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PURE COMPACTIFICATIONS IN QUASI-PRIMAL 
VARIETIES 

WALTER TAYLOR 

We prove that if 21 is quasi-primal, then every algebra in HSP21 has a pure 
embedding into a product of finite algebras. For a general theory of v a r i e t i e s ^ 
for which every 21 G i^ can be purely embedded in an equationally compact 
algebra© 6 "^, and for all notions not explained here, the reader is referred to 
[38; 6; or 5]. This theorem was known for Boolean algebras simply as a corol­
lary of the Stone representation theorem and the fact that in the variety of 
Boolean algebras, all embeddings are pure [2]. We extend this last result by 
proving that if 21 is quasi-primal and has no proper subalgebras other than 
singletons, then all embeddings in HSP21 are pure. Finally, as a corollary of the 
main theorem, one immediately sees that "Mycielski's problem" [30, p. 484] 
has a positive solution for such varieties: if 21 is quasi-primal, then every 
equationally compact algebra in HSP2Ï is a retract of a compact topological 
algebra. 

There are only a few interesting classes K of structures known to have the 
property that every 21 £ K can be purely embedded in an atomic-compact 
structure (i.e. for algebras, an equationally compact algebra): Abelian groups 
[26], mono-unary algebras [40], Boolean algebras [38], G-sets [4; 38, 3.15], 
multi-unary relational structures (easy), and lattices taken as a class of 
partially ordered sets (Banaschewski and Nelson—unpublished). This property 
fails for bi-unary algebras [38, 3.17], distributive lattices (R. McKenzie— 
see [38, 3.16]) and semilattices [31]—all interesting classes K because they 
are residually small, that is, each 21 £ K can be embedded in an equationally 
compact algebra. And of course our property fails for any K which is not 
residually small, of which there are many interesting examples. Again see [38; 
6; or 5] for background. For the status of Mycielski's problem mentioned 
above see [40; or 38, p. 43] and references given there. 

The main theorems mentioned above are in § 1. In § 2 we give a new example 
of a residually small variety (Stone algebras) in which not every algebra has 
an equationally compact pure extension. In § 3 we supply an example of a 
finite algebra 21 with HSP21 not residually small, and in § 4 we answer some 
questions of Lausch and Nobauer. 

1. Quas i -pr imal varieties. Quasi-primal algebras were introduced by 
A. F. Pixley under the name "simple algebraic algebras" in [32; see also 33; 
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QUASI-PRIMAL VARIETIES 51 

18; 35; and 36]. We will define a finite algebra to be quasi-primal if and only if 
§1 satisfies any (hence all) of the conditions of Theorem 1.1, which we include 
for information only, since all of our results can be discovered directly by using 
Q of condition (ii). One may check that an infinite algebra 21 obeying 1.1 (ii) 
below generates a variety which is not residually small and thus does not 
satisfy anything like 1.6. But we are unable to decide whether Mycielski's 
problem holds for this HSP21. For B, C Q A and / : B -* C, let us say that 
an operation F : Ak —> A preserves f if and only if B and C are subuniverses of 
(A, F) a n d / : (B, F \ Bk) -^ (C, F \ Ck) is a homomorphism. We will tacitly 
assume that every polynomial of 21, that is, derived operation (without con­
stants!), is one of the fundamental operations of 21. (We may as well do this 
since we are studying properties which are invariant under equivalence of 
varieties.) 

THEOREM 1.1 (A. F. Pixley) For 21 = {A, Ft)teT finite, the following four 
conditions are equivalent: 

(i) there exists a family U of bisections f : B —> C with each B, C ÇI A, such 
that the operations of 21 are precisely those operations which preserve each f G U; 

(ii) the quaternary discriminator 

Q(a,b,c,d) = \C
d ^ = * 

is an operation of 21; 
(iii) the ternary discriminator 

r^f -, x (c if a = b 
T(a, b,c) = < .f 

(a u a 9^ b 

is an operation of 21; 
(iv) every subalgebra of 21 is simple and HSP21 has permutable and distributive 

congruences. 

