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PURE COMPACTIFICATIONS IN QUASI-PRIMAL
VARIETIES

WALTER TAYLOR

We prove that if U is quasi-primal, then every algebra in HSPU has a pure
embedding into a product of finite algebras. For a general theory of varieties ?”
for which every % € ¥~ can be purely embedded in an equationally compact
algebra® € 77, and for all notions not explained here, the reader is referred to
[38; 6; or 5]. This theorem was known for Boolean algebras simply as a corol-
lary of the Stone representation theorem and the fact that in the variety of
Boolean algebras, all embeddings are pure [2]. We extend this last result by
proving that if U s quasi-primal and has no proper subalgebras other than
singletons, then all embeddings in HSP are pure. Finally, as a corollary of the
main theorem, one immediately sees that ‘‘Mycielski's problem’ [30, p. 484]
has a positive solution for such varieties: of U is quasi-primal, then every
equationally compact algebra in HSPU s a retract of a compact topological
algebra.

There are only a few interesting classes K of structures known to have the
property that every A € K can be purely embedded in an atomic-compact
structure (i.e. for algebras, an equationally compact algebra): Abelian groups
[26], mono-unary algebras [40], Boolean algebras [38], G-sets [4; 38, 3.15],
multi-unary relational structures (easy), and lattices taken as a class of
partially ordered sets (Banaschewski and Nelson—unpublished). This property
fails for bi-unary algebras [38, 3.17], distributive lattices (R. McKenzie
see [38, 3.16]) and semilattices [31]—all interesting classes K because they
are residually small, that is, each ) € K can be embedded in an equationally
compact algebra. And of course our property fails for any K which is not
residually small, of which there are many interesting examples. Again see [38;
6; or 5] for background. For the status of Mycielski’'s problem mentioned
above see [40; or 38, p. 43] and references given there.

The main theorems mentioned above are in § 1. In § 2 we give a new example
of a residually small variety (Stone algebras) in which not every algebra has
an equationally compact pure extension. In § 3 we supply an example of a
finite algebra A with HSPY not residually small, and in § 4 we answer some
questions of Lausch and Nébauer.

1. Quasi-primal varieties. Quasi-primal algebras were introduced by
A. F. Pixley under the name ‘“‘simple algebraic algebras’ in [32; see also 33;
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18; 35; and 36]. We will define a finite algebra to be quasi-primal if and only if
9 satisfies any (hence all) of the conditions of Theorem 1.1, which we include
for information only, since all of our results can be discovered directly by using
Q of condition (ii). One may check that an infinite algebra % obeying 1.1 (ii)
below generates a variety which is not residually small and thus does not
satisfy anything like 1.6. But we are unable to decide whether Mycielski's
problem holds for this HSPY. For B, C C 4 and f: B — C, let us say that
an operation F : A*¥ — A preserves f if and only if B and C are subuniverses of
(A, Fyand f: (B, F| B*) — (C, F | C*) is a homomorphism. We will tacitly
assume that every polynomial of %, that is, derived operation (without con-
stants!), is one of the fundamental operations of %. (We may as well do this
since we are studying properties which are invariant under equivalence of
varieties.)

THeOREM 1.1 (A. F. Pixley) For A = (A, F,).cr finite, the following four
conditions are equivalent:
(1) there exists a family U of bijections f : B — C with each B, C € A4, such
that the operations of N are precisely those operations which preserve each f € U;
(ii) the quaternary discriminator

c ifa=190
Q((l,b,C,d) —{d lf(I«#b

is an operation of U;
(iii) the ternary discriminator

c ifa=10

T(a, b, ) = {a ifa#b

is an operation of A;
(iv) every subalgebra of N is simple and HSPA has permutable and distributive
congruences.

The implications (i) = (i) = (iii) = (iv) are immediate. For an elegant
proof that (iv) = (i), see [32, p. 368].

We now fix a quasi-primal A = (4; Q, F1, Fs, .. .), with Q the quaternary
discriminator on 4. We next review the representation theory for HSPY.
Parts (ii) and (iii) of the next Proposition were first proved by A. F. Pixley
[32, Theorem 1.4].

ProrosiTioN 1.2 (i) If 6 is any congruence on B C A, then there exists a
filter G on I such that

*) 0= {(eB) € B:{ic I: a(i) = B®1)} € G}.

(ii) HSPY = ISPI.
(iii) Ewvery finite algebra in HSPU s a product of subalgebras of .

