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STRICTLY REAL BANACH ALGEBRAS

JOHN BORIS MILLER

A complex Banach algebra is a complexification of a real Banach algebra if and
only if it carries a conjugation operator. We prove a uniqueness theorem concern-
ing strictly real selfconjugate subalgebras of a given complex algebra. An example
is given of a complex Banach algebra carrying two distinct but commuting conju-
gations, whose selfconjugate subalgebras are both strictly real. The class of strictly
real Banach algebras is shown to be a variety, and the manner of their generation
by suitable elements is proved. A corollary describes some strictly real subalgebras
in Hermitian Banach star algebras, including C* algebras.

1. INTRODUCTION

A real Banach algebra 21 is called strictly real if each of its elements has a real
spectrum. The terminology goes back at least to Ingelstam [2]. Relying upon a 1949
theorem of Kaplansky's, it was shown in [5] and [6] that such an algebra carries a
partial order ^ and a preorder -<, compatible with the algebra structure and having
many convenient and useful properties. The definitions of the orders are:

(1.1) x < y means S p ( y - s ; ) C R + \ {0}; x -< y means S p ( y - r ) C K+.

Their presence enables quite a lot of analysis of real type to be done in 21. For instance,
the theory of the exp and Log and root functions is simpler than for more general
Banach algebras, and the classical inequalities (of the mean, Holder's, Minkowski's,...)
all hold in appropriate circumstances. The resolvent is a Pick function on its domain.
There are integral representation theorems in the dual space. See [5, 6].

In view of this theory, it is apposite to study strictly real Banach algebras as a class,
in the hope of locating them more clearly within the wider class of Banach algebras,
real and complex. The early theorems in this connection are due to Ingelstam. In this
paper we give a number of such results. After some preliminaries in this section, Section
2 deals with complexification and conjugation, culminating after some propositions of
independent interest in Theorem 2.10, a partial uniqueness result in answer to the
question: Can a complex Banach algebra be simultaneously the complexification of
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506 J.B. Miller [2]

more than one strictly real Banach algebra? In Section 3 some examples are given,
including the one mentioned in the abstract.

Section 4 has two main results: Theorem 4.4 which shows that strictly real Ba-
nach algebras form a variety; and Theorem 4.7 concerning generation of strictly real
subalgebras. Connection is made with C* algebras.

We summarise the notation and some background facts. For any two nonempty
sets A and B of numbers, or algebra elements, A + B := {a + b: a £ A, 6 6 B} and
AB :— {ab: a £ A, b G B}. Throughout this paper, Banach algebra means Banach
algebra with identity, usually written e. For a real Banach algebra 21 and x € 21, the
spectrum of x in 21, written Sp<a (x), is by definition the spectrum of z as an element
of 2lc, the complexincation of 21, written Spju {%)', see Section 2. Suffixes may be
omitted when the algebra is obvious. The spectral radius function is written u; Res [x]
denotes C \ Sp(z) . Let fft be the radical of 21, that is, the intersection of all maximal
left ideals of 21; we write 21' for 21 mod 9 ,̂ with elements z' = x -f-fft; and similarly for
2lc with radical fftc- We have Spa; (a:') = Spa(x) . Kaplansky's theorem [4] tells us
that if 21 is strictly real then 21' is commutative. From this it follows for strictly real
21 that

(1.2) Sp(z + y ) g S p ( z ) + Sp(y), Sp(xy) g Sp(z).Sp(j/)

for all x,y E 21; and moreover !SH coincides with the set of quasinilpotents of 21. Inclu-
sions (1.2) ensure the convenient properties of the orders (1.1). For the details see [5].
It is proved in Section 2 below that analogous results hold for 2lc; this is an important
technical step.

2. COMPLEXIFICATION AND CONJUGATION

We recall the notion of algebra complexification of a real algebra 21: it is the
algebra 23 := 21 x 21, in which the operations are defined in the obvious way
((a, b) + (c, d) := (a + c, b + d); (a + i/3)(a, b) := (aa - /3b, 0a + ab); (a, b)(c, d)
:= (ac — bd, be + ad)), so that the identification a •-» (a, 0) embeds 2t monomorphi-
cally in 23 and allows us to write (a, b) = a+ib (where i := (0, 1)). 21 is then identified
with its copy in 55, as a real subalgebra, and 23 = 21 + »2l. (This sum is direct only in
the category of real vector spaces.)

