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Asymptotic behavior of nonoscillatory

solutions of second order functional

differential equations

Takasi Kusano and Hiroshi Onose

The asymptotic behavior of nonoscillatory solutions of the second

order functional differential equation

(•) [r(t)y'(t)) ' + a(t)f[y[g(t))) = b{t)

is studied. Firs t , in the case when a{t) is oscillatory,

sufficient conditions are given in order that a l l bounded non-

oscillatory solutions of (*) approach zero as t -*• °> . Secondly,

in the case when a(t) is nonnegative, conditions are provided

under which al l nonoscillatory solutions of (*) tend to zero as

t -*• °° .

1. Introduction

We consider the differential equation

(1) [Ht)y'(t)) ' + a{t)f{y{g{t))) = b{t) ,

where a{t), b(t), g{t), r(t) are continuous on [T, °°) , and f(y) is

continuous on (-°°, °°) . The following conditions are assumed to hold

throughout the paper:
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(a) l i m g(t) = » ;

(2) (b) r ( t ) > 0 and l im fl(t) = °° , where Bit) =
rt

=

(°) yfiy) > ° f o r i/ * ° > l i m i n f /"(#) > ° a n d

y-xx>

lim sup f(y) < 0 .

We r e s t r i c t our consideration to those solutions of ( l ) which exist on some

hal f - l ine [T, °°) , where T may depend on the par t icular solution, and

are nontr ivia l in any neighborhood of in f in i ty . Such a solution is said to

be nonoscillatory i f i t i s eventually positive or eventually negative.

Otherwise the solution i s said to be osc i l la tory .

The problem i s to provide sufficient conditions which ensure that a l l

(bounded) nonosc i l l a t o r y solutions of (l) tend to zero as £-»•<». Since

the work of Hammett [2] t h i s problem has received a considerable amount of

a t ten t ion and a number of resul t s have been obtained; see, for example,

Grimmer [ / ] , Londen [ 3 ] , Singh [4 ] , [ 5 ] , and Singh and Dahiya [6 ] . The

purpose of t h i s paper i s to add new resu l t s to t h i s problem. F i r s t , we

consider the case where a{t) i s osc i l la tory and give conditions under

which a l l bounded nonosc i l la tory solutions of ( l ) tend to zero as £-*•«>.

Secondly, we examine the case where a{t) i s nonnegative and provide

sufficient conditions in order that a l l nonoscillatory solutions of ( l )

approach zero as t -*• <° .

2. The case where a(t) is oscillatory

We need the following lemma which is a generalization of a lemma of

Staikos and Sficas [7],

LEMMA. Consider the differential equation

(3)

where §(t) is continuous on [T, °°) , p(t) is continuously

differentiate on [T, °°) 3 and

Pit) > 0 , p r ( t ) > 0 , l im p{t) = » .
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Let u(t) be the solution of (3) on [T, °°) satisfying u(T) = 0 .

If lim |<i>(t)| = <f>* exists in the extended real line R' , then

lim |w( t ) | = u* exists in R . In particular, <}>* = «> implies u* = °° .

Proof. The solution u(t) is given explicitly by the formula

rt' ->M I ip"(s)

The existence of <$>* in R implies that the improper integral

rt ,, s
lim » <$>(s)ds = $*

e x i s t s in R . I f <£* + 0 , then c l e a r l y l im \u(t) \ = °° . I f $* = 0 ,

then by 1 ' H o s p i t a l ' s Rule,

I f f* p ' ( s ) V f 1 1 '
l i m w ( t ) = l i m - — <i>(s)ds\ I , . = <!>'* .
£-KX> £-wo II Jy P (s) -' \V\t))

In what f o l l o w s we u s e t h e n o t a t i o n a (t) = m a x { a ( t ) , 0} ,

a~{t) = m a x { - a ( t ) , 0} .

THEOREM 1. Every bounded nonosaillatory solution of ( l ) tends to

zero as t -*• °° if the following assumptions are satisfied:

(M f R(t)a+(t)dt = co ,

j R{t)a~(5) j R{t)a~{t)dt < co ,

(6) | R(t)\b(t)\dt < - .

Proof. Let y{t) be a bounded n o n o s c i l l a t o r y so lu t ion of ( l ) .