The implications (i) => (ii) => (iii) => (iv) are immediate. For an elegant 
proof that (iv) => (i), see [32, p. 368]. 

We now fix a quasi-primal 21 = (A ; Q, Fiy F2, . . .), with Q the quaternary 
discriminator on A. We next review the representation theory for HSP2I. 
Parts (ii) and (iii) of the next Proposition were first proved by A. F. Pixley 
[32, Theorem 1.4]. 

PROPOSITION 1.2 (i) / / 6 is any congruence on 93 Q 217, then there exists a 
filter G on I such that 

(*) 6 = {(a,0) G B*: {ie I: a(i) = j8(i)} G G}. 

(ii) HSP21 = ISP2I. 
(iii) Every finite algebra in HSP21 is a product of subalgebras of 21. 

Sketch of proof. To prove (i), either use Jônsson's Lemma [21, Corollary 3.4] 
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or proceed directly by taking 

Go = \{i e I:a(i) = P{i)}: (a, 0) G 6} 
and 

G = [X C J : (3 Ye Go)YQX}. 

The operation Q quickly shows that G is a filter and that (*) holds. Then (ii) is 
immediate. To see (iii), note that any finite 33 is Ç 217 for some finite / ; 
taking | / | as small as possible, one easily gets 93 "rectangular" using Q. 

For injectivity we refer the reader to [12], [3], or [38, § 2] and references 
given there. We intend injectivity in the category of non-empty homomor-
phisms, and so we will not be concerned with "0 — regularity" as in Day 
[12; cf. the remarks in 24]. The next proposition can be proved directly from 
Day [12], by noticing that 21 must be self-injective in Day's terminology, 
that is, demi-semi-primal in Quackenbush's terminology [35; see especially 
Theorem 5.6]. 

PROPOSITION 1.3. / / 31 has no proper subalgebras other than singletons, then 
21 is infective in HSP21. 

N.b. There exist quasi-primal algebras 21 other than those described in 1.3 
which are obviously self-injective and hence injective in HSP21, e.g. 21 = 
(A, Q). But some are not injective in HSP2I, e.g. 2Ï = ({0, 1, 2}, Q, A ) 
(where A denotes g.l.b.). For the reader may easily check that {0, 1} is a 
subuniverse of 21 and that 0 i—> 0, 1 i—> 2 cannot be extended to an endomor-
phism of 21. 

The next proposition is automatic if the conditions of 1.3 hold. Of course 21 
is an absolute retract because it is a maximal subdirect irreducible [38, 1.8], 
but this does not automatically give us direct powers of 21 [39]. For a stronger 
fact than 1.4, see Quackenbush [36, Theorem 7.5]. The proof here is simpler. 

PROPOSITION 1.4. Every power 217 is an absolute retract in HSP21. 

Proof. By 1.2(ii) it is enough to retract any embedding <p : 21z —> 21J. Let 
Tj denote jth co-ordinate projection 21 ^ —* 21. For each i £ I, select a, b G 217 

which differ only in the ith place. Clearly there must exist j = j(i) G J so 
that Wj<p(a) 7^ Tj(f(b). It readily follows from 1.2(i) and the simplicity of 21 
that Tj: o ip = at o iTi for some automorphism at of 21. And so 

yjs{x) = ( a r 1 (*;(*)): i 6 / ) 

defines a homomorphism \f/: 21J —•> 2 1 7 with \j/ o ç = 1. 

THEOREM 1.5. / / 21 is quasi-primal, then all embeddings in HSP21 are pure 
embeddings if and only if 21 has no proper subalgebras except (possibly) singletons. 

Proof. If 95 £ 21, 1 < 1»| < |2l|, then there is no retraction of 21 onto 93, 
since % is simple, and hence 93 Ç 21 is not a pure embedding. 
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Conversely, if §1 has no proper non-trivial subalgebras, then every finitely 
generated algebra in HSP21 is a finite power of 21 and hence an absolute 
retract by 1.4. Thus if / : 33 —» Ë is an embedding, then / \ 33' is retractable, 
hence pure, whenever 33' is any finitely generated subalgebra of 33. It follows 
immediately that / is a pure embedding. 

