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ON EXPLICIT DECOMPOSITION FOR POSITIVE 
POLYNOMIALS ON [-1, +1] WITH APPLICATIONS 

TO EXTREMAL PROBLEMS 

R. PIERRE 

1. Introduction. The following well known inequality was first proved 
by Bernstein [2]. 

THEOREM A. Ifpn(x) is a polynomial of degree n, such that \pn(x)\ = 1 
for — 1 ^ x = + 1, then 

(1) \pf
n(x)\ ^ n(\ - x2yU2, - 1 < x < + 1 . 

The dominant n{\ — x 2 )~ 1 / 2 is best possible only at the zeros of the 
Tchebychev polynomial 

Tn(x) = cos(n arc cos x), 

but the bound is precise at every interior point as far as the exponent of n 
is concerned. 

Theorem A was extended to the case of higher derivatives by Duffin and 
Schaeffer in [4]. In that paper they make extensive use of the oscillation 
property of the polynomial Tn(x) and of the related function 

Sn(x) = sin(n arc cos x). 

The relationship between these two functions and the majorant q(x) = 1 
appearing in the hypothesis of Theorem A is best illustrated by the 
following equation 

(2) 1 = (T„(x) f + (Sn(x) )2 = (T„(x) )2 + (1 - x2)(Tn(x)/nf. 

That such a decomposition plays an important role in Theorem A was 
recognized by Bernstein himself (see [3] ). This observation lead him to the 
following generalisation of Theorem A. 

THEOREM B. If pn(x) is a polynomial of degree n, satisfying 

\pn(x)\ ^ [M\x) + (1 - x2)N\x)}vl for - 1 ^ x ^ + 1 

where M(x) and N(x) are real polynomials of degree I and I — \ respectively 
(I ^ n) such that M(x) > 0 and N(x) > 0 for x > 1 and their zeros in 
[—1, -hi] alternate, then, for x G (—1, +1) 
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1032 R. PIERRE 

(3) \p'n{x) | (1 - x2)]/2 ^ { [ (n - l)M{x) + xN(x) 

+ (x2 - 1)A^(*)]2 + (1 - x2)[(n - l)N(x) + M\x)]2y/2. 

In this paper, we would like to develop a method to obtain an explicit 
decomposition of the type (2) for a polynomial q(x) positive on [— 1, + 1]. 
This will enable us not only to reformulate Theorem B for a majorant of 
the form \^q(x) but also to obtain informations on max \p'n(x) | in var-

[ -U + 1] 
ious cases. 

2. An explicit decomposition for positive polynomials. Let q(x) be a 
polynomial of degree k such that q(x) > 0 for x e [—1, +1]. For every n 
satisfying 2n = k, there exist polynomials rn(x) and vn.-](x) of degree n 
and n — 1 respectively for which 

(4) q(x) = (rn(x))2 + (1 - x2)(vn-X{x)f. 

Moreover their zeros are all in [— 1, +1] and interlace. Results of that type 
have been obtained in various forms by Luckas (see [8] ), Karlin and 
Shapley [5] and others, but the proofs are not constructive. Our proof will 
give an explicit formula for rn(x) in a form which will closely relate it to 
Tn(x). 

Let us first suppose that q(x) is a perfect square, i.e., q(x) = (q\(x) )2 

where q\(x) is a polynomial of degree y = kl2 ^ n having all its roots in 
C \ [ - l , +1]. 

We begin with a heuristic remark. If the polynomials rn(x) and q\(x) are 
related by (4), there exist (n + 1) points — 1 = x0 < x\ < . . . < xn = + 1 
such that 

w - l 

(5) {qx(x)f - r2
n(x) = c I I (x - Xifil - x2) 

i=\ 

while 

n-\ 

(6) r'n(x)qi(x) ~ rn(x)q\(x) = YL (x - xt)r(x), 
i=\ 

where r(x) is of degree y if j < n and of degree at most (j — 1) if y = n. 
Using (5) and (6) putting^ = Tn/qh we obtain 

m ^ = MW l 

^ 1 - / q](x) (1 - x2)' 

Here hx(x) = r2(x)c~x. Obviously, if one was able to properly choose 
h\(x) in (7), one would obtain rn(x) through integration, namely 
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POSITIVE POLYNOMIALS 1033 

From now on, for every u e C\[— 1, +1], we will denote by (u2 — 1)1/2 

the determination of vu2 — 1 for which \u + vu2 — 1| > 1 and 

denote by ^fx the positive square root of a positive number. 
Consideration of equation (5) for large x and of equation (6) at a zero of 

q\(x) will lead to the following choice of h\(x), at least up to the sign of the 
second term (which will be justified later). 