Suppose that 21 is a real Banach algebra, with norm ||.||. Well-known and nontrivial
theory shows that 23 can be given a norm, I . I say, such that

(i) I . I makes 23 a complex Banach algebra, and
(ii) I . | relativises to ||.|| on 21.

See Rickart [7, p.5-9] (where on p.8, ||(a, 6)|| denotes what we call | a + ib \ ), Bonsall

and Duncan [ l , p.68-70]. It is shown in [7] that the norm is unique to within equiva-
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lence, that is, if I . I ' is any other algebra norm on 03 with properties (i) and (ii) then
I . | and I . I ' are equivalent. Moreover, for all a,b £ 21,

(2.1) \a + ib\ g ||a|| + ||1|| g * \a + ib\

(where k = 2y/2 in [7], 2 in [1]), and it can be verified that

(2.2) | a + ib \ = | a - ib \ .

We shall use the term Banach complexification of 21 for 95 normed by any norm I . I '
with properties (i), (ii), (2.1) for some positive constant k, and (2.2); the standard
Banach complexification will mean 03 normed by I . I . (Even I . I is not uniquely
determined in the discussion in [7], since it depends upon the choice of an arbitrary real
Banach space, there called X. To make the definition of I . I specific, we shall require
that X is 21.) The standard Banach complexification of 21 will be denoted by 2lc.

For any complex algebra 03, let R03 denote the real algebra which is 03 with K
as its scalar field. The term 'real subalgebra of 03' shall mean, as usual, subalgebra of
R03.

Again, let us start with a real Banach algebra 21, and its standard Banach com-
plexification 2lc. Since each element of 2lc is uniquely representable in the form a + ib,
a,b G 21, there exists the canonical conjugation operator c on 21c, defined by

(a + ib) c = a — ib.

The operator satisfies, for all x, y £ 2lc and A E C

(1) (z +y)c = xc+2/c,
(2) (Ax)c = A(xc),
(3) (xy)c = xcyc,
(4) xcc = x,

(5) ||*c|| = ||x||,

and

(2.3) x c = x if and only if x G 21.

Here A in (2) denotes the complex conjugate of A; (5) is the property (2.2). We draw
attention to (3), where there is no reversal of order of the factors.

More generally, let 03 be any complex Banach algebra. Definition: any operator
c: 03 —» 03 having properties (1) to (5) will be called a conjugation on 03. By (4) it is
a surjection. If 03 is commutative, but not otherwise, the notion coincides with that of
isometric involution, about which there is a large literature. Given c on 03, write

(2.4) 2 l :={xeO3:xc = x}.
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This defines a real Banach subalgebra of 93: that 21 is closed in 93 is a consequence of
(5). Moreover, since c is onto, the identity e belongs to 21. Note that (3) makes 21 a
ring, not merely a real vector subspace as happens with involutions. 21 will be called
the selfconjugate subalgebra with respect to c.

If c satisfies (1) to (4) and is continuous, 93 can be renormed by the equivalent
norm |||z|| | = max{||s;|| , ||a;c||}, which satisfies (5) and relativises to ||.|| on 21. In fact,
in the ensuing theory it often suffices to weaken the definition of conjugation in this
way, replacing (5) by

(5') c is continuous.

THEOREM 2 . 1 . Let 93 be any complex Banach algebra, c a conjugation on 93,
and 21 its selfconjugate subalgebra. Then 93 is a Banach complexiRcation of 21, and c
is the canonical conjugation operator on 93 with respect to 21, so that 93 is equivalent
to 2lc • 21 is maximal among all real subalgebras <B of 93 for which <£ ("1 i<E = {0}.

PROOF: The norm on 21 is the norm of 93 relativised. For x £ 93 write a —
(x + xc)/2 and 6 = i(xc-x)/2. Then a, 6 e 21, and

(2.5) x = a + ib, xc = a — ib.

