
This is an Accepted Manuscript for Evolutionary Human Sciences. This version may be subject to change during 
the production process. 
DOI: 10.1017/ehs.2024.34 

 

 
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which 
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original 
work is unaltered and is properly cited. The written permission of Cambridge University Press must 
be obtained for commercial re-use or in order to create a derivative work.  

Methods in Causal Inference Part 4: Confounding in Experiments 

Joseph A. Bulbulia1 

1 Victoria University of Wellington, New Zealand ORCID  0000-0002-5861-2056 

Abstract 

Confounding bias arises when a treatment and outcome share a common cause. In randomised controlled 

experiments (trials), treatment assignment is random, ostensibly eliminating confounding bias. Here, we use 
causal directed acyclic graphs (causal DAGs) to unveil eight structural sources of bias that nevertheless persist 

in these trials. This analysis highlights the crucial role of causal inference methods in the design and analysis of 
experiments, ensuring the validity of conclusions drawn from experimental data. 
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Introduction 

“Does not randomisation, by its very nature, eliminate all systematic causes of treatment assignment and 

outcome?” Yes. 

“Does this mean that confounding bias is ruled out?” No.  

Assume large sample sizes to minimise random differences in variable distribution. Assume that the experimental 

trials are double-blind, with consistent treatment conditions across all arms, applied by meticulous investigators. 

Assume no chance event, other than randomisation. Finally, assume that the target population is not restricted 

in the sample population, ensuring that the experiments, if internally valid, will generalise. Assume no 

measurement error in the measures. 

Nevertheless, biases can arise. Here, I use eight examples to illustrate common threats to valid causal inferences 
arising in experiments. Whereas certain risks arise from common flaws in experimental designs, such as post-

randomisation selection criteria and post-randomisation covariate adjustment, hazards in estimating the ‘per-

protocol effect’ of treatments do not arise from design errors. These typically require the use of methods for 

causal inference in ‘real world’ observational studies. The eight examples demonstrate the utility of causal 

directed acyclic graphs (causal DAGs) for easing the cognitive demand in diagnosing confounding bias in 

experimental designs. Overall, understanding how confounding occurs is crucial for experimental design, data 
analysis, and inference, demonstrating the utility of causal inference methods for diagnosing and addressing 

vulnerabilities in randomised experimental designs. 

We begin by defining our terms. Note that supplementary materials S1 provides a glossary of general terms used 

in causal inference. 

Terminology 

• Confounding bias: Treatment and outcome are associated independently of causality or are disassociated 

in the presence of causality relative to the causal question at hand. 

• Intention-to-Treat Effect (or ‘intent-to-treat effect’): The effect of treatment assignment, analysed based 

on initial treatment assignment, reflecting real-world effectiveness but possibly obscuring mechanisms. 
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• Per-protocol effect: The effect of adherence to a randomly assigned treatment if adherence were perfect 

(Hernán et al., 2017). We have no guarantee that the intention-to-treat effect will be the same as the per-

protocol effect. A safe assumption is that: 

 𝐴𝑇�̂� Per-Protocoltarget≠ 𝐴𝑇�̂� Intention-to-Treattarget 

When evaluating evidence for causality, investigators should specify whether they are estimating an intention-
totreat or per-protocol effect. They should do this in addition to stating a causal contrast, effect measure, and 

target population, (Hernán, 2004; Tripepi et al., 2007) and to evaluating sources of measurement error bias 

(Bulbulia, 2024b). 

Meaning of Symbols 

We use the following conventions in our directed acyclic graphs: 

• Node: A node or vertex represents characteristics or features of units within a population on a causal 

diagram – that is, a ‘variable’. In causal directed acyclic graphs, we draw nodes with respect to the target 

population, which is the population for whom investigators seek causal inferences (Suzuki et al., 2020). A 

time-indexed node 𝑋𝑡 denotes relative chronology; 𝑋𝜙𝑡 indicates assumed timing, possibly erroneous. 

• Edge without an Arrow ( ): Path of association, causality not asserted. 

• Red Edge without an Arrow ( ): Confounding path: ignores arrows to clarify statistical 

dependencies. 

• Arrow ( ): Denotes a causal relationship from the node at the base of the arrow (a parent) to the node 

at the tip of the arrow (a child). We typically refrain from drawing an arrow from treatment to outcome to 
avoid asserting a causal path from 𝐴 to 𝑌 because the function of a causal directed acyclic graph is to 

evaluate whether causality can be identified for this path. 