2 „,(*?- !)•" _?!W_ (8) *,(*) = 2 , ms(z; - l)"'-i^- - (n -j)q,(x) 
s=\ X Zs 

where z b . . . , z/ are the zeros of q\{x) of multiplicity m\, . . . , m/ 
respectively. 

To proceed more formally, we need the following. 

LEMMA 1. If 

i 

qx{x) = I I (x - zs)
m> 

s=\ 

I 

is a polynomial of degree j = 2 ms, positive on [—1, +1], if h\(x) is 
s=\ 

defined by (8) and H\(x) is given by 

1 «i(o vr^7 
then, for x e (~~ 1, +1) 

/ 
(i) H\(x) = 2 ms8s(x) + (n ~ 7 ) a r c c o s x 

5 = 1 

w/zere 

, Us = Zs + (ZS -
|"<o, + 1 /l - x' 

8s(x) = 2 Arc tan M V T ^ — 
L co5 — 1 V 1 + xJ 

, Us = Zs + (ZS -- 1)1/2 

««J Arc tan(0) = 0. 

(ii) cosl 2 rns8s(x) I = - z — , 
S = i J q\(x) 

sinl Z rnsSs(x) 1 = — 2  ) 

where nj(x) and nij-\(x) are polynomials of degree j and j — 1 
respectively. 
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Proof, (i) From (8) and (9), one readily obtains 

H\(x) = 2 ^A( x ) + (n ~ 7)arc c o s x 

s=\ 

where 

(t) Ss(x) = (zj - 1) 1/2 
/ : 

dt 

(t - zs)W^J 

Under the changes of variables t = cos 0 and u = tg-, (f) is trans­

formed into 

2 _ n l / 2 I Vl+jc du 

0 (1 - zs) - (1 + z,)wz 

Introducing 

K^ + i)'k ^ + i 

> 1 and w9 = -, 
co. — 1 

we set 

1 
u = — v, 

which, considering that Re (ws) > 0 leads to 

Ô*W = ioV l +*TT7 
fcov + 1 /l — x 

= 2 Arc tan 
cos — 1 V 1 -+- x 

with the proposed determination of arc tan z. 
(ii) Let us first compute COS(§I(JC) ) and sin(8i(.x;) ). We get 

cos(Ô!(x) ) - 4m 
1 + t: 

Z\X — 1 

Z\ — X 

while 
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2t8vLr) (z\ - Di/2v/r^? 
sin(Ô!(x) ) = -.+*Vf) (z\ - x) 

Assertion (ii) now follows by induction on the number j of zeros of 
qx{x). 

We are now in position to state and prove the main result of this 
section. 

THEOREM 1. Let q\(x) be a polynomial positive on[—\, + 1]. Ifh\(x) and 
H\(x) are defined by (8) and (9) respectively, then the functions 

q\(x)sin(H(x) ) 
Tn(x) = q\(x)cos(H(x)) and vn-X(x) = — 

V\ - x 

are real polynomials of degree n and (n — 1) respectively satisfying the 
following properties: 

a) (q,{x)f = T2
n(x) + (1 - x2)vl_,(x), 

b) there exist (In + 1)points — 1 = XQ < y\ < x\ < y^ < • • • < yn
 < 

xn = + 1 such that 

{ T„(X5) = ( - I f s q\(xs), s = 0, . . . , w, 
vn-\(xs) = 0, s = 1, . . . , « - 1, 

V l - v,2 

ft. 

