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Closed Left Ideal Decompositions of U (G)

Yevhen Zelenyuk

Abstract. Let G be an infinite discrete group and let βG be the Stone–Čech compactification of
G. We take the points of βG to be the ultrafilters on G, identifying the principal ultrafilters with the
points of G. The set U (G) of uniform ultrafilters on G is a closed two-sided ideal of βG. For every
p ∈ U (G), define Ip ⊆ βG by Ip =

⋂
A∈p cl(GU (A)), where U (A) = {p ∈ U (G) : A ∈ p}. We show

that if |G| is a regular cardinal, then {Ip : p ∈ U (G)} is the finest decomposition of U (G) into closed
left ideals of βG such that the corresponding quotient space of U (G) is Hausdorff.

Let G be an infinite discrete group of cardinality κ and let βG be the Stone–Čech
compactification of G. We take the points of βG to be the ultrafilters on G, identifying
the principal ultrafilters with the points of G. The topology of βG is generated by
taking as a base the subsets of the form A = {p ∈ βG : A ∈ p}, where A ⊆
G. For p, q ∈ βG, the ultrafilter pq has a base consisting of subsets of the form⋃

x∈A xBx, where A ∈ p and Bx ∈ q. Under this operation, all right translations of βG
and the left translations by elements of G are continuous. See [3] for an elementary
introduction to the semigroup βG.

The set U (G) of uniform ultrafilters on G is a closed two-sided ideal of βG. It
has long been known that U (G) can be decomposed (i.e., partitioned) into 22κ left
ideals of βG [1] (see also [3, Theorem 6.53]). Relatively recently, this theorem was
strengthened by showing that U (G) can be decomposed into 22κ closed left ideals of
βG such that the corresponding quotient space of U (G) is Hausdorff. This was first
done in the case where κ is a regular cardinal in [5] and then for all κ in [4]. The
proof was based on slowly oscillating functions.

Considering the diagonal of the quotient mappings justifies the following defini-
tion.

Definition 1 Let I(G) denote the finest decomposition of U (G) into closed left ide-
als of βG with the property that the corresponding quotient space of U (G) is Haus-
dorff.

Note that if I is a decomposition of U (G) into left ideals of U (G), then every
member of I is also a left ideal of βG. To see this, assume the contrary. Then there
are distinct I, J ∈ I, p ∈ I and x ∈ βG such that xp ∈ J. From this we obtain that
p(xp) ∈ J and (px)p ∈ I, since px ∈ U (G), a contradiction.

In this paper we present an intrinsic characterization of I(G) in the case where
κ is a regular cardinal. In the case κ > ω we construct a decomposition of U (G)
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into closed left ideals of βG such that the corresponding quotient space of U (G) is
homeomorphic to U (κ). Also as a consequence we obtain the result from [4].

Definition 2 For every p ∈ U (G), define Ip ⊆ βG by

Ip =
⋂

A∈p
cl(GU (A)),

where U (A) = A ∩U (G).

The next theorem is the main result of this paper.

Theorem 3 Let κ be a regular cardinal. Then I(G) = {Ip : p ∈ U (G)}. Furthermore,
for any p, q ∈ U (G), Ip ∩ Iq = ∅ if and only if there are A ∈ p and B ∈ q such that
|(xA) ∩ B| < κ for all x ∈ G.

Before proving Theorem 3 we establish several auxiliary statements.

Lemma 4 For every p ∈ U (G), Ip is a closed left ideal of βG contained in U (G).

Proof Clearly, Ip is a closed subset of U (G). To see that Ip is a left ideal of βG, let
r ∈ βG and q ∈ Ip. Since the right translation of βG by q is continuous,

rq = lim
G3x→r

xq.

Consequently, in order to show that rq ∈ Ip, it suffices to show that for every x ∈ G,
xq ∈ Ip. We show that xIp = Ip. Clearly,

xIp =
⋂

A∈p
x cl(GU (A)).

Since the left translation of βG by x is continuous,

x cl(GU (A)) = cl(xGU (A)) = cl(GU (A)).

Hence, xIp = Ip.

Recall that if E is a decomposition of a compact Hausdorff space X into closed
subsets and E is the equivalence relation on X corresponding to E, then the following
statements are equivalent:

(a) the quotient space X/E is Hausdorff;
(b) E is upper semicontinuous, that is, for every Y ∈ E and for every neighborhood

U of Y ⊆ X, there is a neighborhood V of Y ⊆ X such that if Z ∈ E and
Z ∩V 6= ∅, then Z ⊆ U .

(See [2, Theorem 3.2.11 and Problem 1.7.17].)

Lemma 5 Let J be a decomposition of U (G) into closed left ideals such that the cor-
responding quotient space of U (G) is Hausdorff. Then for every J ∈ J and p ∈ J,
Ip ⊆ J.
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Proof It suffices to show that for every neighborhood V of J ⊆ U (G), Ip ⊆ cl(V ).
Since J is upper semicontinuous, one may suppose that for every I ∈ J, if I∩V 6= ∅,
then I ⊆ V . It follows that GV ⊆ V . Since V is a neighborhood of p ∈ U (G), there
is A ∈ p such that U (A) ⊆ V . Consequently, GU (A) ⊆ V , so cl(GU (A)) ⊆ cl(V ).
Hence, Ip ⊆ cl(V ).

As usual, given a set X and a cardinal λ,

[X]λ = {A ⊆ X : |A| = λ} and [X]<λ = {A ⊆ X : |A| < λ}.

