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Asymptotic behavior of nonoscillatory
solutions of second order functional

differential equations
Takasi Kusano and Hiroshi Onose

The asymptotic behavior of nonoscillatory solutions of the second

order functional differential equation
(*) (e(t)y" ()" + ale)Fly(g(e))) = b(¥)

is studied. PFirst, in the case when a(t) is oscillatory,
sufficient conditions are given in order that all bounded non-
oscillatory solutions of (*) approach zero as ¢ =+ ® . Secondly,
in the case when a(t) 1is nonnegative, conditions are provided

under which all nonoscillatory solutions of (¥*) tend to zero as

t > o,

1. Introduction
We consider the differential equation
(1) (r(e)y'(£)) ' + a(t) Fly(g(®))) = b(E) ,

vhere a(t), b(t), g(t), r(t) are continuous on [t, ®) , and f(y) is
continuous on (-», ®) . The following conditions are assumed to hold

throughout the paper:
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(a) 1im g(t) = « ;

£

. © s
(2) () »(t) >0 and ii: R(t) = » | where R(t) = fT (5] 5

(¢) yfly) >0 for y #0 , lim inf f(y) > 0 and
y—)(lo
1im sup f(y) <0 .
y—)_oo

We restrict our consideration to those solutions of (1) which exist on some
half-line [T, ) , where T may depend on the particular solution, and
are nontrivial in any neighborhood of infinity. Such a solution is said to
be nonoscillatory if it is eventually positive or eventually negative.

Otherwise the solution is said to be oscillatory.

The problem is to provide sufficient conditions which ensure that all
(bounded) nonoscillatory solutions of (1) tend to zero as ¢t + » . Since
the work of Hammett [Z] this problem has received a considerable amount of
attention and a number of results have been obtained; see, for example,
Grimmer [1], Londen [3], Singh [4], [5], and Singh and Dahiya [6]. The
purpose of this paper is to add new results to this problem. First, we
consider the case where a(t) is oscillatory and give conditions under
which all bounded nonoscillatory solutions of (1) tend to zero as ¢ - » .
Secondly, we examine the case where a(t) 1is nonnegative and provide
sufficient conditions in order that all nonoscillatory solutions of (1)

approach zero as ¢ =+ « .

2. The case where a(t) 1is oscillatory

We need the following lemma which is a generalization of a lemma of

Staikos and Sficas [7].
LEMMA. Consider the differential equation

v _ p'(¢t)
p(t)

wr &8 o) =0,

(3) u o(t)

where ¢(t) s continuous on [T, ») , p(t) <s continuously
differentiable on [T, «) , and

p(t) >0, p'(¢) >0, 1limp(t) = o,
t—)co
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Let u(t) be the solution of (3) on [T, ») satisfying u(T) =0 .

If 1lim l¢(t)| = ¢* exists in the extended real line R# , then

£t

lim |u(e)| = u* exists in R# . In particular, ¢* =~ <implies u* = o ,
Proof. The solution wu(t) is given explicitly by the formula

t
u(e) = -o(2) | P%dﬂs)ds , t=7 .
T p (s

#

The existence of ¢* in R implies that the improper integral

t
lim f 02(3) d(s)ds = &%
tso T p(s)

exists in B . If % # 0 , then clearly 1iim |u(¢)| =« . If &* =0 ,

el

then by 1'Hospital's Rule,
lim |u(t)| = 1im ‘[- Jt gﬂq;(s)ds)' / [..l__]" = ¢* .
oo £o0 T 0%(s) o()

In what follows we use the notation a+(t) = max{a(t), 0} ,
a (t) = max{-a(t), o} .

THEOREM 1. Every bounded nonoscillatory solution of (1) tends to

zero as t > o if the following assumptions are satisfied:

e o)

(1) | oo = =,
{s o]

(5) J R(tla (t)dt < o,
00

(6) J R [b(£)|dt < w .