This representation of x is unique, for if x = p + iq with p, q 6 21 then necessarily
p = a and q = b. Thus 93 is the algebraic complexification of 21. Properties (i) and (ii)
clearly hold on 93, and (2.2) holds since c satisfies (5) and (2.5). Finally, (2.1) holds,
for with a, b £ 21 we have

Thus (93, ||.||) is a Banach complexification of (21, ||.||); and (2.5) shows that c is the
canonical conjugation. The maximality property is easily verified. D

COROLLARY 2 . 2 . A necessary and sufficient condition for a complex Banach
algebra to be a Banach complexiRcation of some real Banach algebra is that there exist
on it a conjugation.

The theorem also shows that any theorem about an arbitrary real Banach algebra
21 and its complexification 2lc can, to within equivalence of norms, be reformulated
as a theorem about a complex Banach algebra 93 carrying a conjugation c, and its
selfconjugate subalgebra 21; and vice versa. In later theorems we shall therefore opt for
whichever formulation seems the more convenient.

We remark that elements of the forms (xc)x and x(xc) need not belong to 21.
As one might suppose, there is a simple connection between conjugations and

isometric involutions, by means of the notion of transposition. We define a transposition
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on 03 to be a linear operator t on 03 which is involutory ( t t = identity), isometric
(||xt|| = | | i | |) and reverses products ((xy)t = y t z t ) . Let C , / and T denote the sets
of all conjugations, isometric involutions and transpositions on 03 respectively. If f and
g are any two elements from two distinct such sets, and f and g commute, then f g
belongs to the third set.

We turn to the question of distinct conjugations on the same algebra 03. For a
given conjugation f we denote its selfconjugate subalgebra of 03 by Stf.

LEMMA 2 . 3 . T i e function f i—> 2lf is one-one. More precisely, if f ^ g then

neither of 2lf and 2lg is contained in the other.

PROOF: Suppose 2lf = 2lg. Let x G 03, and let x = a + ib be its unique represen-
tation with respect to f. Then xf = a — ib; but a,b G 2lg, so x = a + ib is also the
unique representation with respect to g and therefore xg = a — ib. Thus f = g.

The second assertion of the theorem follows from the maximality assertion in The-
orem 2.1, or from the following elementary argument. Suppose that 2tf ^ 2lg. There
exists y such that j/f ^ y = y g . The element z = (l/ + l/f)/2 satisfies zl = z, so
z G 2lf. Hence zg = z, which gives

Likewise w = i(y{—y)/2 G 2tg so

From these equations we deduce that y f = y g, contradiction. U

LEMMA 2 . 4 . For all x in 03, Sp(a;c) = {A: A G Sp(x)} , and for A G Res (sec),

(A~e — x c) =

So Sp(xc) is independent of the choice of conjugation c. For z G 21, Sp(o) is sym-
metrical about the real axis.

The result is well known, and its proof is straightforward.

LEMMA 2 . 5 . Let 21 be strictly real. Then for a,b G 2t, l i e spectrum of a + ib
in 03 is contained in the product in R2 of the spectra of a and b:

(2.6)

PROOF: First we show that if either of a or b is invertible in 2t then a + ib is
invertible in 03. Suppose a is invertible and write x = a + ba-1b. By commutativity
of 21',

= SP2l, (x() C S P a , (a '2 + &'2). Spa , ( a ' " 1 )

= S p S I ( a 2 + 6 2 ) . S p 2 l ( a - 1 ) .
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Now Sp (o2) c R + \ {0}, Sp (b2) C R+ so Sp (a2 + b2) C R + \ {0}; therefore 0 g
Spa (a;), x is invertible. Write

u = a;"1, v = —a~1bx~1.

Then au — bv = e, bu + av = 0, so (a-f ib)(u + iv) = e. Thus a + ib has a right inverse;
similarly it has a left inverse; therefore it is invertible. The same outcome follows if
instead we assume b invertible.

Now suppose instead that A G Res (a)nR; it follows that for any real {}, (Ae — a) +
t(/3e - b) is invertible in 93, and similarly if /x G Res (6) l~l R then {fie - a) + i(/xe — b)

is invertible. Hence if A + i/x G Spa (a + ib), then A G Spa (a) and \L G Spa (6). D

We wish to show that Sp<3 has the same properties (1.2) as Spa . To this end
it is necessary to find the connection between the radicals £Ha and 9\<s of 21 and 03
respectively, in order to prove that 93modfK<8, like 21', is commutative when 21 is
strictly real.