• Red Arrow ( ): Path of non-causal association between the treatment and outcome. The path is 

associational and may run against arrows. 

• Dashed Arrow ( ): Denotes a true association between the treatment and outcome that becomes partially 

obscured when conditioning on a mediator, assuming 𝐴 causes 𝑌. 

• Dashed Red Arrow ( ): Highlights over-conditioning bias from conditioning on a mediator. 

• Boxed Variable 𝑋 : Conditioning or adjustment for 𝑋. 

• Red-Boxed Variable 𝑋 : Highlights the source of confounding bias from adjustment. 

• Dashed Circle 𝑋 : Indicates no adjustment is made for a variable (implied for unmeasured confounders). 

• ℛ → 𝐴: Randomisation into a treatment condition. 

Review of d-separation for Causal Identification on a Graph 

Pearl demonstrated that causal dependencies could be evaluated by linking observable probability distributions 

to directed acyclic graphs (Pearl, 1995, 2009). This means that, based on assumptions about causal structure, 

investigators could investigate strategies for identifying causal effects from the joint distributions of observed 
data. The graphical rules that Pearl developed and proved are known as the rules of d-separation (Pearl, 1995), 

and are presented in Table ??. The rules of d-separation are as follows: 
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a) Fork rule (𝐵 𝐶): 𝐵 and 𝐶 are independent when conditioning on 𝐴: (𝐵 ∐ 𝐶 ∣ 𝐴). 

b) Chain rule (𝐴 𝐶): Conditioning on 𝐵 blocks the path between 𝐴 and 𝐶: (𝐴 ∐ 𝐶 ∣ 𝐵). 

c)  Collider rule (𝐴 𝐵): 𝐴 and 𝐵 are independent until conditioning on 𝐶, which 

introduces dependence: 

(𝐴∐𝐵 ∣ 𝐶). 

The rules of d-separation give rise to the backdoor criterion which provides an identification algorithm 

conditional on the structural assumptions encoded in a causal directed acyclic graph (Pearl, 1995). 

Backdoor Adjustment: In a causal directed acyclic graph, we say that a set of variables 𝐿 satisfies the backdoor 

adjustment theorem relative to the treatment 𝐴 and the outcome 𝑌 if 𝐿 blocks every path between 𝐴 and 𝑌 

that contains an arrow pointing into 𝐴 (a backdoor path). Formally, 𝐿 must satisfy two conditions: 

1. No Path Condition: No element of 𝐿 is a descendant of 𝐴. 

2. Blocking Condition: 𝐿 blocks all backdoor paths from 𝐴 to 𝑌. 

If 𝐿 satisfies these conditions, we say the causal effect of 𝐴 on 𝑌 is identified conditional on 𝐿 (Pearl, 2009). 

Eight Examples of Confounding Bias in Experiments 

We use causal directed acyclic graphs to describe eight types of confounding bias in randomised controlled trials  

(‘experiments’). We use the symbol 𝒢 to denote a causal directed acyclic graph in the table. The first digit in the 

graph subscript indexes the example. The second digit in the graph subscript indexes the problem or the response 

to the problem. Specifically, if the subscript ‘1’ is used, it refers to the graph associated with the problem; if ‘2’ is 

used, it refers to the graph associated with the response. 

Example 1: Post-treatment Adjustment Blocks Treatment Effect  

Table ?? 𝒢1.1 illustrates the threat of confounding bias by conditioning on a post-treatment mediator McElreath 

(2020). Imagine investigators are interested in whether the framing of an authority as religious or secular – 
‘source framing’ – affects subjective ratings of confidence in the authority – ‘source credibility.’ There are two 

conditions. A claim is presented from an authority. The content of the claim does not vary by condition. 

Participants are asked to rate the claim on a credibility scale. Next, imagine that the investigators decide they 

should control for religiosity. Furthermore, imagine there is a true effect of source framing. Finally, assume that 

the source framing not only affects source credibility but also affects religiosity. Perhaps viewing a religious 
authority makes religious people more religious. In this scenario, measuring religiosity following the 

experimental intervention will partially block the effect of the treatment on the outcome. It might make it appear  

that the treatment does not work for religious people, when in reality it works because it amplifies religiosity. 

(Note that in this graph we assume that 𝐿1 occurs before 𝑌2, however, investigators may have measured 𝐿1 after 

𝑌2. Our time index pertains to the occurrence of the event, not to its measurement. This statement applies to all 

examples that follow.) Table ?? 𝒢1.2 clarifies a response: do not control post-treatment variables, here the 
intermediary effects of ‘religiosity’. If effect-modification by religiosity is scientifically interesting, measure 

religiosity before randomisation. Randomisation did not prevent confounding. 