Proof. Let y(¢) be a bounded nonoscillatory solution of (1).
Suppose that y(z) > 0 for ¢ = t, - The case y(¢t) < 0 can be handled
similarly. By (2) (a) there exists tl > to such that g(¢) = to for
t 2t . Thus, y(g(£)) >0 for t=¢ . Matiplying (1) by R(t) and
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integrating from 1:1 to ¢ , we obtain

t t
(1) [ R(s)(r<s)y'<s>)'ds+[ R(s)a*(s) 7y (g(s)))ds

£ t
£ t
= I R(s)b(s)ds + J R(s)a (s)f(y(g(s)))ds .
tl 1‘;l

An integration by parts yields

t t
|7 rte) oy (1) a0 = meinedy () - Ble)e(s)y' () - | w'(odas .
12} tl
t
By a mere reinterpretation this says that the function wu(%) = f y'(s)ds
t
1
satisfies the differential equation
y R'(2) R'(%) -
(8) u - R(%) u+ R(E) ®(t) =0,
where
t
(9) o(t) = - j R(s) (r(s)y' () 'ds - R(z))r()y"(£,) -
t
1

Since u(tl) = 0 and since R(t) >0, R'(¢t) >0, 1lim R(t) = >~ by

el

(2) (b), we can apply the above lemma to (8) to conclude that 1lim |[u(¢)]

#+0
exists in R# whenever lim |<I>(t)| exists in R# .
oo

We examine the following two possible cases:

(10) r R(t)a (£)f(y(g(2)))dt = = ,
t
1

(11) r R(¢)d (&) fly(g(e)))dt < = .
t
1

Suppose (10) holds. Since the right-hand side of (7) remains bounded as
t > ® on account of (5), (6), and the boundedness of y(t) , it follows
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from (7) and (10) that

t
(12) lim J R(s)(r(s)y'(s))'ds = == ,

[Ziaed tl

which implies that the function ®&(¢) defined by (9) tends to « as

t + © ., Hence, by the lemma, 1im |u(£)| = ® , and consequently

#r00
lim y{(¢t) = o . This, however, contradicts the boundedness of y(¢) and
e

thus (10) is impossible.

Now it follows from (7) and (11) that the limit on the left-hand side

of (12) exists as a finite number; that is, 1lim ®(z) is finite. Applying
t>o

the lemma again, we see that 1lim |u(#)| exists in R# . Obviously this
fPa]

limit must be finite. Therefore, y(t must tend to a finite limit as
2

)
t > ® ., On the other hand, using (2) (c¢), {(4) and (11), we have

lim inf y(g(¢)) = 1im inf y(¢) = 0 .

Lo oo

Consequently we conclude that 1lim y(Z) = 0 , completing the proof.

£o0

Retracing the above proof it is easy to see that the conclusion of
+ -
Theorem 1 still holds if the roles of a () and a (¢t) are interchanged.

Accordingly we have the following theorem.

THEOREM 2. Every bounded nonoscillatory solution of (1) tends to

zero as t » ® 1if the following conditions are satisfied:

J R(t)at(£)dt < »
j R(£)a(¢)dt = = ,

I R(£)|B(E)|dt < o

COROLLARY 1., Every bounded nonoscillatory solution of the equation
y"(t) + a(£)f(y(g(¢))) = b(¢)
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'

tends to zero as t + o 1if either

O

J ta' (£)dt = = , J ta (t)dt < =, fm t|b(t)|dt <, |

or
[m ta' (£)dt < » , Jm ta (t)dt = =, jm t|b(t)|dt < = .
EXAMPLES (1) Consider the differential equation
(13) Ty () + B 0ve) = 32T ¢y

for ¢t =1, where Y 1is a positive constant (possibly greater than 1 ).

Here f(y) = y3 ., glt) = vt ,

1 2 -4

r(t)=¢1, at(¢) =t , a(¢t) =0, and b(t) = 3t 375,

+ v
We can take R(t) = t2 and see that all conditions of Theorem 1 are
satisfied. Hence all bounded nonoscillatory solutions of (13) approach

zero as t >« ., In fact, y(t) = t-l is a bounded nonoscillatory

solution of (13).
(2) Consider the equation

(1k) (ty'(t))' - t—l(log t)_ly(log t) = (l-3t+t2)e_t - t'z

for ¢t = 1 , which has y(t) = te—t as a bounded nonoscillatory solution.
Here fly) =y , g(t) =logt, r(t)=t¢t,

at(t) =0, a(t) = tHrog )Y, ana b(¢) = (1-3t+t7)eC - 72 .