Proof It follows from Lemma 1 that 

rn(x) = nj(x)Tn-j{x) - (1 ~ ^ H - i ( ^ ) ( ^ - / ^ ) / ( « - 7 ) ) 

and that 

v«-i(x) = w y - K x ) ^ - ^ ) + A2 7 (X ) (^_ /X ) / (AZ - 7 ) ) 

which implies that rn(x) and vw_i(x) are polynomials. Now, since q\(x) is 
a real polynomial, its zeros are either real or conjugate. If z/ = ~zs we will 
have 

8i(x) = 8s(x); 

hence Hx(x) is real for x e [—1, -1-1] and so are TW(JC) and vn-\(x). 
Since T„(X) and v„_i(x) obviously verify a), it is enough to complete the 
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proof, to show that H\(x) is a strictly decreasing function on [— 1, +1], 
such that H\(—X) = nir and H\(\) = 0. Studying the sign of 

VI - xz H\(x) = —— = 2 . — : :— ~ (" ~ J) 
4\(x) s = \ (x - zs) 

we first observe that, for real zs, our choice of the determination of 
yz] — 1 implies that 

zs(z] - 1) ,/2 > 0 

and thus, that 

,1/2 

< 0 f o n e [-1, +1]. 
fe2 - D , / 2 

x zs 

On the other hand, if zs is a complex zero, so is ~zs\ setting 

= l{a + i) where co = re , r > 1, 
L\ CO / 

we get 

fe2 - D l / 2 , (z2 - l j 1 / 2 

(r - r_ 1)[(cos 0);c - 2~\r + r" 1 ) 

Ix - z\2 

which is strictly negative for x e [—1, + 1]. This implies that i/i(*) < 0 
on [— 1, +1], hence that H\(x) decreases on that segment. That H\(\) = 0 
is obvious, whereas the fact H\(— 1) = JÎTT follows directly from Lemma 1 
(i) since 

0y(—1) = 2 lim Arc tan — 
*->-r Leo 

+ 1 . /I 
oos — 1 V 1 + x 

To obtain the decomposition (4) in the case where q(x) is not a perfect 
square, it is enough to prove the following corollary. 

COROLLARY 1. Let 

i 

q(x) = cU(z - zs)
m< 

I 

be a polynomial of degree k = 2u ms positive on [— 1, + 1]. Let h(x) and 
5 = 1 

H(x) be defined by 
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POSITIVE P O L Y N O M I A L S 1037 

(10) h(x) = 2 ms(z) - 1)1/2 _ - (2n - Jt)ç(x) 
S=\ X ZS 

and 

fx hit) dt 
(11) H(x) = / - L 2 _ _ = . 

^* ?(o Vi - 1 2 

Then, for each n, such that, In = k, the functions 

(12) T„(X) = V ^ W cos(\H(x) ) 

(13) vA2_!(x) = V W ) — 
VI - *2 

are real polynomials of degree n and (n — 1) respectively all of whose zeros 
lie in [— 1, +1] a/7<i separate one another. 

Proof. Let 

'2H(*) = q(x)cos(H(x)); 

since //(— 1) = 2«77, the polynomial 2-1(/2«(-^) + #(*) ) n a s o n ly double 
zeros in (—1, +1). Theorem 1 implies that there are n such zeros hence 
this polynomial is a perfect square. This implies that there exists a 
polynomial rn(x) such that 

rn(x) = 2~\hn(x) + q(x)) = T„(X). 

If we choose rn(x) such that rn{—\) = rn(— 1), we will have 

/•„(*) = TW(X). 

Considering 2~\q(x) — *2w(*) ) w e argue similarly for vn-\(x). 
The last statement follows directly from the fact that as x increases from 

— 1 to + 1 , H(x) decreases from 2nir to 0. 

It should be clear that the same device will give an explicit 
decomposition for positive polynomials on [ — 1, + 1 ] as a sum of 
non-negative polynomials of odd degree. For example, if q(x) is a positive 
polynomial of degree 2n — 1 then 

q(x) = (1 + x)(tn-x(x)f + (1 - x)(sn-,(x))2 

where 
. In - 1 

ln-\"^ 

/ j 2/i - 1 \ 

(x) = V^ÔÔcosI- 2 8,(x) ) (VI + - x r 1 a n d 
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•S/i-iOO = V ? ( * ) s i n U 2 J Ô / ( X ) ) ( V 1 - *) '• 

We will content ourselves with this remark and use only the representation 
(4) in what follows. 

3. Pointwise bound. Let q{x), rn(x) be as in Corollary 1 and sn(x) be 
defined by 

(14) sn(x) = V ^ ) s i n G / / ( x ) ) . 