Example 2: Post-treatment Adjustment Induces Collider Stratification Bias 

Table ?? 𝒢2.1 illustrates the threat of confounding bias by conditioning on a post-treatment collider (Cole et al., 

2010). Imagine the same experiment as in Example 1 and the same conditioning strategy, where religiosity is 
measured following the treatment. We assume the treatment affects religiosity. However, in this example, 

religiosity has no causal effect on the outcome, source credibility. Finally, imagine an unmeasured variable affects 

both the mediator, religiosity (𝐿1), and the outcome, source credibility (𝑌2). This unmeasured confounder might 

 

 

 

https://doi.org/10.1017/ehs.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.34


 

4 

be religious education in childhood. In this scenario, conditioning on the post-treatment variable religiosity will  

open a backdoor path between the treatment and outcome, leading to an association in the absence of 

causation. Randomisation did not prevent confounding. 

Table ?? 𝒢2.2 clarifies a response: do not control post-treatment variables. 

The point that investigators should not condition on post-treatment variables can be illustrated with a common 

flaw in experimental designs: exclusion based on ‘attention checks’. Consider that if an experimental condition 

affects attention and an unmeasured variable is a common cause of attention and the outcome, then selection 
on attention will induce confounding bias in a randomised experiment. For example, imagine that people are 

more attentive to the scientific authority design because science is interesting – whether or not one is religious, 

yet religion is not interesting whether or not one is religious. Suppose further that an unmeasured ‘altruistic 

disposition’ affects both attention and ratings of source credibility. By selecting on attention, investigators may 

unwittingly destroy randomisation. If attention is a scientifically interesting effect modifier, it should be measured 

before random assignment to treatment. 

Example 3: Demographic Measures at End of Study Induce Collider Stratification Bias 

Table ?? 𝒢3.1 illustrates the threat of confounding bias from adjusting for post-treatment variables, here, one 
affected by the treatment and outcome absent any unmeasured confounder. In our example, imagine both the 

treatment, source framing, and the outcome, source credibility, affect religiosity measured at the end of the 

study. Investigators measure religiosity at the end of the study and include this measure as a covariate. 

However, doing so induces collider bias such that if both the treatment and outcome are positively associated 

with religiosity, the collider, they will be negatively associated with each other. Conditioning on the collider 

risks the illusion of a negative experimental effect without causality. 

Table ?? 𝒢3.2 clarifies a response: again, do not control post-treatment variables. Here, ‘religiosity’ is measured 
after the end of the study. If the scientific interest is in effect modification or obtaining statistical precision, 

measure covariates before randomisation. 

Example 4: Demographic Measures at End of Study Condition on a Collider That Opens a Backdoor Path  

Table ?? 𝒢4.1 illustrates the threat of confounding bias by adjusting for post-treatment variables, here affected 

only by the treatment and an unmeasured cause of the outcome. Suppose source credibility affects religiosity 

(religious people are reminded of their faith), but there is no experimental effect of framing on credibility. 

Imagine further that there is an unmeasured common cause of the covariate religiosity and the outcome 
source credibility. This unmeasured confounder might be religious education in childhood. In this scenario, 

conditioning on the post-treatment variable religiosity will open a backdoor path between the treatment and 

outcome, leading to an association without causation. Again, we find that randomisation did not prevent 

confounding. 

Table ?? 𝒢4.2 clarifies a response. Again, unless investigators can rule out an effect of treatment, they should not 

condition on a post-treatment covariate. The covariates of interest should be measured before randomisation. 

Example 5: Treatment Affects Attrition Biasing Measure of Outcome  

Table ?? 𝒢5 Suppose that the experimental condition affects measurement error in self-reported source credibility 

𝑈Δ𝑌. For example, suppose that source framing has no effect on credibility. However, those in the scientific 

authority condition are more likely to express credibility for science due to self-presentation bias. Likewise, 

perceiving the investigators to be irreligious, participants in the religious source framing condition might report 
less credibility for religious authorities than they secretly harbour. Directed measurement error from the 

treatment to the measurement error of the outcomes creates an association without true causality, which we 
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denote by removing any arrow between the treatment 𝐴 and the true outcome 𝑌. Note that the bias in this 

setting is not one of cnfounding bias. There is no common cause of treatment and outcome. Rather, the threat 

is from measurement error bias (refer to Bulbulia, 2024b) 