Sketch of proof. To prove (i), either use Jénsson’s Lemma [21, Corollary 3.4]
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or proceed directly by taking
Go={{i € I:a(i) = B@)}: (o, B) € 6}

and
G={XCI:(3Y€cG)Y C X}.

The operation Q quickly shows that G is a filter and that (*) holds. Then (ii) is
immediate. To see (iii), note that any finite B is € A’ for some finite I;
taking || as small as possible, one easily gets 8 ‘‘rectangular’” using Q.

For injectivity we refer the reader to [12], {3], or [38, § 2] and references
given there. We intend injectivity in the category of non-empty homomor-
phisms, and so we will not be concerned with ‘@ — regularity’”’ as in Day
[12; cf. the remarks in 24]. The next proposition can be proved directly from
Day [12], by noticing that A must be self-injective in Day’s terminology,
that is, demi-semi-primal in Quackenbush’s terminology [35; see especially
Theorem 5.6].

ProrositioN 1.3. If A has no proper subalgebras other than singletons, then
A 1s injective in HSPIY.

N.b. There exist quasi-primal algebras U other than those described in 1.3
which are obviously self-injective and hence injective in HSP, e.g. A =
(4, Q). But some are not injective in HSP¥, e.g. % = ({0, 1, 2}, Q, A)
(where A denotes g.l.b.). For the reader may easily check that {0, 1} is a
subuniverse of ¥ and that 0 +— 0, 1+ 2 cannot be extended to an endomor-
phism of 2.

The next proposition is automatic if the conditions of 1.3 hold. Of course %A
is an absolute retract because it is a maximal subdirect irreducible [38, 1.8],
but this does not automatically give us direct powers of I [39]. For a stronger
fact than 1.4, see Quackenbush [36, Theorem 7.5]. The proof here is simpler.

ProprosiTION 1.4. Every power A’ is an absolute retract in HSPII.

Proof. By 1.2(ii) it is enough to retract any embedding ¢ : A — A’. Let
7 ; denote jth co-ordinate projection A7 — 9. For each 7 € I, select a, b € A’
which differ only in the sth place. Clearly there must exist j = j(z) € J so
that 7,0(a) # m,;0(b). It readily follows from 1.2(i) and the simplicity of A
that 7, 0 ¢ = a; 0 7, for some automorphism a; of . And so

Y(x) = (e (xj0): 1 € 1)
defines a homomorphism ¢: A7 — A’ with y 0 ¢ = 1.

TuEOREM 1.5. If A is quasi-primal, then all embeddings in HSP are pure
embeddings if and only if U has no proper subalgebras except (possibly) singletons.

Proof. f B C U, 1 < |B| < |A|, then there is no retraction of A onto B,
since ¥ is simple, and hence 8 C U is not a pure embedding.
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Conversely, if A has no proper non-trivial subalgebras, then every finitely
generated algebra in HSPY is a finite power of 9 and hence an absolute
retract by 1.4. Thus if f : 8 — € is an embedding, then f [ ¥’ is retractable,
hence pure, whenever 8’ is any finitely generated subalgebra of 8. It follows
immediately that f is a pure embedding.

For some information on absolutely pure algebras, consult Bacsich [2]. In
fact, Theorem 1.5 is an immediate corollary of proposition 1.4 and Lemma 4.5

of [2].
Note that if U is quasi-primal, then for each » = 1 there exists a derived

(2n + 2)-ary operation Q, of U such that B

¢ ifa;=5b;1=21=mn)
d otherwise.

Qn(aly'--yamblr'~'1bmcrd) ={

For Q, may be defined recursively via Q; = Q and

Oni1(ay, - .o, Gug1, b1y ooy bag, 6, d)
= Q(an+1y bn+1! Qn(a'lv B blv L) ybnv c, d)r d)'

THEOREM 1.6. If U s quasi-primal, then every algebra in HSPU has a pure
embedding into a product of subalgebras of .

Proof. Let B C A’; let BI denote the collection of ultrafilters on I; for
p € BI, let B, € A denote the image of B under the natural map =, : A? —
A7 /u = A. We will be done when we have shown that = : 8 — [19, is a pure
embedding (7w (b) = (m,(b) : p € BI)). Todo this, let us take terms ay, B, . . .,
ay, B; in variables x!, . .., x", y!, ..., y™ such that, for fixed b', ..., " € B,

K - = =
M BETI "N (6 9) = 8,6,9)).

