiveness of  segmentation. This 
is demonstrated by the what-a-bout-what-a-boot- example where Inference 
Precision cannot reach 100%, i.e., IP = 0.75. Nevertheless, the 0.75 value 
constitutes a considerable increase from 0.33 in the character-based case. 
Tables 15 and 16 illustrate that the change in precision metrics due to switching 
from characters to syllables is fairly similar for our current examples and for our 
experiments. Besides the IP values there is an increase in Alignment Precision. 
The BV values become lower for syllables whether measured in characters or in 
syllables (values in brackets). Recall that in the experiments BV values became 

table  12. Details for measuring BV in syllables

Anne Miki Beijing Koki Gulliver Average

BV (syllables) 0.19 0.87 0.34 0.54 0.62 0.51
BV(syllables)s 0.054 0.248 0.079 0.192 0.169 0.148
Average syllable length* 4.2 3.7 4.5 3.15 4.1 3.93
BV(syllables)s (estimated) 0.045 0.23 0.076 0.17 0.15 0.134

[*] Recall that syllable ends are marked by hyphens in the texts to be segmented, so in reality each 
syllable is 1 character shorter than in our texts. Naturally, this is also true for the averages in the 
table.

table  11. BV values across texts

Anne Miki Beijing Koki Gulliver Average

BV (Characters) 0.53 0.85 0.65 0.51 0.8 0.67
BV (Syllables) 0.19 0.87 0.34 0.54 0.62 0.51
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unambiguously lower only when they were measured in syllables. Redundancy 
values are the same for the {baby is baby it} text but for the {what about what 
a boot} text they show a decrease, contrary to the experimental results. This may 
underline, on the one hand, that our toy examples are not capable of  capturing 
all aspects of  the segmentation mechanism, and/or, on the other hand, that 
Redundancy is somehow more independent of  the sort of  information gain 
which our examples were designed to visualise.

5.  Conclusions
The present study examined how various precision metrics are affected by a 
transition from characters to syllables in applying the Largest-chunk method 
to text segmentation. The data show an increase in Inference Precision,  

table  13. Calculating precision values (characters)

  baby is baby it   –   4 boundaries, acb = 4
      babyisbabyit →babyi s babyi t
          2 correct of  4 inferred boundaries: cib=2, aib=4,
              IP=cib/aib=2/4=0.5
          2 correctly identified boundaries: AP = cib /acb =2/4=0.5
              R=aib/acb=4/4=1
              BV=(1+0+1+0)/4=0.5

  what about what a boot   –   5 boundaries, acb = 5
      whataboutwhataboot → whatabo u t whatabo o t
          2 correct of  6 inferred boundaries: cib=2, aib=6,
              IP= cib/aib=2/6= 0.33
          2 correctly identified boundaries: AP= cib /acb =2/5=0.4
              R=aib/acb =6/5=1.2 (>1)
              BV=(2+1+0 +2+1+0)/6=1

table  14. Calculating precision values (syllables)

  baby is baby it   –   4 boundaries, acb = 4
      ba-by-is-ba-by-it- → ba-by-   is-   ba-by-   it-
          4 correct of  4 inferred boundaries: cib=4, aib=4,
              IP=cib/aib=1
          4 correctly identified boundaries: AP = cib /acb=1
              R=aib/acb=4/4=1
              BV=(0+0+0+0)/4=0

  what about what a boot   –   5 boundaries, acb = 5
      what-a-bout-what-a-boot- → what-a-   bout-   what-a-   boot-
          3 correct of  4 inferred boundaries: cib=3, aib=4,
              IP=cib/aib =0.75
          3 correctly identified boundaries: AP = cib /acb=3/5=0.6
              R=aib/acb=4/5=0.8
              BV(ch)=(2+0+0+0)/4=0.5 (‘a-’ two characters→df1=2)
              BV’(Sy)=(1+0+0+0)/4=0.25 (‘a-’ one syllable → df1=1)
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as well as in Alignment Precision. Redundancy is almost the same, while 
a reduction in Boundary Variability can be observed, which is more 
unambiguously pronounced when measured in syllables. Nevertheless, 
BV remains below 1 even when measured in characters. Overall, our 
quantitative results seem to underline the role of  the syllable, as opposed 
to the letter or speech sound, in text segmentation using the Largest-chunk 
strategy. Conversely, our results indicate that the strategy might serve as 
an insightful component for a model of  speech segmentation.

We did not attempt to explain the differences in precision values for the 
different texts. That would be an exciting topic for further research. Clearly, 
on the one hand, segmentation must be affected by typological differences 
between languages, but, on the other hand, idiosyncratic parameters of  a 
given text, such as length, genre, register, speaker, etc., may also play a role. 
Research on infant word segmentation suggests that extraction of  target 
words is facilitated when they are aligned with utterance boundaries (Seidl & 
Johnson, 2006; Johnson, Seidl, & Tyler, 2014). Such findings would make 
it reasonable to investigate how LCh segmentation would be affected by 
information on utterance boundaries.
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Appendix
We show that for text T, consisting of  L characters, k syllables, Boundary 
Variability in terms of  syllables can be estimated by dividing the BV value 
measured in characters by the average syllable length for the given text. 
Recall we calculate BV as in (A1), where n = aib (all inferred boundaries) and 
dfi denotes the distance of  the i-th inferred boundary from the nearest correct 
boundary.

∑
1

BV
1

=
=

n

ii
df

n
� (A1)

We write Δf for the sum, as in (A2).

∑
1

V
1

B
1

=
= = ∆n

i i
df f

n n
� (A2)

Suppose Δf contains kΔ syllables with average syllable length s, i.e., (A3) holds.

k ,∆
∆

= × =
∆∆ f

f s s
k

� (A3)

Assume that the distribution of syllable length in sum Δf is the same as for the 
whole text T, entailing the equality of  average syllable length for Δf with the 
average syllable length for the whole text, as expressed in (A4).

= =
∆

∆ f L
s

k k
� (A4)

Writing (A4) for s in (A3) we get (A5), and writing (A5) for Δf in (A2) we 
get (A6).
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We can approximate BV in syllables if  we change the ‘length scale’ by 

choosing average syllable length =
L

s
k

 as unit length, i.e., by dividing (A6) by s. 

Thus Equation (A7) can be used for approximating BV’, Boundary Variability 
measured in syllables, when BV is known.

1
BV' = =∆

BV
k

n s
� (A7)
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