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Abstract

Assume that G is a finite group, N is a nontrivial normal subgroup of G and p is an odd prime.
Let Irrp(G) = {χ ∈ Irr(G) : χ(1) = 1 or p | χ(1)} and Irrp(G|N) = {χ ∈ Irrp(G) : N � ker χ}. The average
character degree of irreducible characters of Irrp(G) and the average character degree of irreducible
characters of Irrp(G|N) are denoted by acdp(G) and acdp(G|N), respectively. We show that if Irrp(G|N) � ∅
and acdp(G|N) < acdp(PSL2(p)), then G is p-solvable and Op′ (G) is solvable. We find examples that make
this bound best possible. Moreover, we see that if Irrp(G|N) = ∅, then N is p-solvable and P ∩ N and PN/N
are abelian for every P ∈ Sylp(G).
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1. Introduction

In this paper, G is a finite group and p is a prime divisor of |G|. Let Irr(G) denote the set
of (complex) irreducible characters of G. For a normal subgroup N of G and θ ∈ Irr(N),
let Irr(G|N) = {χ ∈ Irr(G) : N � kerχ} and Irr(θG) denote the set of the irreducible
constituents of the induced character θG. The average character degree of G is denoted
by acd(G) (see [5, 8]) and it is defined by

acd(G) =
Σχ∈Irr(G)χ(1)
|Irr(G)| .

By acd(G|N), we mean the average character degree of the irreducible
characters in Irr(G|N) (see [3]). In [1], it has been shown that if acd(G|N) <
max(acd(PSL2(p)), 16/5), then G is p-solvable.

We write

Irrp(G) = {χ ∈ Irr(G) : χ(1) = 1 or p | χ(1)}
Irrp(G|N) = Irrp(G) ∩ Irr(G|N)

Irrp(θG) = Irrp(G) ∩ Irr(θG) for every θ ∈ Irr(N).
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Let acdp(G), acdp(G|N) and acdp(θG) be the average degree of irreducible characters
belonging to Irrp(G), Irrp(G|N) and Irrp(θG), respectively. For Δ ⊆ Irr(G),

acdp(Δ) =
Σχ∈Δ∩Irrp(G)χ(1)
|Δ ∩ Irrp(G)| .

Nguyen and Tiep [7] have shown that if either p ≥ 5 and acdp(G) < acdp(PSL2(p))
or p ∈ {2, 3} and acdp(G) < acdp(PSL2(5)), then G is p-solvable and Op′(G) is solvable,
where Op′(G) is the minimal normal subgroup of G whose quotient is a p′-group.
Akhlaghi [2] proved that if N is a nontrivial normal subgroup of G with Irr2(G|N) � ∅
and acd2(G|N) < 5/2, then G is solvable.

We continue this investigation and show that considering the appropriate bound for
acdp(G|N) instead of acdp(G) leads us to the p-solvability of G.

Let f (p) = acdp(PSL2(p)) if p ≥ 5 and otherwise, let f (p) = acdp(PSL2(5)). So,

f (p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(p + 1)/2 if p ≥ 5,
7/3 if p = 3,
5/2 if p = 2.

THEOREM 1.1. Let 1 � N � G and p be an odd prime divisor of |G|. If G/N is not
p-solvable, then acdp(λG) ≥ f (p) for every λ ∈ Irr(N) with Irrp(λG) � ∅.

THEOREM 1.2. Let p be an odd prime and 1 � N � G with acdp(G|N) < f (p). Then:

(i) either G is p-solvable and Op′(G) is solvable;
(ii) or Irrp(G|N) = ∅, N is p-solvable and for every P ∈ Sylp(G), P ∩ N and PN/N

are abelian.

EXAMPLE 1.3. Let N be a cyclic group of order 2, p be an odd prime and let
G = PSL2(p) × N. If p ≥ 5, then acdp(G|N) = acdp(PSL2(p)). Also, if p = 5, then
acd3(G|N) = acd3(PSL2(5)). This example shows that the bound given in Theorem 1.2
is the best possible.

Let Irrp(G�) = Irrp(G) − {1G} and acd(G�) = Σχ∈Irrp(G�)χ(1)/|Irrp(G�)|. By setting
G = N in Theorem 1.2, we arrive at the following corollary.