For some information on absolutely pure algebras, consult Bacsich [2]. In 
fact, Theorem 1.5 is an immediate corollary of proposition 1.4 and Lemma 4.5 
of [2]. 

Note that if 21 is quasi-primal, then for each n ^ 1 there exists a derived 
(2n + 2)-ary operation Qn of 21 such that 

( "f — 
Qn(ah...,an,b1,...ybn,c,d) = {C

d
 1

o t ^ r - . ' = bt (1 g iS n) 
otherwise. 

For Qn may be defined recursively via Qi = Q and 

Qn+i(au . . . , an+i, 6i, . . . , bn+u c, d) 

= Q(an+U 6n+i, Qn(au . . . , an} bu . . . , bn, c, d), d). 

THEOREM 1.6. / / 2t is quasi-primal, then every algebra in HSP2I has a pure 
embedding into a product of subalgebras of 21. 

Proof. Let 33 Ç 217; let 131 denote the collection of ultrafilters on / ; for 
/x G ftf, let 33M Ç 21 denote the image of 33 under the natural map 7rM : 211 —» 
21 7/M == 21- We will be done when we have shown that -w : 33 —> Il33M is a pure 
embedding (ir(b) = (ir^(b) : /x 6 ftO). To do this, let us take terms «i, ft, . . . , 
a*, ft in variables x1, . . . , xw, y1, . . . , ym such that, for fixed b1, . . . , bn Ç 5 , 

(1) 8 M 3 / . . J * A ( a i ( ? j ) ^ ^ j ) ) . 

Now define e/ to be the family of sets J Q I such that there exist c1, . . . , 
c™ G J3 such that 

(2) aj(bt\ . . . , 6A c,1, . . . , cr) = P,(bt\ . . . , bt
n, ct\ . . . , 0 ( 1 ^ j S k) 

whenever i £ J. We will show that J is an ideal of sets; we need only check 
that iî J, K £ J, then J VJ K £ J. Thus let us assume that (2) holds and 
also that 

(3) a,(bt\ . . . , bf, dt\ . . . , dt
m) = / W . • • - *A dt\ • • • > dim) (1 ^ i ^ *) 

whenever i G i£. For j = 1, . . . , k, let c^, ft £ 33 be defined by 

a, = «,(&*, . . . , 6», c1, . . . , cm) 

ft = ^(ft1, . . . ,&* , c1 c«). 

And finally define es(l ^ s S m) as 

es = Qk(ôLi, . • • , a*, ft, . . . , ft, cs, ds), 
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where Qk is the operation defined immediately before this theorem. 
To finish showing J U K Ç ^, we will show that 

(4) aj(bi b{", et
l er) = Pjibi1, . . . , b?, et\ . . . . e«»)(l ^ j è k) 

whenever i^JKJK.lii^J, then (2) holds, and so for each j , âj and J3j are 
equal in the ith co-ordinate; thus (by the announced property of Qh) ef = 
Cis(l ^ s S m), and so (4) reduces to (2). On the other hand if i 6 K — J, 
then for some j , âj and 0y are unequal in the ith co-ordinate; thus et

s = dt
s 

(1 ^ 5 ^ m) and so (4) reduces to (3). 
We know by (1) that the ideal J is proper, that is, / (? J ; thus there exists 

an ultrafilter \x containing no member of J. Finally, we claim that, for this JU, 

(5) « ^ 1 3 / . . . f A M T T A ? ) - MirJ, y)]. 

For suppose that (5) is false; that is, for some ^ (c 1 ) , . . . , 7rM(cm) we have 

ajijrjj1, . . . , 7rM6n, ir^c1, . . . , 7rMcw) 

= ^ W 1 , • • • , * ^ , W1, . . . , TMCW) (1 ^ j ^ k). 

But this says that (2) holds for i £ J g /x, a contradiction, thus establishing 
(5). But, as is well known, the validity of (1) =» (5) is equivalent to the purity 
of the embedding 33 -> IT23M [38, Lemma 3.2]. 