Table ?? 𝒢5 suggests there is no easy solution to directed measurement error bias in this setting. If the magnitude 
of the measurement error bias were known, investigators could apply adjustments (Lash et al., 2009). Additional 

experiments might be devised that are less prone to directed measurement error bias. Investigators might 

compute sensitivity analyses to examine how much measurement error bias would be required to explain away 

a result (refer to Linden et al. (2020) for a relatively easy-to-implement sensitivity analysis). The point we make 

here is that randomisation does not prevent bias arising from directed measurement error. Investigators must 

be vigilant. 

Example 6: Per Protocol Effect Lost in Sustained Treatments Where Treatment Adherence Is Affected by a 

Measured Confounder 

Setting aside self-inflicted injuries of post-treatment conditioning and directed measurement error, 

randomisation recovers unbiased causal effect estimates for randomisation into treatment.. Under perfect 

adherence, such estimates correspond to the causal effects of the treatments themselves. However, adherence 

is seldom perfect. The following examples reveal challenges for recovering per-protocol effects in settings where 

there is imperfect adherence. Table ?? 𝒢6−8 are adapted from Hernán et al. (2017). 

Table ?? 𝒢6 illustrates the threat for identifying the per-protocol effect in sustained treatments where treatment 

adherence is affected by a measured confounder. Consider a sequential experiment that investigates the effects 

of sustained adherence to yoga on psychological distress, measured at the end of the study. Suppose that 

inflexible people are less likely to adhere to the protocols set out in the experiment and therefore do not. 
Suppose that flexibility is measured by indicator 𝐿. If we do not condition on 𝐿, there is an open path from 𝐴1 𝐿0 

𝑈 𝑌2. Although investigators may recover the effect of randomisation into treatment, the perprotocol effect is 

confounded. 

Table ?? 𝒢6 also clarifies a response. Conditioning on 𝐿0 and 𝐿1 will block the backdoor path, leading to an unbiased 

per-protocol effect estimate. 

Example 7: Per protocol effect lost in sustained treatments where past treatments affect measured 

confounder of future treatment adherence  

Table ?? 𝒢7 illustrates the threat for identifying the per-protocol effect in sustained treatments where past 
treatments affect measured confounder of future treatment adherence. Suppose that yoga affects flexibility. We 

should condition on pre-treatment measures of flexibility to identify the per-protocol effect. However, 

conditioning on the post-treatment measure of flexibility, 𝐿1 induces collider stratification bias. This path runs 

from 𝐴1 𝐿1 𝑈 𝑌3. However, if we do not condition on 𝐿1 there is an open backdoor path from 𝐴1 𝑈 𝑌3. We cannot 

estimate a per-protocol effect by conditioning strategies. 

Table ?? 𝒢7 suggests no easy remedy for obtaining valid causal inference in this setting. However, in a sequential 

treatment with fixed strategies, in which there is sequential exchangeability – or no unmeasured confounding 
at each time point – valid estimators for the sequential treatments may be constructed (refer to Hernan & 

Robins (2024); Dıaz et al. (́ 2021); Hoffman et al. (2023)). Although we may naively obtain an intention-to-treat 

effect estimate without special methods, inferring an effect of doing yoga on well-being – the per-protocol 

effect, requires special methods. Such methods are not yet routinely used in the human sciences (Bulbulia, 

2024a). 

https://doi.org/10.1017/ehs.2024.34 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.34


 

6 

Example 8: Per Protocol Effect Lost in Sustained Treatments Because Both Measured and Unmeasured 

Confounders Affect Treatment Adherence  

Table ?? 𝒢8 illustrates the threat for identifying the per-protocol effect in sustained treatments with measured 

and unmeasured confounders. Suppose flexibility affects adherence, yoga affects flexibility, and an unmeasured 

variable, such as prejudice toward Eastern spiritual practices, affects adherence. We have no measures for this 

variable. There is unmeasured confounding. 

If there were no effect of yoga on well-being except through flexibility, and furthermore if flexibility were not 

affected by the unmeasured antipathy toward Eastern spiritual practices, and further, if the effect of flexibility 

on yoga at each time point were conditionally independent of all future counterfactual data, both for the 
treatments and the outcomes, then it might be possible to construct special estimators that identify the per-

protocol effect of yoga on well-being in the presence of unmeasured confounding that affects adherence (refer 

to Hernán et al. (2017)). These special estimators are quite different from the ANOVAs, regressions models, and 

multi-level regression models routinely deployed in experimental studies. However, if we seek to understand 

the effect of yoga on well-being and not the effect of random assignment to yoga on well-being the routine 
estimators will not work: we require special estimators (Díaz et al., 2023; Hernan & Robins, 2024; Hoffman et 

al., 2023). 