COROLLARY 1.4. If acdp(G�) < f (p), then G is p-solvable and Op′(G) is solvable.

We can see that acd3(Alt�4) = 5/3 < 7/3 and the Sylow 3-subgroup of Alt4 is not
normal in Alt4. This shows that the assumption acdp(G�) < f (p) does not guarantee
normality of the Sylow p-subgroup of G.

2. The main results

We first state some lemmas that will be used in the proof of Theorems 1.1 and 1.2.
For a nonempty finite subset of real numbers X, by ave(X), we mean the average of X.

https://doi.org/10.1017/S0004972723000722 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000722


[3] Average character degree 509

LEMMA 2.1 [1, Lemma 3]. Let X be a nonempty finite subset of real numbers and
{A1, . . . , At} be a partition of X. If d is a real number such that ave(Ai) ≥ d (respectively
< d) for 1 ≤ i ≤ t, then ave(X) ≥ d (respectively < d).

LEMMA 2.2 [7, Theorem B]. Let p be a prime divisor of |G|. If acdp(G) < f (p), then
G is p-solvable and Op′(G) is solvable.

LEMMA 2.3 [6, Theorem A]. Let Z be a normal subgroup of a finite group G,
λ ∈ Irr(Z) and let P/Z ∈ Sylp(G/Z). If χ(1)/λ(1) is coprime to p for every χ ∈ Irr(G)
lying over λ, then P/Z is abelian.

We are ready to prove Theorems 1.1 and 1.2.

PROOF OF THEOREM 1.1. We complete the proof by induction on |G| + |N |. Take λ ∈
Irr(N) with Irrp(λG) � ∅. Let E be a maximal normal subgroup of G such that N ≤ E
and G/E is not p-solvable. Then, G/E admits the unique minimal normal subgroup
M/E and it is easy to check that M/E is not p-solvable. Assume that {μ1, . . . , μt} ⊆
Irr(λE) such that every element of Irr(λE) is conjugate to exactly one of the elements
in {μ1, . . . , μt}. If N � E, then from the hypothesis, Irrp(μG

i ) = ∅ or acdp(μG
i ) ≥

f (p), for 1 ≤ i ≤ t. As Irr(λG) = ∪̇t
i=1Irr(μG

i ) and Irrp(λG) � ∅, we conclude that
Irrp(μG

j ) � ∅ for some j with 1 ≤ j ≤ t. So, it follows from Lemma 2.1 that acdp(λG) ≥
f (p), as desired. Next, suppose that N = E. If λ is extendible to χ ∈ Irr(G), then
Gallagher’s theorem [4, Corollary 6.17] implies that Irr(λG) = {χμ : μ ∈ Irr(G/N)} and
for every μ1, μ2 ∈ Irr(G/N) with μ1 � μ2, we have χμ1 � χμ2. Thus, either p | χ(1)
and acdp(λG) = χ(1)acd(G/N) or p � χ(1) and acdp(λG) = χ(1)acdp(G/N). Obviously,
acd(G/N) ≥ 1. So, in the former case, acdp(λG) ≥ p > f (p), as needed. Since G/N
is not p-solvable, Lemma 2.2 yields acdp(G/N) ≥ f (p). Hence, if p � χ(1), then
acdp(λG) = χ(1)acdp(G/N) ≥ f (p), as desired. Finally, suppose that λ is not extendible
to G. Then, for every χ ∈ Irr(λG), χ(1) > λ(1) ≥ 1. This means that p | χ(1) for every
χ ∈ Irrp(λG). Therefore, acdp(λG) ≥ p > f (p). Now, the proof is complete. �

PROOF OF THEOREM 1.2. First, assume that Irrp(G|N) � ∅. As acdp(G|N) < f (p) < p,
we see that Irrp(G|N) contains a linear character χ. Then, χN � 1N and as χ(1) = 1,
we have χN ∈ Irr(N). This implies that N admits some linear characters which are
extendible to G and they are nonprincipal. Assume that {μ1, . . . , μt} is the set of all
linear characters of N which are extendible to G and are nonprincipal. Since the μis
are extendible to G, none of them are G-conjugate. If 1 ≤ i � j ≤ t and there exists
χ ∈ Irr(μG

i ) ∩ Irr(μG
j ), then μi and μj are irreducible constituents of χN . It follows from