THEOREM 2 . 6 . If 21 is strictly real, then 9t<8 = !Ha + t9fa.

PROOF: A subset L of *B is called selfconjugate if £c = L. If L is any left ideal
of 53, write

Lo = {a G 21: a + i& € £ for some 6 G 21}.

It is clear that L Q Lo + iL0, and Lo + t£o is a selfconjugate left ideal.

Suppose that L is a maximal left ideal of 03; then either Lo + iLo = 53, or
Lo + iLQ — L • If the former, then e G Lo + iLo, that is, e 6 Zo, so there exists 6 G 21
such that e + ib G Z. But e + i i is invertible by Lemma 2.5; this contradiction shows
that Lo + iLo = L. Moreover it is not difficult to deduce that Lo is a maximal left
ideal of 21.

Conversely, if M is any maximal left ideal of 21 then K :— M + \M is a maximal
selfconjugate left ideal of 93. Let K Q N for some maximal left ideal N of 03. Then
N = No + iNQ ,soMgN0, whence M = JV0, and N = M + iM = K.

Thus we see that every maximal left ideal N of 93 is selfconjugate and of the
form N = M + iM where M is a maximal left ideal of 21; and conversely if M is any
maximal left ideal of 21 then N so defined is a maximal left ideal of 93. Therefore

P){M + iM: M is a maximal left ideal of 21}

M + i P| M =
M M

a
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COROLLARY 2 . 7 . Wlen 21 is strictly real,

(2.7) 03 mod <R<8 = 21 mod SKa + *2l mod JRa,

03 mod !R<8 is commutative, and Otgs coincides with the set of all quasinilpotents of 03.

Aiso Ota = 21 n Eft®.

The typical member of the lefthand side of (2.7) is of the form

(a + ib) + 9ta + »Wa = (a •

so the isomorphism is actually logical identity of the algebras; we do not assert the
equality of the norms. Equation (2.7) can be written more briefly as

(2.8) (2tc)'-(2l')c.

COROLLARY 2 . 8 . If 21 is strictly real, Sp«8 has the properties (1.2) on 03.

COROLLARY 2 . 9 . If 21 is strictly real, a + ib is invertible in 03 if and only if
a2 + b2 is invertible in 21.

PROOF: If a2 + b2 is invertible, we have

(a + ib)(a - ib) =a2+b2 + i(ba - ab)

= (a2 + b2)[e + i(a2 + 62)"1(6a - ab)];

here i (a2 + 62) (6a — a6) belongs to iSHa and hence to Dtgj, and is therefore quasinilpo-
tent, by Corollary 2.7. Hence the second factor on the right is invertible, showing that
a + i6 has a right inverse. Similarly it has a left inverse, and so is invertible. Conversely,
if a + ib is invertible then so is a — ib, by Lemma 2.4, and the invertibihty of a2 + 62

follows. D

The main result of this section is an assertion concerning the partial uniqueness
of strictly real subconjugate subalgebras: namely that, modulo the radical, and within
any one class of pairwise commuting conjugations, there is at most one strictly real
selfconjugate subalgebra of a given complex Banach algebra.

THEOREM 2 . 1 0 . Let 03 be a complex Banach algebra, with radical *H, and let
i and g be commuting conjugations on 03 for which 2lf and 2lg are strictly real. If 9\{
and Dtg denote the radicals of 2tf and 2lg respectively, then

(2.9) 2^=21,1-121,5 + 9^, 2 l g = 2 t f n 2 l g + i K g ,

and

(2.10) 2lf + i<Rf = 2lg + tfRg = {x G 03: Sp (x) is real}.
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Also the algebras 2lf mod SHf and 2lg mod 5Rg are isomorphic.

If f ^ g tAen neither of fKf, £Hg contains ihe other. We Lave 9fy ("1 SKg = {0} if
and oniy if <Hf = i9tg .

If 2lf or 2lg is semisimple, in particular if 23 is semisimple, then f = g.