Now define # to be the family of sets J C I such that there exist ¢!, .. .,
¢™ € B such that
(2) C(]'(bil, c e ey bin’ Cil, ey Cim) = B]‘(bil, “eey bin, Cil, e ,Cim)(l é] é k)

whenever ¢ € J. We will show that # is an ideal of sets; we need only check
that if J, K € #, then J\U K € #. Thus let us assume that (2) holds and

also that
3) a; ..., bMdA ..., d™) =B, ..., bmdd, ., d™ (1272 k)
whenever 1 € K. Forj =1,..., k, let @;, 8, € B be defined by

a; = o;(b, ..., 0% cy ..., ")

ﬂ-]‘ = Bj(bl, “ ey bn, Cl, ey Cm).
And finally define e*(1 < s < m) as
es = Qk(&ly “eey &k, 51, “ ey B-]Cv Cs, ds),
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where Q; is the operation defined immediately before this theorem.
To finish showing J \U K € £, we will show that

(4) aj(bil, ey bin’ 311, Ceey etm) = Bj(bil, Ceey bin’ e,-l, ey e,-’")(l é] é k)

whenever 1 ¢ J\U K. If 1 € J, then (2) holds, and so for each j, @; and B, are
equal in the 7th co-ordinate; thus (by the announced property of Q) e;f =
¢;*(1 = s = m), and so (4) reduces to (2). On the other hand if 1 € K — J,
then for some j, @; and §; are unequal in the 7th co-ordinate; thus e,* = d,°
(1 £s = m) and so (4) reduces to (5).

We know by (1) that the ideal .# is proper, thatis, I ¢ #; thus there exists
an ultrafilter u containing no member of .#. Finally, we claim that, for this g,

14
G) B.ETIy ... 9" {\ lo;(md, ¥) = B;(mb, ¥)].

For suppose that (5) is false; that is, for some m,(c!), ..., m.(c™) we have
a;(mbt, ..., mb et .. ™)
= B(mdY, ..., mb", muct, L, ™) (1 27 = k).

But this says that (2) holds for ¢ € I € p, a contradiction, thus establishing
(5). But, as is well known, the validity of (1) = (5) is equivalent to the purity
of the embedding 8 — 119, [38, Lemma 3.2].

We remark that the following theorem is an immediate corollary of Theorem
1.6 (and wice versa) —for the notion of pure-irreducibility and its connections
with this subject see [38, § 3; or 6, § 4]; a more general notion subsuming pure-
irreducibility can be found in [11].

THEOREM 1.7. If A is quasi-primal, then the pure-irreducible algebras in
HSPA are precisely the subalgebras of .

We now turn to the possibility of applying Theorem 1.6 to some special
algebras which are known to be quasi-primal. We should point out that condi-
tion (i) of Theorem 1.1 really gives us a complete catalog of quasi-primal
algebras; for each finite A there are only finitely many families U of bijections
f:B — C with B, C € 4, and so there are only finitely many inequivalent
varieties HSPY with A quasi-primal of fixed finite power. Nonetheless quasi-
primal algebras sometimes arise in a ‘‘natural’’ way, apparently rather different
from condition (i) of 1.1.

COROLLARY 1.8. If ¥~ is a variety of commutative rings with unit obeying
some law x™ = x, then every ring in¥" is a pure subring of a product of finite
rings.

Sketch of proof. The law x™ = x implies the absence of non-zero nilpotent
elements, and so, by a theorem of G. Birkhoff [10], every subdirectly irreducible
ring R € ¥ is a field—in which the equation x™ = x can have at most m roots;
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thus |R| < m. Consider first the case that all fields R € ¥~ have the same
characteristic, . Now finitely many fields of characteristic $ can always be
embedded in a single field GF(p*) for some k. (N.b. But GF(p*) may itself fail
to be in ¥ —note Banaschewski's example [3] of x?2 = x—this ¥~ contains
GF(4) and GF(8), but not GF(64).) In this case we have ¥~ C HSPGF(p"),
and GF(p*) is known [32] to be quasi-primal, for it is not hard to express the
ternary discriminator in GF(p*). Finally, if #” has fields of various character-
istics p1, . . ., P, then choose integers a4, . . . , a, so that

$

Z aipl...ﬁg...Ps=1

i=1
(where " indicates a deletion) and let ¢(x1, . . ., x;) be the ring-theoretic term

S

E atpl...ﬁ1...psxi.

i=1
It is clear that if #7; is the subvariety of ¥~ generated by fields in ¥~ of char-
acteristic p4, then

/Vit:t(xlv'~-7xs)2xi (1§'L§S),
and also

¥ =HSP(Y ,U...U?)).