If / is an arbitrary real number, we wish to estimate \p'n(t) | wherepn(x) 
is a polynomial of degree n = k/2 satisfying 

(15) \Pn(x)\ ^ Vqjx) ÎŒX G [ - 1 , +1], 

Using the notation of Theorem 1, set 

t(x) = I I (x — xs) = c v 1 — x2sn(x) 
5 = 0 

and 

co/(x) = for / = 0, . . . , n. 
x — xi 

If £i § £2 = • • • = £«-1 a n d ^l = T?2 = • • • = Vn-\ denote the roots of 

a'n(x) = 0, co6(jc) = 0 

respectively, then, applying Theorem 1 of [7], we see that the inequality 

(16) | ^ (o i ^ K(t)\ 

is valid for every t lying outside the interval (£1, T)n-\). 
The case / e (£b TJW_I) is covered by Theorem B. Our proof will depend 

on the following 

LEMMA 2. Let q(x), rn(x) and sn(x) be as above, then, the trigonometric 
polynomial of order n 

, / / / / (cos 0)\\ 
T„(COS 6) + ww(cos 0) = v ^ ( c o s #) expl/I I I 

A as a// its roots in Im(0) = 0. 

Proof. If z\, ..., z/c denote the k zeros of q(x) and 

<o, = zs + (z,2 - 1)1/2, j = 1, . . . , k, 

then 
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e,sÀcosO) = Z£_! ye _ 1]2 
2<o5(cos 0 — zs) 

from which one readily deduces that 

k 

r„(cos 0) + ww(cos 0) = ceHn~k)0 I I ( ^ V - 1) 
l 

where c is constant. The lemma now follows from the fact that |cos| > 1 for 
s = 1, . . . , k. 

We can now reformulate Theorem B. 

THEOREM 2. Ifpn(x) is a polynomial of degree n ^ k/2 satisfying (15), 
then, for each t £ (— 1, +1), 

(17) (P'n(t) )2 S K ( 0 )2 + ( < ( 0 ) 2 

where rn(x) and sn(x) are given by (12) ««J (14) respectively. 

Proof By definition of TW and s„, setting x = cos 0, we can put (15) 
under the form 

\pn(cos 0) | ^ k„(cos 0) + zs,2(cos 0) |. 

Using Lemma 2, we see that the hypotheses of Levin's theorem, (see [1], 
p. 226) are satisfied, so that, for every real 0, we have 

|sin 0 pf
n(cos 0) | = | sin 0(T^(COS 0) + is'n(cos 0) ) |, 

which is the desired inequality. 

We first remark that, in the case where ^q(x) is of the form 

|T7(*) + iSl(x) |, / ^ w, 

the functions T„(COS 0), sn(cos 0), T/(COS 0) and s/(cos 0) are related by 

r„(cos 0) + ww(cos 0) = e+, '( ,1~ / )V/(cos 0) + w/(cos 0) ). 

Differentiating both sides with respect to 0 and putting x = cos 0 we see 
that, in this case, the right hand side of (17) can be written 

( - V l - x2s'ix) + (n - / )T Z (X)) 2 + ( ( * " j 2 ! ^ ) + r£x) Y. 
v VI - x2 } 

A comparison with the right hand side of (3) will show that Theorem 2 
includes Theorem B completely. 

Secondly, it should be noted that, while inequality (16) is best possible 
at every point, inequality (17) is best possible only at the zeros of s'n(t). 
Exact estimates for / e (— 1, +1) would require a much deeper study in 
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the spirit of [6]. We will not need to do that and conclude this section with 
the following corollary which combines the inequalities (16) and (17) in a 
form that is useful in the next one. 

COROLLARY 2. Let a\ < a^ < . . . < an denote the roots ofs'n(x). If pn(x) 
is a polynomial of degree n = k/2 satisfying (15), then 

(18) (p'n(t))
2 < 

'(0 I 

for t £ [ah an] 

<«w+^} for t G [au a„]. 
Aq(t) 

Proof. The second part of the inequality can be verified directly by 
computing the right-hand side of (17). The first one will be a consequence 
of (16) if we show that a\ ^ £j and an ^ yn-\- We verify the first 
inequality, the second one is obtained mutatis mutandis. 

By definition of un(x), we have 

,, , (l + A~U2 [ i , (i + A ,, 
«„(*) = [yz-J [jï—f sn(x) + [y^j s»(x) 

and thus, 

sign(w;(û,)) = s i g n ^ ^ O ) . 