PROOF: First, we remark that if y £ 2lg then also yf G 2lg, because of commuta-
tivity. Next, observe that if x G 2lf and

(2.11) x = o + t& with a,&G 2lg,

is its canonical representation with respect to g, then a, ib G 2lf. For

x = xf = of —t6f, so xg = ag{+ibg{ = ai+ibi.

But here ai, bi G 2lg, by the initial remark. Thus xg = of +»6f is the canonical
representation of xg with respect to g, which is also xg = a — ib. Therefore a = at,
b = —bi, whence a, ib G 2lf, as asserted. Hence x — a £ 2tf, and since 2lf is strictly
real and 03 is a Banach complexification of 2lf, we have

Sp<8 (x - a) = S p ^ (x - a) C R.

Similarly S p B {ib) = i S p s (6) = i S p ^ (6) C *R;

therefore S p s (x - a) = {0} = S p s (ib), x - a, t& € 9t, in fact ib G 2tf D<H = fHf. Since
x was arbitrary in 2lf, (2.11) shows that 2lf ^ 2lf D 2lg + fWf. Since the righthand side
here is contained in 2lf, there is equality; this is the first equation of (2.9), the second
follows by symmetry.

Equation (2.11) also gives 2lf C <Jlg + gn( and since the righthand side here also
contains $H,

(2.12) 2lf + UK = 2lg + K.

Putting on the left <H = 9fy + *SHf from Theorem 2.6 and using 2tf + 5Hf - %, and
similarly on the right, we get the first part of (2.10). The second comes by an application
of Corollary 2.8.

To prove 21} ^ 2lg, let x' £ % and write x = u+v, u G 2lf n2tg v G «Kf using (2.9).
Define 6(x') = u + 9\g. This gives an unambiguous definition of a map 0: 21} —• 2lg

which is easily shown to be an algebra isomorphism.

If f ^ g and fKf Q SRS then (2.9) implies 2lf Q 2lg, contradicting Lemma 2.3.

To prove the second last statement in the theorem, first suppose JHf D fHg = {0};
then with x G 9tf as in (2.11) we get

a G 2lf n 2lg n 5H = i«f n £Rg = {0},

whence x = ib G »9tg . Conversely, if £Kf = »£Hg then 9tf D *Hg = 9Sg D tfHg = {0}.

Finally, if 2lf is semisimple, that is, fH{ = (0), then (2.9) gives 2lf = 2lf D 2lg £ 2tg,

so f = g by Lemma 2.3. D
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REMARK. Equations (2.10) hold also when f, g do not commute. See [6, Lemma 2.1].

3. EXAMPLES

3.1 . Subalgebraa of C(il, C) . Let 17 be a compact Hausdorff topological space, and
<f> be any homeomorphism of fi which exchanges point, that is <f>2 = id. Let 53 be
any Banach subalgebra of C(il, C) . The norm is the sup norm. Define, for any x G

(xf)(t) := x{4>{i)Y for all i G fi.

Then f has the properties (1) to (5) of Section 2. Suppose that 53 is closed under f;
then f is a conjugation on 53, and its selfconjugate subalgebra 2tf is the set of all those
functions taking complex conjugate values at paired points, and hence real values at
fixed points of <f>. If <j> = identity, then Qlf consists of all the realvalued members in
53. Otherwise, 2lf may contain nonreal functions.

3.2. Let 53 be a complex Banach algebra of n x n matrices. Let P be a matrix
satisfying PP~ = / (where as usual ~ denotes complex conjugation), and define f by

Xi:= PX-P-1 for all X 6 53.

Provided 53 is closed under f, f is a conjugation on 53. If X g := QX~Q~X , where
Q is another such matrix, then f and g are distinct if and only if QP~ does not lie
in the commutant of 53. On the other hand, f and g commute if and only if (QP~)
does lie in the commutant.

3.3. We shall construct an example of a complex Banach algebra 53 carrying two
distinct and commuting conjugations d and f, each of whose selfconjugate subalgebras
is strictly real.