Thus the theory of independent varieties [17; 19; 13; 9] tells us that every ring
Re¥? isaproduct, R~ Ry X ... X R, with R, € ¥, (1 £4 <), and so
we may apply the result for single characteristics. (Note that if A C € is pure
and B C D is pure, then A X B € € X D is pure.)

There have been many definitions of ‘‘Post algebras,” not all equivalent,
and certainly not all equational. But the following definition includes a portion
of the known theory. Let

’

A= f0,...,n =1}, A, V,,0,...,n— 1),
where A and V are the binary operations of minimum and maximum, x' =
x + 1 (mod n),and 0, ..., n — 1 are constants. Following Ash [1] we define

the variety of Post algebras of order n to be HSP,. For another definition of
Post algebras as a variety, see Traczyk [42]; for many other definitions of Post
algebras, see references given in [7; 8; 42; or 43]. E. L. Post showed in 1921 [34]
that ¥, is functionally complete, and hence primal, and so the following corol-
lary is immediate (either from 1.5 or 1.6).

COROLLARY 1.9. Every Post algebra of order n is a pure subalgebra of a power

of U,.

There are some interesting quasi-primal reducts of ¥, to which we can apply
1.6 but not 1.5, namely the double Heyting algebras

8’! = {<0r €2y ... ren—lyl>r /\y Vr *, +}y

https://doi.org/10.4153/CJM-1976-006-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-006-0

56 WALTER TAYLOR

where A and V are meet and join operators for the linear ordering 0 < e; <
... < e,_1 < 1, * is the binary operation of relative pseudocomplement, that is,
x Saxbifandonlyifx A a =< b,and + is defined dually to *. One may check
that the quaternary discriminator is defined on &, by taking

Q,y,2,w) = [(plx,y) *qlx,¥)) Azl V [(glx,y) + p(x,¥)) A w],

where

plx,y) = (x Vy)x((x Ay)+ (x Vy)

and

g, y) = @ Ay)+ (& Vy)* @ Ay)).

(These are only special instances of a wide class of double Heyting algebras
considered by Katrindk [23].)

CoRroLLARY 1.10. For fixed n, every double Heyting algebra in HSPE, is a
pure subalgebra of a product of finite algebras.

We will omit the proof that €3 is equivalent to ({0, ¢, 1}, A, V, *, *) where
and * are pseudocomplement x* = x *x0 and dual pseudocomplement
xt = x 4 1; this latter algebra generates a subvariety of the variety of double
Stone algebras known as trivalent Lukasiewicz algebras (see [43] and references
given there). Hence the next corollary is immediate; the dual pseudocomple-
ment * is essential—the corresponding statement for the (A, V, *)-reduct is
false; see § 2 below.

*

CoroLLARY 1.11. Every trivalent fukasiewicz algebra is a pure subalgebra of
a product of finite algebras.

Finally, in connection with Mycielski’s problem mentioned in the introduc-
tion, we have the next corollary. The result concerning Post algebras was pre-
viously proved by Beazer [7].

CoroLLARY 1.12. If A is quasi-primal, then every equationally compact algebra
B in HSPU s a retract of a compact topological algebra (in fact, a product of
fintte algebras). The conclusion holds, in particular, for B a commutative ring
obeying some law x™ = x, a Post algebra of order n, a double Heyting algebra in
HSPR, or a trivalent Lukasiewics algebra.

One further example of varieties to which 1.6 appliesisany variety ¢, (n < w)
of monadic algebras (see Monk [29] or Quackenbush [36, § 10]).

2. A Stone algebra with no equationally compact hull. An algebra
A= (4; N, V,0,1,%*)is a Stone algebra if and only if (4; A, V,0,1)isa
distributive lattice with 0 and 1, * is a unary operation of pseudocomplementa-
tion, thatis,x A @ = 0 <> x = a*, and * satisfies the Stone identity

x* Vo= 1.
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Equivalently, the class of Stone algebras is the variety .¥ given by the equa-
tions defining distributive lattices with 0 and 1 together with these equations:

x =x A x**

xAx* =0 x* V=1
(x A y)* =x* Vy*

(x V y)* =x* A ¥y~

The only subdirectly irreducible Stone algebras are the two-element Boolean
algebra and the three-element algebra €; = ({0, ¢, 1}, A, V, 0, 1, *) where
0<e<1l,and0* = 1,¢* = 1* = 0. Thus.¥ = HSPGE;and s0.¥ is residually
small [38; 6]; moreover .¥ has enough injectives. For these and related facts,
see [16, § 14] and references given there.