Suppose t h a t y(t) > 0 for t 2 t . . The case y(t) < 0 can be handled

s i m i l a r l y . By (2) (a) t h e r e e x i s t s t. > tQ such t h a t git) > t . for

t > t . Thus, ^ ( ^ ( t ) ) > 0 for t > t . Mul t ip ly ing ( l ) by R{t) and
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integrating from t to t , we obtain

rt rt
(7) R(s){Hs)y'(s))'ds + R(s)a+(s)f{y[g(s)))ds

rt ft
R(s)b(s)ds + R(s)a~(s)f[y{g(s)))ds

* *
+
*1

An integration by parts yields

t rt
R(s){r(s)y'(s))'ds = RUMt)y'{t) - R^rit^y1 {t±) - j

*X * 1

ft
By a mere reinterpretation this says that the function u{t) = y'{s)ds

J -h

satisfies the differential equation

where

ft
(9) *(t) = -

Since u{t^) = 0 and since R{t) > 0 , R'(t) > 0 , lim R(t) = <=° by

(2) (b), we can apply the above lemma to (8) to conclude that lim |u(i)|

exists in R whenever lim |<Ki) | exists in if

We examine the following two possible cases:

(10) j R(t)a+(t)f[y{g(t)))dt = » ,

(11) |°° R(.t)a+(t)f[y{g(t)))dt < - .

S u p p o s e ( 1 0 ) h o l d s . S i n c e t h e r i g h t - h a n d s i d e o f ( 7 ) r e m a i n s b o u n d e d a s

t •* °° o n a c c o u n t o f ( 5 ) > ( 6 ) , a n d t h e b o u n d e d n e s s o f y[t) , i t f o l l o w s
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from (7) and (10) tha t

ft
(12) lira R(s)[r{s)y>(s))'d8 = -*> ,

t-x» 't

which impl ies t h a t t h e funct ion $ ( t ) defined by (9) tends t o °° as

£ -*• °° . Hence, "by the lemma, l im |w(t) | = °° , and consequent ly

lim y(t) = °° . This, however, contradicts the boundedness of y(t) and
£-xx>

thus (10) i s impossible.

Now i t follows from (7) and ( l l ) that the l imit on the left-hand side

of (12) exists as a f in i te number; that i s , lim $(t) i s f i n i t e . Applying

u
t h e lemma aga in , we see t h a t l im | w ( i ) | e x i s t s in R . Obviously t h i s

l i m i t must be f i n i t e . Therefore , y{t) must tend t o a f i n i t e l i m i t as

£->•<». On t h e o ther hand, us ing (2) ( c ) , (1+) and ( l l ) , we have

l im in f y[g(t)) = l im in f y{t) = 0 .

Consequently we conclude that lim y(t) = 0 , completing the proof.

Retracing the above proof i t i s easy to see that the conclusion of

Theorem 1 s t i l l holds i f the roles of a ( i ) and a ( t ) are interchanged.

Accordingly we have the following theorem.

THEOREM 2. Every bounded nonoscillatory solution of ( l ) tends to

zero as t -*• °° if the following conditions are satisfied:

R{t)a+{t)dt < oo t

R(t)a~(t)dt =f
I R{t)\b{t)\dt

COROLLARY 1. Every bounded nonoscillatory solution of the equation

y"{t) + a(t)f{y[g(.t))) = b(t)
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i

tends to zero as t -*• °° if either

,<x> - co JX>

ta+{t)dt = °° , ta~{t)dt < °° , t\b(t)\dt < °° , .

or

{ ta+(t)dt < °° ̂  I ta~{t)dt = <=° , j t\b{t)\dt

EXAMPLES (1) Consider the different ial equation

(13) (*~V(*))' + t~2y3(yt) = 3*"^ + Y ~ V 5

for t 5: 1 , where Y i s a positive constant (possibly greater than 1 ) .

Here f{y) = y3 , g(t) = yt ,

r(t) = t~X , a+(t) = t~2 , a~{t) = 0 , and b(t) = 3t + Y~3t~5 •

We can take R{t) = t and see that a l l conditions of Theorem 1 are

sa t i s f ied . Hence a l l "bounded nonoscillatory solutions of (13) approach

zero as t -*• °° . In fact , y(t) = t i s a bounded nonoscillatory

solution of (13).