Let 971 be the complex Banach algebra of all 2 x 2 matrices over C, with norm
say ||a;|| = max{|o| + |6| , \c\ + \d\) when

• ( : : ) •

Let cr be a fixed positive real number, and for the above x write

d a2c

Each of c and f satisfies (1) to (4) and (5 ') of Section 2, and is therefore a conjugation
on 971. Moreover, c and f commute. The f-selfconjugate elements are the matrices of
the form

(3.) .
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here Sp(z) = {Re (a) ± ^[(Rje(a)) — \a\ + tr2 \c\ ]}, so Sp(z) is real if and only if
|Im(a)| ^ <r |c|. Let y denote an element of the form (3.2), say

where p, q are chosen not both real, and to satisfy

(3.3)

then y c ^ y , yf = y, (yc)f = yc, Sp(y) U Sp(yc) C R.

We make a special choice of p and q, namely, let

(3.4) p = a + ia-S and q = iS, with a, /?, 6 real and nonzero

(so that equality holds in (3.3)). Then y = ae + iSs, yc = ae — i6s, where e is the
2 x 2 unit matrix and

s =

here a2 = 0; matrices y and yc commute, and together they generate in 9?t the real
unital Banach subalgebra

3 = {fie + iva : fi, v G R}.

Since Sp(a) = {0}, 3 is strictly real. Moreover, 3 is closed under c and f, in fact f
relativises to the identity on 3 • Each element of 3 is of the form (3.2).

Let 53 denote the complex Banach subalgebra of 9Jt generated by 3 ; it consists of
all matrices of the form

(3.5) w = Z\ + iz2,

where z\, z2 G 3- It is easy to verify that every element w in 9Jt has a unique rep-
resentation of the form (3.5) with z\, z2 of the form (3.2); therefore for each w in 53
the representation (3.5) with z\, z2 G 3 is unique. Thus 53 is isomorphic to a Banach
complexification of 3- Moreover, wi = z\ — iz2, so 53 is invariant under f, which
restricts to a conjugation on 53. We have w f = w if and only if w G 3 • Thus the
f-selfconjugate subalgebra of 53 is

2tf = 3 = {pe + ius :/*,»/ G R}.

Now there exists also on 53 the conjugation c, for which

W C = Z\ C — IZ2 C,
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since by construction z c € 3 when z G 3 • This c is distinct from f on 31 ^ d therefore
on 03. Calculation shows that w c = to if and only if

w = fie + vs for some real p, v;

for such w, Sp(io) = {/*}. Thus 21 c = {/ie + vs : /*, v 6 R} is also strictly real.

This example is a case of the preceding Example 3.2. It shows incidentally that
Theorem 2.10 has nonvoid application. In the notation of that theorem, £HC ='Rs and
SRf = iRa.

4. PLENITUDE OF STRICTLY REAL ALGEBRAS

This section is devoted to conditions of various kinds ensuring that a Banach alge-
bra is strictly real, and to gathering evidence to show that strictly real Banach algebras
are of reasonably frequent occurrence in nature. For interest, we recall some results of
Ingelstam.

THEOREM 4 . 1 . (Ingelstam [2]) Each of the following conditions is separately
sufficient for a real Banach algebra 21 to be strictly real:

(a) For every x £ 21, e + x2 is invertible in 21.
(b) For every x £ 2t, the function A i-> exp (-Xx2), R+ -> 2t is bounded.
(c) For every x € 21, each ray from e of the form {e — Xx2 : X ̂  0} is in the

enveloping cone at e.
(d) For every x €21 , lim A^flle - Az2|| - l ) ^ 0.

Of these conditions, (a) is also necessary.

Another condition, similar to and deducible from (a), but applicable to an algebra
which may a priori be complex, is:

PROPOSITI ON 4 . 2 . ([5]) A Banach algebra 21 is strictly real if and only if, for
every x 6 21, x2 ^ 0.

The superficial similarity of conjugations and involutions suggests the next result.

THEOREM 4 . 3 . Let 03 be a complex Banach algebra, and f a conjugation on 03
such that \\xix\\ = \\x\\ for all x € 03. Then 2lf, the selfconjugate subalgebra of i, is
strictly real.

The proof is an almost verbatim repetition of an analogous argument for C* alge-
bras: see [3, p.238, Proposition 4.1.1]. It starts with the useful fact that i/(z) = ||z||
for every x for which xix = x[xi).