TaEOREM 2.1. There exists a Stone algebra which is not a pure subalgebra of
any equationally compact algebra.

Proof. R. McKenzie proved (see [38, p. 50]) that there exists a distributive
lattice L which is not a pure subalgebra of any equationally compact algebra
(Infact,the example is presented in [38, p. 50] as an example of pure-irreducibility;
but our statement here is a corollary—see [38, § 3; or 6]. [tis easy to see that the
large pure-irreducible algebra given there has a greatest and a least element.
If it did not, one could always adjoin them, yielding a pure extension.) Take L
to be a family of subsets of a set P which is closed under M and U and con-
tains @ and P. Our Stone algebra will be a certain subalgebra of €;7. For each
X\ € L define F(\) € G4% via

ifx €\

FO) () = {i ifxd

Now let 4 = {(0,0,...)} \U{F(\) : N\ € L}. It is easy to check that 4 is a
subuniverse of €;* and so defines a Stone algebra . We first claim that
FIL] = {f(\) : N\ € L} is a pure sublattice of (4, A, V )—in fact it is obviously
a retract of (4, A, V) by mapping (0, 0, 0, ...) onto (e, ¢, ¢, ...). Now if
ACTY = (B; A, V,0,1,*) were any pure embedding of ¥ in an equationally
compact Stone algebra then we would have L = F(L) C (4; A, V) C
(B; N, V) with both embeddings pure and (B; A, V ) equationally compact—
a contradiction.

This theorem should be compared with Theorem 1.11 above about HSP
({0, ¢, 1}, A, V,0, 1, * *). We are unable to decide whether HSP§; admits
pure compactifications, where $; is a 3-element Heyting algebra (cf. 1.10
above). And of course Theorem 2.1 does not settle Mycielski’'s question for
Stone algebras (which is also open for distributive lattices): s every equationally
compact Stone algebra a retract of some compact topological algebra?
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3. A finite % with HSP U not residually small. Recall [38] that a variety
¥ is residually small if and only if ¥~ contains only a set of subdirectly irreduci-
ble algebras—equivalently, if and only if every algebra in ¥~ can be embedded
in an equationally compact algebra. In [38] we remarked that if ¥ is finite and
HSPY has distributive congruences, then HSPY is residually small (even
residually finite) as follows readily from Joénsson’s Lemma [21], but we were
unable to state whether there exists any finite 9 with HSPU not residually
small. We thank R. W. Quackenbush for pointing out that J. A. Gerhard had
in effect already found such A of power 3. We will see that 3 is best possible.

THEOREM 3.1. There exists a 3-element idempotent semigroup N with HSP
not residually small.

Proof. Let A = ({0, 1, 2}, - ) with this multiplication table:

S = O O

1
0
1
1

N = O
N~ O N

(Equivalently take the concrete semigroup consisting of the identity function
and two constant functions on any set of more than one element.) It follows
from work of J. A. Gerhard [14] that HSPY! is defined by the laws

x(yz) = (xy)z

xx = x

Xyx = xy.
We next note that in [15] Gerhard has given an example of a (countably)
infinite subdirectly irreducible semigroup in this variety, but his construction

really applies to any cardinality. In fact, let X be any set, 0, 1 € X, and for
each x € X, define mappings ay, b, ¢, : X — X as follows

a;(y) = x

Yy ify =«
b’(y)”{o if y # x

{y ify=x

cly) = 1 ify s «x.

One may check that {ay, a1} \J {ay, b, ¢, :x € X, x # 0, 1} is closed under
composition and defines a semigroup S in this variety. Now if 6 is any con-
gruence with @, 6 a,(x ¥ y), then

ay = by, 0ba, = a, = c,a, 0 ¢, = ay,

and so ag 0 a,. Thus if 6 is a maximal congruence separating «¢, and «a,, then
S/6 is subdirectly irreducible and |S/6] = | X|.
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Notice that the semigroup ¥ of Theorem 3.1 is isomorphic to {(0, e, 1), - )
under the correspondence

02
e 1
10,

where - is defined in the 3-element Stone algebra via
x-y=x V (&* Ay).

