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ABSTRACT

This paper is devoted to the study of motion of an arti-
ficial satellite relative to its centre of mass near paramet-
ric resonance in elliptic orbit. It is well known fact that
the satellite, of the form of an ellipsoid with three unequal
axes, while moving about the central planet, oscillates about
the stable position of equilibrium (the longest axis of the
satellite coinciding with the radius vector of its centre of
mass). The oscillation of the satellite about this position of
equilibrium in the orbital plane of its centre of mass is des-
cribed by a well known second order nonlinear differential
equation with a periodic sine force. Naturally there will be
resonance cases (main as well as parametric) for such a syst-
~ems. In the previous author's wrk [ 5], it was discovered a
series of parametric resonances for the system whiqh corresp-
onds to n = 4k where k is a non-zero integer and n is a para-
meter depending on the shape of the satellite. The parametric
resonance, for k =1, has been considered here. The first app-
roximate solution of the equation of motion has been obtained
by Eogol iubov-Krilov method with e (the eccentricity of the
orbit of the centre of mass of the satellite) as the small pa-
rameter., This method enables us to visualise the oscillation
of the satellite for the resonance case as well as near the
resonance, Three stationary values of the amplitudes and phase
of oscillation have been obtained, out of which only one is
stable near this particular parametric resonance., At the reso-
nance there appear only one stationary regime of oscillation
with a very small amplitude.
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1. INTRODUCTION

Consider the motion of an artificial satellite in the
form of an ellipsoid with three unequal axes relative to the
centre of mass which moves along a Keplerian elliptic orbit.
The satellite, while moving about the central planet,oscill-
ates about some position of equilibrium on account of the
presence of the gravitational moment. The planar oscillatory
motions of the satellite is described by the well known non-
linear second order differential eguation [1]

2 ) 2

(1+e cos V),g_g__ 2e sin v g$-+ n”~ sinf = 4e sin v 1.1)

where n° = 3(A-C)/E.

B is the moment of inertia of the satellite with respect to
the axis perpendicular to the orbital plane of its centre of
mass A and C being the moments of inertia about principal
axes lying in the orbital plane and such that B> A > C, Also
§ = 20 where ¢ is the angle which the radius vector of the
centre of mass of the satellite relative to the central for-
ce makes with its longest axis (Fig. 1). v and e are the
true anomaly of the centre of mass of the satellite and the
eccentricity of its orbit respectively.

When the centre of mass of the satellite moves along a
circular orbit (e = 0), and hence two positions of equilibr-
ium can be easily obtained as § = 0 and § = n, The first eq-
uilibrium position 6 = 0 (i.e. ¥ = 0) is stable and it cor-
responds to the satellite's position in which the longest ax-
is of inertia coincides with the radius vector of the centre
of mass (Fig. 1),

The system moves under a forced vibration on account of
the right hand periodic sine force in the equation (1.1).The
characteristic feature of the oscillatory system described by
the equation of the type (1.1) is the occurrance of resonance
(main as well as parametric). The parametrid redorance were
earlier found for n = + 1/2 [1] and n = 9/4 [4]. Also the
author [5] has discovered a series of parametric resonances
for n = 1/2k where k is a non-zero integer.

The case n = 1/2 was considered by Beletsky,V.V. btut he
did not elaborate the behaviour of the motion at and near the
resonance. The solution of the problem in the general case
which is valid at the resonance as well as near the resonance,
s been attempted by Eogoliubov-Krilov method for very small
value of the eccentricity.

2. SOLUTION OF THE EFQUATION OF PLANAR OSCILLATION NEAR RE-
SONANCE

Consider the eccentricity e, a small quantity of the
first order infinitesinal and assume that the non-linearity of
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the equation can also produce.the effect of the order of the
eccentricity.

The equation of motion (1.1) can now be written as

22
Q_g,.,. n26 = e[4 sin v + 26' sin v- 8" cos v + a(8-sin §)]
dv o, (2.1)
where d = 2.

e

The solution in the first approximation of (2.1) at the re-

sonance n = % will be sought in the form:
1 .
6=acos¢,¢=§—v+k (2.2)

where amplitude a and phase k must satisfy the system of ord-
inary differential equations.

g-%= eAl(a, k)
¢ 1
g_}:: n~3%+eB(ak) (2.3)

and A1’Bl are the particular solution and periodic with res-
respect to k of the system of partial differential equations:

3A ad .
1 1 1 i200
(- 5 ) —— - 2an = Z e
2 ok Bl 2m g=o
2m 27 R '
x f J -fo(a.,v,da)e-]‘zco cos$¢ dv d¢
0 0 | :
[
2 - .
1 1 i200
a(n—-—-)-——+2nA=-——§ X e
2 Bk 1 2-" o=@
27 2w . .
x f s fo(a,b,da)e1209 sing dv d¢
0 (0]

(2.4)
v
where 0 = ¢ -F= 9

fo(a,v,¢) = 4 sin v-2 an sinv sin ¢ + an2 cos v cos ¢ +

+ ol a cos $~-sin(a cos ¢)]
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Substituting the value of fo(a,v,¢) 0of the right hand side of
(2.4) and then integrating, we obtain

9A; _ an(n-2
(n- ) o 2an B = a(a-ZJl(a)) + ) cos 2k
9
a(n-%—- ) élii +2n A = - an ;'2 sin 2k (2.5)

The particular solution, periodic with respect to k of this
system is easily obtained as

A = - ‘-‘B%"—z—)— sin 2k
B = - i [a-2dy(2)] - 222D o5 2k (2.6)

where J, (a) is the Pessel's function of the first order. Sub-
stituting values of A1 and Bl from (2.6) in (2.3), we get:

ga - _ean(B - 2) gp o2k

W1{8)  en(n - 2)
a 2

di _
dv

+

!
STE
1
o

cos 2k 2.7)

The system of equations (2.7) can be written as

da _ _12E

dv a 3k

dk _ 1 3H .

& - 55 SR (2.8)
where

2 2
H= - ggjn_;_Zlaz cos 2k + nl Z’— - (J,(a)-1)] ~

aslm

(2.9)

Here Jo(a) is the Bessel's function of zero order.

Obviously the system of equations (2.8) has a first integral
of the form

H=2C (2.10)

which reduces the problem to quadrature. Here C(') is the cons-
tant of integration.
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Fowever, it is preferable to analyse the integral curves
in the phase plane (a,k). In order to plot the integral cur-
ves, let us put the equation (2.10) in the form:

-azen(n—Z)cos 2k = 4C0 + a2(1—2n) +-4n f(a) (2.11)
where
a2 a4
fa) =Jdy(a) + z7— -1 = 5 T (2.12)

The integral curves (2.11) have been plotted in (Fig. 2) for
n=0.55and e = 0.01. Clearly there exist three stationary

regime of the amplitude for k = 0 and k = % g-out of which
only one is stable for k = O.

The stationary regimes of the amplitude and phase are
given by equating the right hand side of equations (2.7) to
zero:

%&E—_—z—)—sinzk=o

i.e. (2.13)
n nJl(a) en(n - 2)

1 =
5y -3 + = - 3 — cos 2k = 0.

The first equation gives k = 0, * % yooe

The second equation of (2.13) can be put in the form

4 2
a 2 _1 . e(n-2)
i (2:14)

where plus and minus signs corfesponds to the values k = 0
and k = ¢ % respectively and in the Bessel's |fundtion only
first three terms of the expansion has been retained.

The stationary values of the amplitude for n = 0.55 and
k 0 has been obtained as a = 1,25 and for n = 0.55 and
K=+ &

-2
lutions (i.e. a = 1.25 and k = 0) is stable which is obvious
from (Fig. 2). As n decreases from 0.55 to 0.5, the stable
stationary value of the amplitude reduces to a = 0.34, k = 0
and the other two unstable stationary solutions vanishes. As
‘the value of n decreases further there will be no stationary
value of the amplitude. The system will be moving with chan~
ging amplitude and phase. However, from this nature of the
integral curves in (Fig. 2), it follows that the amplitude

they are a = 1.15. Only one of these stationary so-
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FiG. 2
OSCILLATION OF THE SATELLITE IN ELLIPTIC ORBIT. AMPLITUDE

PHASE CHARACTERISTIC FOR N=0.55, €=0.0l
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—

FI1G-3
MAXIMUM AMPLITUDE OF OSCILLATION IN ELLIPTIC
ORBIT FOR PARAMETRIC RESONANCE N=i/2, K= O

will never increase indefinitely. It will just oscillate bet-
ween two finite values for different k.

The expression for the amplitude of oscillation in the

resonance case is given by substituting n = ;— in (2.14) and
is obtained as:

a = 2/3(1-/I35e) (2.15)

The (Fig.3) show the maximum value of the stationary amplit-
ude for different values of e in the resonance case which has
been plotted with the help of (2.15). The amplitude increases
with increasing e. As the formula (2.15) has been obtained
from the first approximation, it will give better result only
for the small values of e.
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