All the conditions of Theorem 2 are satisfied with R(t) =log ¢t . It

follows that all bounded nonoscillatory solutions of (14) tend to zero as

t > >,

3. The case where a(t) 1is nonnegative

In this section we examine the equation (1) in which a(%t) is non-
negative and provide conditions under which all nonoscillatory solutions

are necessarily bounded and tend to zero as ¢ > « .

THEOREM 3. Assume that a(t) = 0 and
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(15) ra(t)dt =,

(16) j R(£)|b(¢)|dt < = .

Then all nonoscillatory solutions of (1) tend to zero as t - < ,

Proof. Let y(t) be a nonoscillatory solution of (1) such that
y(g(¢)) >0 for = t, - A parallel argument holds if y(g(¢)) < 0o for

t > tl . From (1) we obtain

\ t t
(17)  r(B)y'(t) - P(tl]y'(tl) + J a(s)f(y(g(s)))ds = j b(s)ds ,
t
1 1

t t t
R(s)(r(s)y'(s))'ds + J R(s)a(s)fy{g(s)))ds = f R(s)b(s)ds .

1 2 1

(18) Jt

Suppose that

(19) J R(t)a(t)f(y(g(£)))dt = = .
t
1

Then, letting ¢ + » and using (16), we see that the first integral in
(18) tends to —» as ¢ > ® , so that 1im ¢(£) = ® , where ®&(¢) is

£

defined by (9). From the lemma applied to (8) it follows that

t
u(t) = J y'(s)ds tends to = as t > o . Consequently, we have
tl
lim y(¢t) = ® ., Combining this with (2) (c¢) and (15), we find
£
Lee]
(20) f a(#) Fly(g(£)))dt = o
t

1

Since (16) implies that the right-hand side of (17) is bounded, we have
from (17) and (20),

lim r(t)y' () = == ,
£
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from which we conclude with the use of (2) (b) that 1lim y(¢) = - . But

troo
this contradicts the fact that y(¢) is positive. Hence (19) is

impossible and we must have

(21) J R(t)a(t)fly(g(¢)))dt < = .
t
1

Letting ¢t » ® again in (18), we see that 1im ®(f) exists and is finite.
tr0

According to the lemma it follows that 1im u(#¢) exists in R# . This

£
1limit must be finite, since otherwise we would be led to a contradiction to
the positivity of y(t) as before. Therefore, there exists a finite limit

1lim y(¢t) . On the other hand, (21) implies

e

(22) J a(t)fly(g(t)))dt < = ,
t
1
and from (2) (e¢), (15), and (22) it is easily verified that

lim inf y(g(#)) = lim inf y(¢) = 0 .

[ 2ad [Z5ad

Thus it follows that 1im y(£) = O , and the proof is complete.
£

COROLLARY 2. A1l nonoscillatory solutions of the equation
y"(t) + a(e)f(y(g(2))) = b(¢)

approach zero as t >~ if a(t)z 0,

J a(t)dt = = and J t|b(t)|dt < = .
EXAMPLES (3). Consider the equation

(23) 2y )+ 308 = (e

for ¢ =1, where vy 1is a positive constant. This equation possesses a

nonoscillatory solution y(z) = t—l tending to zero as t >« . Since all
conditions of Theorem 3 are satisfied, all other nonoscillatory solutions

of (23) also approach zero as ¢ - « ,
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(k) Consider the equation

(2h) (ty'(£)) ' + t"l(log t)'ly(log t) = (1_3t+t2]e‘t + ¢t

for ¢ =1 . Clearly, this equation satisfies the assumptions of Theorem

3. Therefore, all of its nonoscillatory solutions tend to zero as ¢ > « .

In fact, y(t) = tet isa nonoscillatory solution of (24) having this

property.
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