THEOREM 4 . 4 . The class of strictly real Banach algebras is a variety, in the
sense:

(i) Every Banach subalgebra of a strictly real Banach algebra is strictly real.
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(ii) Let SI be a strictly real Banach algebra and let H be an algebra homo-
morphism from. St into a real Banach algebra 3), with closed range 2T(Ql).
Tien #(91) is strictly real.

(iii) Let 5) and <E be strictly real Banach algebras; then their direct sum 55©<£
is strictly real.

PROOF: (i) If 21 is strictly real and X) is a Banach subalgebra of it, we have
Spxi (z) = Spa (x) C R for every x 6 £>, by [1, p.25, Proposition 12].

(ii) 27(21) is a Banach subalgebra of 5), having an identity H{e). We extend H to a
homomorphism 27*: 2lc —+ Oc between the complexifications by defining H*(a + ib) =
H{a) + iH(b). Then 27*(2tc) = (2T(2l))c is a Banach subalgebra of S)c • For any x € 21
we have

SpH(2t)c (27(x)) Q SP a c (x),

so H(x) has real spectrum.
(iii) 3!) © (£ is defined to be the vector-space direct sum, made into a real normed

algebra by writing

These ensure that S) © <£ is a real Banach algebra. It is routine to verify that

sPDee ((*' y)) = sPv (x) U Spe (x),

which implies the result. D

We remark that (i) ensures that the definitions (1.1) of the orders are independent
of the containing algebra. In (ii) we find that H preserves both orders, that is, every
homomorphism is positive. It is not required that H be bounded, nor that H map
the identity to the identity. In extension of (iii), one easily shows that a direct sum of
arbitrarily many strictly real summands is also strictly real.

We turn to ways in which strictly real algebras may be generated. An element y
in a Banach algebra 03 (real or complex) will be called strictly real if Sp(y) C t . A
subset Z of 03 will be called quasicommuting if xy — yx belongs to the radical of 03
for every pair of elements x, y in Z.

LEMMA 4 . 5 . Let 03 be a reai or complex Banach algebra, and let y G 03. Let
2] be the reai Banach subalgebra generated by y and e. Then y is strictly real in 03
if and only if 2) is a strictly real Banach algebra.

PROOF: Suppose 03 is real. Then 2Jc is a complex Banach subalgebra of 03c by
virtue of (2.1). If 2J is strictly real, then Sp<8c (y) S Sp<g (y) C R, so y is strictly
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real. Conversely, assume y is strictly real. The elements of 2), 2)c consist of all
limits of sequences of polynomials in y with respectively real, complex coefficients. By
assumption Sp<sc (y) C R, so Res<8c (y) is connected; therefore ([1, p.25, Proposition
14]) Spgjc (y) = Sp<8c (y), whence S p ^ (p) is real for every real polynomial p in y.

Let / 6 2), / = l impn for some sequence (pn) of real polynomials in y. Since
2Jc is commutative, Sp3)c is lower semicontinuous. Suppose that Spqjc ( / ) contains a
number a + ij3, fi ^ 0. If U denotes the open disc in C with centre 0 and radius |/?|,
there exists an n with

SP5)C ( / ) C Spa,c (P n) + U,

and this produces a contradiction. Thus Sp<j,c ( / ) is real, that is, 2) is strictly real.

If instead 53 is a complex algebra, then replace 93c by 03 in the above proof. D

LEMMA 4 . 6 . Let 93 be a real or complex Banach algebra, and let (xn)n&II be
a convergent sequence of pairwise quasicommuting, strictly real elements of 93, with
limit x. Then x is strictly real in 93.

PROOF: Suppose first that 93 is a real algebra, and that the terms of the sequence
are pairwise commuting. Let X be the real Banach subalgebra generated by the terms
of the sequence (with e), so that x £ X, and X is commutative. Assume that there
exists a number a + i/3, /? ^ 0, in Sp x (x ) . Arguing from lower semicontinuity as
in the proof of Lemma 4.5, we can find an n such that Spj(a;) C Spj(a;n) 4- U, and
therefore \a + i/3 — j \ < |/?| for some 7 € Spj (xn). For this n let (£ be the real Banach
subalgebra of X generated by xn and e. Lemma 4.5 shows that <£ is strictly real; thus

so 7 G K, which contradicts the inequality. Therefore Sp j (a;) is real. But Sp<g (x) Q

Spj (x ) , so Sp<8 (x) is real.