We remark that the following theorem is an immediate corollary of Theorem 
1.6 (and vice versa)— for the notion of pure-irreducibility and its connections 
with this subject see [38, § 3; or 6, § 4]; a more general notion subsuming pure-
irreducibility can be found in [11]. 

THEOREM 1.7. If 21 is quasi-primal, then the pure-irreducible algebras in 
HSP21 are precisely the subalgebras of 21. 

We now turn to the possibility of applying Theorem 1.6 to some special 
algebras which are known to be quasi-primal. We should point out that condi­
tion (i) of Theorem 1.1 really gives us a complete catalog of quasi-primal 
algebras; for each finite A there are only finitely many families U of bijections 
/ : B —> C with B, C C A, and so there are only finitely many inequivalent 
varieties HSP2I with 21 quasi-primal of fixed finite power. Nonetheless quasi-
primal algebras sometimes arise in a "natural" way, apparently rather different 
from condition (i) of 1.1. 

COROLLARY 1.8. If ^ is a variety of commutative rings with unit obeying 
some law xm = x, then every ring in^ is a pure subring of a product of finite 
rings. 

Sketch of proof. The law xm = x implies the absence of non-zero nilpotent 
elements, and so, by a theorem of G. Birkhoff [10], every subdirectly irreducible 
ring R £ ^ is a field—in which the equation xm — x can have at most m roots; 
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thus \R\ ^ m. Consider first the case that all fields R Ç^if have the same 
characteristic, p. Now finitely many fields of characteristic p can always be 
embedded in a single field GF(pk) for some k. (N.b. But GF(pk) may itself fail 
to be in if—note Banaschewski's example [3] of x22 = x—this if contains 
GF(\) and GF(8), but not GF(64).) In this case we have ifC RSPGF(pk), 
and GF(pk) is known [32] to be quasi-primal, for it is not hard to express the 
ternary discriminator in GF(pk). Finally, if if has fields of various character­
istics pi, ... , ps, then choose integers a\, . . . , as so that 

22 ciipi . . .pi. . .ps = 1 
i=\ 

(where " indicates a deletion) and let t(x\y . . . , xs) be the ring-theoretic term 

s 

^ d{pi . . .pi . . . psXi. 

It is clear that if if i is the subvariety of if generated by fields in if of char­
acteristic ph then 

if i tz £(xi, . . . , * , ) — * < (1 = * = s)y 

and also 

y = HSPC^I u... \Jifs). 
Thus the theory of independent varieties [17; 19; 13; 9] tells us that every ring 
R Ç i^ is a product, i? 9Ë i?i X . . . X R8, with Rt Ç f* (1 ^ i ^ 5), and so 
we may apply the result for single characteristics. (Note that if 21 C g is pure 
and S3 C £> is pure, then S l X 3 3 Ç g X S ) i s pure.) 

There have been many definitions of "Post algebras," not all equivalent, 
and certainly not all equational. But the following definition includes a portion 
of the known theory. Let 

3t„ = <{0 , . . . ,w - 1}, A, V , ' , 0 , . . . , n - 1), 

where A and V are the binary operations of minimum and maximum, x' = 
x + 1 (mod n), and 0, . . . , n — 1 are constants. Following Ash [1] we define 
the variety of Post algebras of order n to be HSP2lw. For another definition of 
Post algebras as a variety, see Traczyk [42] ; for many other definitions of Post 
algebras, see references given in [7; 8; 42; or 43]. E. L. Post showed in 1921 [34] 
that %n is functionally complete, and hence primal, and so the following corol­
lary is immediate (either from 1.5 or 1.6). 

COROLLARY 1.9. Every Post algebra of order n is a pure subalgebra of a power 

There are some interesting quasi-primal reducts of 2IW to which we can apply 
1.6 but not 1.5, namely the double Heyting algebras 

8n = {<0,e2, . . . , e n - i , 1), A, V , * , + } , 
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where A and V are meet and join operators for the linear ordering 0 < e<i < 
. . . < en-\ < 1, * is the binary operation of relative pseudocomplement, that is, 
x ^ a * b if and only if x A a ^ b, and + is defined dually to *. One may check 
that the quaternary discriminator is defined on 2n by taking 

Q(x, y, z, w) = [(p(x, y) * q{x, y)) A z] V [(g(x, y) + p{x, y)) A w], 

where 

p(x, y) = (x V 3>) * ((x A ;y) + (x V ?)) 

and 

g(x, y) = (x A y) + ((x V y) * (x A ?)) . 