Clifford’s correspondence that μi and μj are G-conjugate, which is a contradiction with
our former assumption on the μis. This shows that

Irr(μG
i ) ∩ Irr(μG

j ) = ∅ for 1 ≤ i � j ≤ t. (2.1)

Let 1 ≤ i ≤ t. Our assumption on the μi guarantees the existence of a linear character
χi ∈ Irr(G) such that (χi)N = μi. By Gallagher’s theorem [4, Corollary 6.17], Irr(μG

i ) =
{χiϕ : ϕ ∈ Irr(G/N)} and for distinct characters ϕ1,ϕ2 ∈ Irr(G/N), χiϕ1 � χiϕ2.
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Since χi(1) = 1,

Irrp(μG
i ) = {χiϕ : ϕ ∈ Irrp(G/N)}. (2.2)

As μi � 1N , χi ∈ Irr(G|N). Therefore,

Irrp(μG
i ) ⊆ Irrp(G|N).

In view of (2.1),
⋃t

i=1 Irr(μG
i ) is disjoint. Take

A = Irrp(G|N) − ∪̇t
i=1Irr(μG

i ).

If χ ∈ Irr(G|N) is linear, then χN � 1N and χN(1) = χ(1) = 1. Thus, χN ∈ Irr(N)
is nonprincipal. It follows from our assumption on the μi that χN ∈ {μ1, . . . , μt}.
Therefore, χ ∈ Irr(μG

j ) for some 1 ≤ j ≤ t. This implies that χ(1) ≥ p for every χ ∈ A.
Therefore,

acdp(A) ≥ p > f (p). (2.3)

By (2.1) and (2.2), |∪̇t
i=1Irrp(μG

i )| = t|Irrp(G/N)| and

acdp(∪̇t
i=1Irr(μG

i )) =
Σt

i=1Σχ∈Irrp(μG
i )χ(1)

|∪̇t
i=1Irrp(μG

i )|

=
Σt

i=1Σϕ∈Irrp(G/N)(χiϕ)(1)
t|Irrp(G/N)|

=
tΣϕ∈Irrp(G/N)ϕ(1)

t|Irrp(G/N)| = acdp(G/N).

If acdp(G/N) ≥ f (p), then

acdp(∪̇t
i=1Irr(μG

i )) ≥ f (p). (2.4)

Note that Irrp(G|N) = (∪̇t
i=1Irrp(μG

i ))∪̇A. It follows from (2.3), (2.4) and Lemma 2.1
that acdp(G|N) ≥ f (p), which is a contradiction. This implies that acdp(G/N) < f (p).
As acdp(G|N) < f (p) and Irrp(G) = Irrp(G|N)∪̇Irrp(G/N), we deduce from Lemma
2.1 that acdp(G) < f (p). Hence, Lemma 2.2 implies that G is p-solvable and Op′(G) is
solvable, as desired.

Now, assume that Irrp(G|N) = ∅. Working towards a contradiction, suppose that
there exists θ ∈ Irr(N) such that p | θ(1). We have θ(1) | χ(1) for every χ ∈ Irr(θG).
Thus, p | χ(1) for every χ ∈ Irr(θG). Clearly, θ � 1N . So, χ ∈ Irrp(θG) ⊆ Irrp(G|N). This
means that Irrp(G|N) � ∅, which is a contradiction. This implies that p � θ(1) for every
θ ∈ Irr(N). It follows from the Ito–Michler theorem [4, Corollary 12.34] that N has
a normal and abelian Sylow p-subgroup. Thus, N is p-solvable. Now, assume that
1N � θ ∈ Irr(N) and χ ∈ Irr(θG). Hence, χ ∈ Irr(G|N). As Irrp(G|N) = ∅, we deduce
that p � χ(1). Thus, p � χ(1)/θ(1). It follows from Lemma 2.3 that G/N has an abelian
Sylow p-subgroup. This completes the proof. �
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