(2) Consider the equation

(HO {ty'(t)) ' - t 'Vog t r V l o g t) = (l-3t+*2)e~* - t~2

for t i l , which has y{t) = te as a bounded nonoscillatory solution.

Here f(y) = y , g{t) = log t , r(t) = t ,

a+(t) = 0 , a~(t) = t^dog t)'1 , and b{t) = [l-St+t^e'* - t~2 .

All the conditions of Theorem 2 are satisfied with R(t) = log t . It

follows that a l l bounded nonoscillatory solutions of (lit) tend to zero as

t -*• °° .

3. The case where a{t) is nonnegative

In t h i s section we examine the equation ( l ) in which a{t) i s non-

negative and provide conditions under which a l l nonoscillatory solutions

are necessarily bounded and tend to zero as t •+• °° .

THEOREM 3 . Assume that a{t) 5 0 and
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(15) j a(t)dt = oo ,

.00

(16) R{t)\Ht)\dt < oo .

Then all nonosoillatory solutions of ( l ) tend to zero as t -*• °° .

Proof. Let y(t) be a nonoscillatory solution of ( l ) such that

y[g(t)) > 0 for t > t. . A para l le l argument holds i f y[g(t)) < 0 for

t - t, . From ( l ) we obtain

(17) r(t)y'(t) -rtbjy'itj + j a{s)f{y[g(s)))ds = J b(.s)ds ,

tt rt it

(18) I R ( s ) { H s ) y ' ( s ) ) ' d s + I R ( s ) a ( s ) f { y { g ( s ) ) ) d s = j R ( s ) b ( s ) d s .

Suppose that

(19) f R{t)a{t)f{y{g{t)))dt = - .

Then, l e t t ing t -*• °o and using (l6) , we see that the f i r s t integral in

(18) tends to -°° as t •* °° , so that lim $(£) = °° , where $(t) i s

defined by (9) . From the lemma applied to (8) i t follows that

f*u(t) = y'(s)ds t e n d s t o °o a s t ^ oo . C o n s e q u e n t l y , we have

l i m y{t) = o0 . Combining t h i s w i t h (2) ( c ) and ( 1 5 ) , we f i n d

(20) | a(t)f{y[g(t)))dt = oo .

*1

Since (l6) implies that the right-hand side of (17) is bounded, we have

from (17) and (20),

l i m r(t)y' (t) = -c° ,
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from which we conclude wi th the use of (2) (b) t h a t l im y(t) = -«• . But
fr+eo

this contradicts the fact that y(t) is positive. Hence (19) is

impossible and we must have

(21) I R(t)a(t)f{y{g(t)))dt < °° .

Letting t •+ °° again in ( l8 ) , we see that lim $(i) exists and is f in i t e .
fc-w.

According to the lemma it follows that lim u{t) exists in R . This

limit must be finite, since otherwise we would be led to a contradiction to

the positivity of y(t) as before. Therefore, there exists a finite limit

lim y(t) . On the other hand, (21) implies

(22) I a(t)f{y{g(t)))dt < » ,

and from (2) (c), (15), and (22) it is easily verified that

lim inf y[g{t)) = lim inf y(t) = 0 .

Thus it follows that lim y(t) = 0 , and the proof is complete.

COROLLARY 2. All nonoscillatory solutions of the equation

y"(t) + a(t)f{y[g(t))) = b(t)

approach zero as t -*• °° if a(t) > 0 ,

a(t)dt = <» and j t\b(t) \dt < « .

EXAMPLES (3). Consider the equation

(23) ( * - V ( t ) ) ' + t"V(Y*) = (3+Y"3)^

for t j 1 , where y is a positive constant. This equation possesses a

nonoscillatory solution y(t) = t~ tending to zero as t -*• °° . Since all

conditions of Theorem 3 are satisfied, all other nonoscillatory solutions

of (23) also approach zero as t •*• °° .
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(k) Consider t h e equat ion

(21+) t) =

for t i l . Clearly, this equation satisfies the assumptions of Theorem

3. Therefore, all of i ts nonoscillatory solutions tend to zero as t •* °°

In fact, y(t) = te~ is a nonoscillatory solution of (2k) having this

property.
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