(These are only special instances of a wide class of double Heyting algebras 
considered by Katrinâk [23].) 

COROLLARY 1.10. For fixed n, every double Heyting algebra in HSP8n is a 
pure subalgebra of a product 0} finite algebras. 

We will omit the proof that 83 is equivalent to ({0, e, 1}, A, V , *, + ) where 
* and + are pseudocomplement x* = x * 0 and dual pseudocomplement 
x+ = x + 1 ; this latter algebra generates a subvariety of the variety of double 
Stone algebras known as trivalent Lukasiewicz algebras (see [43] and references 
given there). Hence the next corollary is immediate; the dual pseudocomple­
ment + is essential—the corresponding statement for the (A, V, *)-reduct is 
false; see § 2 below. 

COROLLARY 1.11. Every trivalent Lukasiewicz algebra is a pure subalgebra of 
a product of finite algebras. 

Finally, in connection with jViycielski's problem mentioned in the introduc­
tion, we have the next corollary. The result concerning Post algebras was pre­
viously proved by Beazer [7]. 

COROLLARY 1.12. / / §1 is quasi-primal, then every equationally compact algebra 
33 in HSP2Ï is a retract of a compact topological algebra (in fact, a product of 
finite algebras). The conclusion holds, in particular, for 33 a commutative ring 
obeying some law xm = x, a Post algebra of order n, a double Heyting algebra in 
HSP£W or a trivalent Lukasiewicz algebra. 

One further example of varieties to which 1.6 applies is any variety 3f n (n < co) 
of monadic algebras (see Monk [29] or Quackenbush [36, § 10]). 

2. A Stone algebra with no equationally compact hull. An algebra 
21 = (A ; A , V , 0, 1, *) is a Stone algebra if and only if (A ; A , V , 0, 1 ) is a 
distributive lattice with 0 and 1, * is a unary operation of pseudocomplementa-
tion, that is,x A a = 0<-»x ^ a * , and * satisfies the Stone identity 

x* V x** — 1. 
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Equivalently, the class of Stone algebras is the variety ¥ given by the equa­
tions defining distributive lattices with 0 and 1 together with these equations: 

x — x A x** 

x A x* — 0 x* V x** — 1 

(x A y)* — x* V y* 

(x V y)* — x* A y*. 

The only subdirectly irreducible Stone algebras are the two-element Boolean 
algebra and the three-element algebra S3 = ({0, e, 1}, A, V, 0, 1, *) where 
0 < e < l , and0* = l,e* = 1* = O . T h u s ^ = HSP£ 3 and so^ 7 isresidually 
small [38; 6]; moreover */* has enough injectives. For these and related facts, 
see [16, § 14] and references given there. 

THEOREM 2.1. There exists a Stone algebra which is not a pure subalgebra of 
any equationally compact algebra. 

Proof. R. McKenzie proved (see [38, p. 50]) that there exists a distributive 
lattice L which is not a pure subalgebra of any equationally compact algebra 
(In fact,the example is presented in [38, p. 50] as an example of pure-irreducibility ; 
but our statement here is a corollary—see [38, § 3 ; or 6]. It is easy to see that the 
large pure-irreducible algebra given there has a greatest and a least element. 
If it did not, one could always adjoin them, yielding a pure extension.) Take L 
to be a family of subsets of a set P which is closed under C\ and U and con­
tains 0 and P. Our Stone algebra will be a certain subalgebra of (53

p. For each 
X 6 L define F{\) G g 3

p via 

EV> w x / l if x G X 
^ ( x ) (* ) = \ e if « e x . 