Thus HSPY is (within equivalence) a reduct of the variety of Stone algebras.

J. Baldwin and J. Berman have supplied another example of a three-element
algebra which generates a variety which is not residually small: a three-element
pseudocomplemented semilattice [20; 37]. If A is such, then ¥ is not a Boolean
algebra; by Jones [20], the only proper subvariety of pseudocomplemented
semilattices is the variety of Boolean algebras; hence HSPI = the variety of
pseudocomplemented semilattices, which is known to be not residually small.
One easily sees that these two examples are not equivalent.

THEOREM 3.2. If A 15 any 2-element algebra, then HSPU s residually small,
in fact residually of power 2.

Sketch of proof. 1t is enough to check through equivalence classes of two-
element algebras as enumerated by Post in 1941. We will use the reformulation
by Lyndon in 1951 [27]. Systems I are all familiar (Boolean rings, algebras,
groups, 3-groups, etc.). Systems I have implication algebras as reducts, and
these are congruence-distributive [28; see also 22 for an explicit representation].
Systems 111 are explicitly represented in [27], and Systems IV possess a
“‘median’’ operator, and so are well known to have distributive congruences.

4. Some problems of Lausch and Nobauer. With quasi-primal algebras
we can solve three open problems of Lausch and Noébauer [25]. The first, on
page 42, asks whether there exists a variety ¥~ without constants which is semi-
degenerate, that is, no algebra of power > 1in”?” has a one-element subalgebra.
Clearly if % = ({0, 1}, Q, p), where p(0) = 1, p(1) = 0, then ¥~ = HSP¥
is as desired (in [41] ¥  is called the variety of ‘‘Boolean 3-algebras’").

Problem (a) on page 70 asks, “if A €V € ¥, and Z is a set of equations
with constants from A which is satisfiable in some € 2 A, € € ¥, then must = be
satisfiable in some D DB, D € ¥ ?” To see the negative answer, we let 7~
be the variety of commutative rings with unit obeying the law x?? = x,
A=GFQ2), B =GF®8), Z=1{x*=x+1}. Clearly 2 is satisfiable in
€ = GF(4) D UA; but X is clearly not satisfiable in 8, and hence not in any
¥ -extension of B, since B is a ¥ -maximal subdirect irreducible, and hence an
absolute retract in?” (see [38], especially 2.7). (This example is essentially due
to B. Banaschewski. An isomorphic example, in the language of quasi-primals,
was given by R. W. Quackenbush [36, 8.2].)
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Problem (b) on page 71 asks, “if A € ¥ and T is a set of equations with
constants from A which is satisfiable in some B D A, B € ¥, and which has at
most one solution in any B DU, B €Y, then must = be satisfiable in A"’
To see the negative answer, we let 8 = ({0, 1, 2}, T, 0, 1) (where 0, 1 are
constants and 7 is the ternary discriminator as in 1.1 (iii) above), and take

¥ = HSP® and A = ({0,1}, 7,0,1) C B. We take

Il

I
—_ o

_JT(0,x,1)
2= {T(l,x, 0)

One easily checks that 2 is satisfiable in 8 (by x = 2), but not in ¥; to finish,
we need to see the uniqueness of a solution of T in any € 2 ¥, € € ¥". By
1.2 (ii), we need only see the uniqueness of a solution in any power B7’; but
obviously the only solution in8Zisx = (2,2,...,2).

Added in Proof. For further information on quasi-primal varieties, consult
Keimel and Werner [47].

Bulman-Fleming and Werner [45] have proved that in a quasi-primal variety
the equationally compact algebras are precisely (finite) products of extensions
by complete Boolean algebras of subalgebras of the quasi-primal generator,
and that the topologically compact algebras are all products of finite algebras.
Also see Banaschewski and Nelson [44].

The author thanks S. O. Macdonald and J. Groves for pointing out that the
8-element quaternion group generates a variety which is not residually small.
The proof is a natural generalization of [49, Example 51.33, p. 147]. This
variety is given by the laws [x?, y] = 1 and x* = 1 (together with laws for
group theory) [48, Theorem 3.2]. This group is as small as possible, for the
6-element non-Abelian group generates a residually small variety (see e.g. [50]).

Problem (a) of Lausch and Nobauer has also been solved by Hule and Miiller
[46).
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