On the other hand, using the fact that H{x) decreases from Inir as x 
increases from — 1, we see that for small positive c, 

s i g n ( ^ ( - l + e)) = s i g n ( ^ ( - l + c) ) = sign(co^0 ). 

It follows from there that 

s i g n ^ ^ O ) = sign(co;(-l + c) ), 

which implies £} ^ a\. 

4. Global bounds. The use of inequality (1) to get an estimate for 

M = sup { max \p'n(x) \ \pn(x) | ^ 1 for x e [ - 1 , +1] } 

is classical (see [4] ). It amounts essentially to proving that if q(t) = 1, the 
right hand side of inequality (18) defines an increasing function on (0, 1), 
so that 

M = \Tn{\)\ = n2. 

Setting 
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U 
we would like to study the behaviour of the function Mq(t) for two 
different types of majorant q(t). It will turn out that this behaviour is 
greatly influenced by the nearness of the zeros of q{t) to the end points of 
[ - 1 , +1]. 

A. q(t) = OS2 - t2)K 

Here /? is a real number greater than 1 and k an integer. As pointed out 
by Videnskii in [10], this case is of interest in view of the work of Dzyadyk 
on the approximation of functions in the Lipa class. Videnskii himself 
studied this question in the case k = 1. Let us suppose that k = 2. 
According to (10) we can write 

(20) h(x) = -2(P2 - x2)k~\k pVp2 - 1 + (« - k)(/32 - x2) 

which upon substitution in (19) gives 

(21) Mq(t) = V P
( 1 _ ;2 ) {B + Ct2 + Dt4}. 

Here 

B = [k fiVp2 ~ 1 + P\n - k) ]2 ^ 0 

C = -[2(/i - k)2fl2 + 2 ^ V j 8 2 - \(n - k) - k2] ^ 0 

D = n(n - 2k) ^ 0, 

where the last two inequalities are valid if n ^ 2k which we now suppose 
to be true. Differentiating (21), we get 

(f>2 _ t2\k-3 
(22) M'q(t) = K _ [2 2t{H + Gt2 + It4 + Kt6} 

\ *• i ) 

where 

H = (C + B)f$2 - B(k - 2) 

G = 2D/32 - C(k - 1) + B{k - 3) 

/ = -Dp2 + C(k - 2) - Dk 

K = (k - \)D. 

Set 

A(t) = H + Gt + It2 + Kt3. 

If k = 2, A (01) = 0, hence the numerator in (22) reduces to 

(p2 - t2)k~32tA(t2) = 2t(-Dt4 + 2Dt2 -h (B + C) ). 

https://doi.org/10.4153/CJM-1984-059-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-059-3


1042 R. PIERRE 

The graph of the function^ = — Dt1 + 2Dt + (B 4- C) being a concave 
parabola with vertex at / = + 1 we see that, for k = 2, M'q{t) is increasing 
on (0, 1). For k > 2, we consider 

.4'(0 = ^'(i) + ^"0)C - i) + —Y+it - l)2. 

Now 

A\\) = G + 2/ -h 3K = (k - 3)(B + C + D) ^ 0, 

while 

- y - ^ = / + 3AT = -OS2 - \)[n(n - 2/c) + 2(k - 2)(/i - kf] 

- 2/3^VyS2 - l(/i - fc)(fc - 2) - k\k - 2) 

is negative and 

A"\X) 

6 

Thus ^4'(0 Is positive on (0, 1) which implies that A (t) is increasing on that 
interval. 

This leads us to the following generalization of Videnskii's result [10]. 

THEOREM 3. Let pn(x) be a polynomial of degree n = 2k satisfying 

k W I § ( j 8 2 - x2)k/2 

where ft = 1 and k = 2, then 

(23) max \p'n(x) \ ?k max (y/Mffi, K(\) \ ) 
[ - i . + i] 

where Mq(t) is given by (21) and r,,(x) by 

j o vn ( fX WVP2 - 1 dt 
T„(X) = (/?2 - X2)k/2 COS - / , 

+ (« — &) arc cos JC ). 

Proof Let us first suppose that /? > 1. Since for / e (— 1, +1) 

rn(t)s'n(t) - sn(t)r
f
n(t) = i _ - < 0, 

2V1 - '2 

we can use Rolle's theorem to conclude that the zeros of s'n(t) and r'n(t) 
separate each other, hence that r'n(t) is increasing on the interval (am 1). 
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Using ^(1) = (B + C + D)(P2 - 1) > 0, we obtain 

lim MUt) = +oo. 