Now let A = {(0, 0, . . .)} U {F(\) : X G L). It is easy to check that A is a 
subuniverse of Ë3

P and so defines a Stone algebra 81. We first claim that 
F[L] = {/(X) : X G L} is a pure sublattice of (̂ 4, A , V )—in fact it is obviously 
a retract of (A, A, V ) by mapping (0, 0, 0, . . .) onto (e, e, e, . . .). Now if 
§ ( C 3 3 = (B; A , V , 0, 1, * ) were any pure embedding of 21 in an equationally 
compact Stone algebra then we would have L = F(L) Q (A; A, V ) Q 
(B ; A , V ) with both embeddings pure and (B ; A , V ) equationally compact— 
a contradiction. 

This theorem should be compared with Theorem 1.11 above about HSP 
({0, e, 1}, A, V, 0, 1, *, +). We are unable to decide whether HSP§ 3 admits 
pure compactifications, where § 3 is a 3-element Heyting algebra (cf. 1.10 
above). And of course Theorem 2.1 does not settle Mycielski's question for 
Stone algebras (which is also open for distributive lattices) : is every equationally 
compact Stone algebra a retract of some compact topological algebra? 
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3. A finite 21 with HSP 21 not residually small. Recall [38] that a variety 
i^ is residually small if and only if i^ contains only a setoi subdirectly irreduci­
ble algebras—equivalently, if and only if every algebra in i^ can be embedded 
in an equationally compact algebra. In [38] we remarked that if 21 is finite and 
HSP21 has distributive congruences, then HSP2I is residually small (even 
residually finite) as follows readily from Jônsson's Lemma [21], but we were 
unable to state whether there exists any finite 21 with HSP21 not residually 
small. We thank R. W. Quackenbush for pointing out that J. A. Gerhard had 
in effect already found such 21 of power 3. We will see that 3 is best possible. 

THEOREM 3.1. There exists a 3-element idempotent semigroup 21 with HSP2Ï 
not residually small. 

Proof. Let 21 = ({0, 1, 2}, • ) with this multiplication table: 

0 1 2 

0 0 0 0 
1 1 1 1 . 
2 0 1 2 

(Equivalently take the concrete semigroup consisting of the identity function 
and two constant functions on any set of more than one element.) It follows 
from work of J. A. Gerhard [14] that HSP2Ï is defined by the laws 

x{yz) — {xy)z 

xyx — xy. 

We next note that in [15] Gerhard has given an example of a (countably) 
infinite subdirectly irreducible semigroup in this variety, but his construction 
really applies to any cardinality. In fact, let X be any set, 0, 1 f X, and for 
each x £ X, define mappings ax, bx, cx : X —> X as follows 

ax(y) = x 

if y = x 
if y y£ x 

, v (y if y = x 

if y 9^ x. 

One may check that {a0, ci\} U {ax, bx, cx : x G X, x ^ 0, 1} is closed under 
composition and defines a semigroup 5 in this variety. Now if 6 is any con­
gruence with ax 6 ay(x ^ y), then 

(io = bxav 6 bxax = ax = cxax 6 cxay = au 

and so a0 6 a,\. Thus if 6 is a maximal congruence separating a0 and a\, then 
S/d is subdirectly irreducible and |S/0| = \X\. 
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Notice t ha t the semigroup 31 of Theorem 3.1 is isomorphic to ((0, e, 1), • ) 
under the correspondence 

e <-> 1 

1 ^ 0 , 

where • is defined in the 3-element Stone algebra via 

x - y = x V (x* A y). 

T h u s HSP21 is (within equivalence) a reduct of the variety of Stone algebras. 
J . Baldwin and J . Berman have supplied another example of a three-element 

algebra which generates a variety which is not residually small: a three-element 
pseudocomplemented semilattice [20; 37]. If 31 is such, then 21 is not a Boolean 
algebra; by Jones [20], the only proper subvariety of pseudocomplemented 
semilattices is the variety of Boolean algebras; hence HSP21 = the var iety of 
pseudocomplemented semilattices, which is known to be not residually small. 
One easily sees t ha t these two examples are not equivalent. 