Summary 

The examples considered here do not exhaust all threats to causal inference in experiments. For example, I 
have not covered biases arising from sample attrition also known as right censoring bias (refer to Bulbulia 

(2024b)). However, I hope the eight examples presented persuade experimental investigators of the following: 

First, there is no need to adjust for baseline confounders in a non-sequential randomised experiment. Although 

an unadjusted difference of means should be reported, Lin has shown that if a study is sufficiently powered, 

regression adjustment where the full set of treatments are interacted with baseline covariates may improve 

(and will not diminish) asymptotic precision (Lin, 2013). In some settings, investigators will want to evaluate 

effect modification with strata of covariates at baseline. However, in sufficiently large samples, randomisation 

ensures balance. 

Second, confounding biases can occur in randomised experiments even when randomisation succeeds. To 
evaluate such bias, we must first state whether our causal estimand is the intention-to-treat effect or the 

perprotocol effect. Randomisation recovers an unbiased estimate of the intention-to-treat effect—that is, the 

effect of treatment assignment. Randomisation will only recover the per-protocol effect, the effect of following 

treatment, 

when those assigned to treatment adhere to their assignments. 

Third, causal directed acyclic graphs are useful for clarifying sources of bias for both the intention-to-treat effect 

and the per-protocol effect. For the intention-to-treat effect, biases arise in two main ways: when investigators 

impose selection criteria on participants after randomisation (e.g., assessing treatment effects only in those who 
have followed protocols) or when investigators estimate treatment effects using covariates collected after  

randomisation. Both post-treatment selection and post-treatment conditioning are self-inflicted sources of 

confounding bias. The remedy is to not allow your design to compromise randomisation. For the per-protocol 

effect, randomisation cannot guarantee unbiased estimates. Obtaining consistent estimates for the per-protocol 

effect requires the same assumptions and methods that are required when estimating causal effects in 

observational studies. 

Fourth, in a sequential randomised experiment, standard methods such as regression adjustment, statistical 

structural equation models, and multi-level models will often fail to yield unbiased estimands (Bulbulia, 2024a; 
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Richardson & Robins, 2013; Young et al., 2014). Special estimators such as ‘g-methods’ (Hernan & Robins, 2024) 

or targeted learning (Van Der Laan & Rose, 2018) may be necessary to recover per-protocol effects in sequential 

designs. The requirements for estimating per-protocol effects in experiments cannot be stated in isolation from 

the details of each study (Hernan & Robins, 2024; Robins, 1986). 

From these observations, we offer the following practical advice: 

1. Ensure covariate data are collected before randomisation into treatments. 

2. If attention is a relevant covariate, measure it before randomisation. Do not use ‘attention checks’ to select 

participants after randomisation into treatments. 

3. If adjustment is used in a single-point treatment with baseline covariates, interact every level of treatment 

with the baseline covariates, following Lin (2013). 

4. For sequential treatments, collect data for adherence (where possible). 

5. For sequential treatments, at each measurement interval, ensure covariate data collection for any variable 

that might affect adherence or that might be proxies for such variables, particularly if these variables, or 

proxies for these variables, might affect outcomes at the end of the study. 
6. Do not infer per-protocol effects from the portion of the sample that followed experimental protocols. 

Such selection can lead to differences between the study population at the start and end, compromising 

external validity. 

7. Where possible, report both the per-protocol effect and the intention-to-treat effect. 

Describing the special methods for estimating per-protocol effects with multiple sequential treatments is beyond 

the scope of this commentary (Hernan & Robins, 2024). My aim has been to demonstrate that satisfying the 

assumptions for valid causal inferences in experiments is often more challenging than many experimental human 

scientists currently realise (refer to Montgomery et al., 2018). 

For example, I was part of an international team that administered questionnaires about religious identification 

following randomisation in a cross-cultural study investigating the source-credibility of religious and scientific 
authority (Hoogeveen et al., 2022). This approach might have attenuated effect modification by religiosity. Causal 

inference methods have considerable potential to enhance the design, analysis, and interpretation of 

experimental research, including my own work. 
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