In view of the preceding discussion, we see that Mq(t) has at most one 
local extremum in (0, 1) which will then be a minimum. Inequality (23) 
now follows from Corollary 2. 

In the case j8 = 1, 

Mq(t) = (1 - t2f~2{ (n - k)\\ - t2) + k2t2} 

is a decreasing function. By continuity, the inequality 

which is valid for t e (— 1, +1) is also valid at the end points, hence 

max \p'n(t)\ ^ max \/MJt) = -\/MJ0) = (n - k). 

From (21) and the definition of rn(x) we obtain, using some elementary 
computation, that 

VMqJÔ) = ^-2[/cy8Vy82 - 1 + P2(n - k) ] 

while 

T|,(l) = {- /C(^ 2 - \f'2~X 

fyS/tVjS2 - 1 

+ (£2 - i^Y'Y-jB* ' ~ (n ~ k) )) 

This implies that 

hm —== = n, 
P-+°o VM(0) 

whence ^Mq(Q) < |T^(1) | if /5 is big enough. Obviously, if this inequality 
is true (23) is best possible. 

On the other hand, since for /? = 1, T^(1) = 0, we see that, if /? is 
small, the inequality \/Mq(0) ^ Wn(\) | is valid. If so, (23) is again best 
possible when n is odd, but not when n is even. The study of this last case 
would require a more precise local estimate than the one provided by 
Corollary 2. 

B. q(t) = (qi(t) )2, where qx(t) * 0 if Re(f2) > 0. 

In this second case, we suppose that the majorant V#(0 is an even 
real polynomial qx(t) of degree j which has no zero in 
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/ — 7T 7T\ / 377 577 \ 

A subclass of this class of majorants has been studied by Videnskii in [9] 
where he supposed that all the zeros of q(t) are purely imaginary. 

Here again, we would like to show that the function 

9 h](t) 
Mq(t) = (q\(t))2 + j ^ ^ 

is increasing on (0, 1). For this, we verify that (q\(t)) and hx(t) are 
polynomials with positive coefficients. 

[77 77 \ 
Let Rx be the set of zeros of qx(t) lying in Arg(/) e - , - I and R2 be 

the set of zeros of q\(t) lying on the positive imaginary axis. In view of the 
conditions imposed on q\(t), we see that 

(24) qx(t) = C I I \t2 - z2\2 I I (t2 - z2\ 

Clearly, in both products, each factor has positive coefficients and so the 
same is true of (q\(t) )2. 

From (8) and (24), we get 

/*,(/) = ?,(/){2 2 Re(z (Z
2 ~ 1}

2 ) 

y z(z2 - If2 \ 

If z G R2, there exists a positive a such that z = /a, hence 

z(z2 - 1)1/2 = - a V « 2 + 1 ^ 0. 

On the other hand if z e Rh set 

z = \(" + l) 
where co = rel6, r > 1. Then 

Re(z(^iy2)=X2~-% { (cos 2^2 "iz|2}-
2 

In order to verify that hx(t) has positive coefficients it is enough to check 
that cos 20 ^ 0 which follows from the fact that Re(z2) ^ 0. 

In view of the above discussion, we can conclude that Mq(t) is 
increasing. The next result now follows from Corollary 2. 

THEOREM 4. Let q\(x) be an even polynomial of degree j with real 

coefficients, which has no zero in Arg(/) e I — - , - I U ( ~r> ~r )• 
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Let h\(x) and H\(x) be defined by (8) and (9) respectively. If pn{x) is a 
polynomial of degree n ~ j satisfying \pn(x) \ = \q\(x) \ for x e [—1, +1], 
then 

max\p'„(x)\ S |T,',(1)| = q\(l) + ^ j 

where 

Tn(x) = ^!(x)cos(/fi(x)). 

In conclusion we remark that, as suggested by cases A and B, it would 
be interesting to determine the class of polynomials q(t) for which the 
function Mq(t) is increasing. Would this, for example be true under the 
condition that q(t) has positive coefficients? If the answer was yes, it could 
lead to interesting asymptotic results for majorants 

oo 

<K0 = 2 Uyf where an ^ 0 
o 

and, in particular, for incomplete polynomials. 
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