T H E O R E M 3.2. If 21 is any 2-element algebra, then HSP21 is residually small, 
in fact residually of power 2. 

Sketch of proof. I t is enough to check through equivalence classes of two-
element algebras as enumerated by Post in 1941. We will use the reformulation 
by Lyndon in 1951 [27]. Systems I are all familiar (Boolean rings, algebras, 
groups, 3-groups, etc .) . Systems II have implication algebras as reducts, and 
these are congruence-distributive [28; see also 22 for an explicit representation]. 
Systems I I I are explicitly represented in [27], and Systems IV possess a 
"median" operator, and so are well known to have distributive congruences. 

4. S o m e p r o b l e m s of L a u s c h a n d Nobauer . With quasi-primal algebras 
we can solve three open problems of Lausch and Nobauer [25]. T h e first, on 
page 42, asks whether there exists a variety "V without constants which is semi-
degenerate, t ha t is, no algebra of power > 1 m^V has a one-element subalgebra. 
Clearly if 21 = ({0, 1}, Q, p), where p(0) = 1, p(l) = 0, then *V = HSP2Ï 
is as desired (in [41] ^ is called the variety of "Boolean 3-algebras"). 

Problem (a) on page 70 asks, "if 21 C 33 (E ^ , and 2 is a set of equations 
with constants from A which is satisfiable in some S 2 21, S (E 'f, then must 2 be 
satisfiable in some T) Q. 33, 3) G i^ ?" T o s e e the negative answer, we let "f 
be the var iety of commutat ive rings with unit obeying the law x22 — x, 
21 = GF{2), 33 = GF(S), 2 = {x2 - x + 1}. Clearly 2 is satisfiable in 
S = GF(4) 2 21; bu t 2 is clearly not satisfiable in 33, and hence not in any 
^ - e x t e n s i o n of 33, since 33 is aT^-maximal subdirect irreducible, and hence an 
absolute retract i n ^ (see [38], especially 2.7). (This example is essentially due 
to B. Banaschewski. An isomorphic example, in the language of quasi-primals, 
was given by R. W. Quackenbush [36, 8.2].) 
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Problem (b) on page 71 asks, "if 21 Ç i^ and 2 is a set of equations with 
constants from A which is satisfiable in some 33 2 21, S3 £ ^ , awd which has at 
most one solution in any 33 3 21, 93 G ^ , /ftew mws/ 2 &£ satisfiable in 21?" 
To see the negative answer, we let 93 = ({0, 1, 2}, T, 0, 1) (where 0, 1 are 
constants and T is the ternary discriminator as in 1.1 (iii) above), and take 
V = HSP93and2l = ({0,1}, T, 0, 1) Ç93. We take 

rr(o ,* f i ) = o 
\r( i ,* ,o) = l. 

One easily checks that 2 is satisfiable in 33 (by x = 2), but not in 21; to finish, 
we need to see the uniqueness of a solution of 2 in any S 3 21, 6 € ^ . By 
1.2 (ii), we need only see the uniqueness of a solution in any power 93 z; but 
obviously the only solution in93z is x = (2, 2, . . . , 2). 

Added in Proof. For further information on quasi-primal varieties, consult 
Keimel and Werner [47]. 

Bulman-Fleming and Werner [45] have proved that in a quasi-primal variety 
the equationally compact algebras are precisely (finite) products of extensions 
by complete Boolean algebras of subalgebras of the quasi-primal generator, 
and that the topologically compact algebras are all products of finite algebras. 
Also see Banaschewski and Nelson [44]. 

The author thanks S. O. Macdonald and J. Groves for pointing out that the 
8-element quaternion group generates a variety which is not residually small. 
The proof is a natural generalization of [49, Example 51.33, p. 147]. This 
variety is given by the laws [x2, y] = 1 and x4 = 1 (together with laws for 
group theory) [48, Theorem 3.2]. This group is as small as possible, for the 
6-element non-Abelian group generates a residually small variety (see e.g. [50]). 

Problem (a) of Lausch and Nobauer has also been solved by Hule and Millier 
[46]. 
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