The case where 93 is complex is proved in the same way.

If more generally the terms of the sequence are only quasicommuting, then we
apply the above result in the algebra 93' := 93 modSH, £H being the radical of 93: in
this algebra the terms of the sequence (x'n) commute (Corollary 2.7) and the sequence
converges to x', so we get Sp^i (x1) C R. But Sp<8 (z) = Sp<8» (*')• D

From the lemmas we obtain

THEOREM 4 . 7 . Let 93 be a reai or complex Banach algebra. If Z is any quasi-
commutative subset of strictly real elements 0/ 93, then 3 , the real Banach subalgebra
of 93 generated by Z, is strictly real.

PROOF: Let alg(Z) denote the real subalgebra of 93 generated by Z and e; its
closure is 3- li x, y £ Z then since x', y' commute in 93' we have

Sp-s (*+y) = Sp.y (x' + y') g SpB, (*') + Spa, (y1) = S p s (*) + Sp B (y) C R,
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so x + y has real spectrum; so has xy, by the same argument. Therefore every element
of alg(Z) is strictly real. Moreover alg(Z) is quasicommutative, since Z is. Now let
w G 3> with w the limit of a sequence of elements from alg(Z). Lemma 4.6 shows
that Sp<Q (w) C K- Let 217 be the real Banach subalgebra generated by w and e. By
Lemma 4.5, Sp2D(tu) is real; also Sp3(iu) Q Spw(w), so Sp3(to) is real. This proves
that 3 is strictly real. D

COROLLARY 4 . 8 . Let VB be an Hermitian Banach star algebra. If F is any
quasicommutative subset of the set of selfadjoint elements of 03, then the real Banach
star subalgebra generated by F and e is strictly real.

PROOF: By definition [1, p.224] 53 is a complex Banach algebra with involution,
written * say, in which Sp(s:) C K whenever x* = x. First suppose that F is commu-
tative. Let 5 be the real Banach subalgebra of 03 generated by F and e; by Theorem
4.7, 5 is strictly real. But 5 consists of limits of real polynomials in elements of F;
these limits are selfadjoint elements and hence 5 is in fact the real Banach '-subalgebra
generated by F and e.

Suppose instead that F is quasicommutative. Form 03' = SlmodiH, which has
5' := {/': / € F} as a commutative subset. 03' is made into a star subalgebra by the
involution

(a;')* :=*•' = x* + <K.

(To prove that * is well-defined we use the formula 9t = {x: i/(x*x) = 0} (see [1,
Theorem 9, p.227]) to show that Df is closed under *.) In fact * makes 03' into
an Hermitian star algebra. For let x' £ 03' and x * = x'. Write z = p + iq, p =
(x + x*)/2, q = i{x* - x)/2. Then p* = p and q 6 1R since (x* - x)' = 0', whence
Sp<8/(z') = Spa (x) = Sp<s(p) C R. Also every element of F' is self-adjoint with
respect to * . Thus by applying the commutative case to 03' and F' we conclude
that ©, the real Banach *-subalgebra of 03' generated by F' and e', is strictly real.
Consider the set

f):={xe<8: x' E ©}.

This is a real Banach subalgebra of 03, moreover x 6 S) if and only if x* 6 S), and
F U {e} Q fy. Thus the real Banach star subalgebra, <£ say, of 03 generated by F, e is
a Banach subalgebra of Sj. Now

Sps (*) = SPjy (*') C R.

Thus fj is strictly real, and therefore € is strictly real, by Theorem 4.4 (i). D

C*-algebras are Hermitian (see [3, p.238]), therefore Corollary 4.8 applies in partic-
ular to them. The B* property is ||x*x|| = ||x|| , so here we have a result superficially
like Theorem 4.3, but no conjugation operator is invoked in Theorem 4.7 or its corollary.
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5. CONCLUSION

Strictly real Banach algebras form a well delineated and manageable class of qua-
sicommutative Banach algebras.
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