Definition 6 For every p ∈ U (G), let Fp denote the filter on G with a base con-
sisting of subsets of the form

⋃
x∈G x(A \ Fx), where A ∈ p and Fx ∈ [G]<κ for each

x ∈ G.

Lemma 7 For every p ∈ U (G), Ip =
⋂

C∈Fp
C.

Proof To see that Ip ⊆
⋂

C∈Fp
C , let A ∈ [G]κ and Fx ∈ [G]<κ for each x ∈ G and

let C =
⋃

x∈G x(A \ Fx). For every x ∈ G,

xU (A) ⊆ x(A \ Fx) = x(A \ Fx) ⊆ C.

Consequently, cl(GU (A)) ⊆ C .
To see the converse inclusion, let B ⊆ G and Ip ⊆ B. It then follows that there

is A ∈ p such that cl(GU (A)) ⊆ B. (Indeed, G \ B = G \ B is compact and for
every y ∈ G \ B, there is Ay ∈ p such that y /∈ cl(GU (Ay)).) For every x ∈ G, one
has xU (A) ⊆ B; consequently, there is Fx ∈ [G]<κ such that x(A \ Fx) ⊆ B. Let
C =

⋃
x∈G x(A \ Fx). Then C ∈ Fp and C ⊆ B.

Lemma 8 Suppose that κ is a regular cardinal. Let A ∈ [G]κ and Fx ∈ [G]<κ for
every x ∈ G and let B = G \

⋃
x∈G x(A \ Fx). Then there are Hx,Kx ∈ [G]<κ for every

x ∈ G such that ( ⋃
x∈G

x(A \Hx)

)
∩
( ⋃

x∈G
x(B \ Kx)

)
= ∅.

Proof Enumerate G as {xα : α < κ}. For every α < κ, define Hxα ,Kxα ∈ [G]<κ by

Hxα =
⋃
β≤α

Fx−1
β xα

and Kxα =
⋃
β≤α

x−1
α xβFx−1

α xβ
.

Then for every α < κ and β ≤ α,

x−1
β xα(A \Hxα) ∩ B = ∅ and x−1

α xβA ∩ (B \ Kxα) = ∅,

and so
xα(A \Hxα) ∩ xβB = ∅ and xβA ∩ xα(B \ Kxα) = ∅.

Consequently, for every α, β < κ,

xα(A \Hxα) ∩ xβ(B \ Kxβ ) = ∅.
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Now we are in a position to prove Theorem 3.

Proof of Theorem 3 Let I = {Ip : p ∈ U (G)}. By Lemma 4, all members of I are
closed left ideals of βG contained in U (G). To show that I is an upper semicontinuous
decomposition of U (G), let p ∈ U (G), A ∈ p, and Fx ∈ [G]<κ for every x ∈ G, and
let B =

⋃
x∈G x(A \ Fx). By Lemma 8, there are Hx,Kx ∈ [G]<κ for every x ∈ G such

that Q ∩ R = ∅, where

Q =
⋃

x∈G
x(A \Hx) and R =

⋃
x∈G

x(B \ Kx).

By Lemma 7, Ip ⊆ Q and for every r ∈ U (B), Ir ⊆ R; consequently, Ir ⊆ G \ Q. This
shows that I is a decomposition. It follows from this also that for every q ∈ U (Q),
Iq ⊆ G \ B, which shows that I is upper semicontinuous. Thus, I is a decomposition
of U (G) into closed left ideals such that the corresponding quotient space of U (G) is
Hausdorff. That I is the finest decomposition of this kind follows from Lemma 5.

Finally, applying Lemma 7 gives us that q /∈ Ip if and only if there are A ∈ p and
B ∈ q such that |(xA) ∩ B| < κ for all x ∈ G.

The decomposition constructed in [4] had an additional property that for every
member I of the decomposition, IG ⊆ I.

Definition 9 Let I ′(G) denote the finest decomposition of U (G) into closed left
ideals of βG with the property that the corresponding quotient space of U (G) is
Hausdorff and for every member I of the decomposition, IG ⊆ I.

Definition 10 For every p ∈ U (G), define I ′p ⊆ βG by

I ′p =
⋂

A∈p
cl(GU (A)G).

As in the proof of Lemma 7, one shows that I ′p =
⋂

C∈F ′p
C , where F ′p denotes the

filter on G with a base consisting of subsets of the form⋃
x,y∈G

x(A \ Fx,y)y,

where A ∈ p and Fx,y ∈ [G]<κ for every x, y ∈ G. The next lemma is the corre-
sponding version of Lemma 8.

Lemma 11 Suppose that κ is a regular cardinal. Let A ∈ [G]κ and Fx,y ∈ [G]<κ for
every x, y ∈ G and let B = G \

⋃
x,y∈G x(A \ Fx,y)y. Then there are Hx,y ,Kx,y ∈ [G]<κ

for every x, y ∈ G such that( ⋃
x,y∈G

x(A \Hx,y)y
)
∩
( ⋃

x,y∈G
x(B \ Kx,y)y

)
= ∅.
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Proof Enumerate G × G as {(xα, yα) : α < κ}, and for every α < κ, define
Hxα,yα ,Kxα,yα ∈ [G]<κ by

Hxα,yα =
⋃
β≤α

Fx−1
β xα,yα y−1

β
and Kxα,yα =

⋃
β≤α

x−1
α xβFx−1

α xβ ,yβ y−1
α

yβ y−1
α .

Then for every α < κ and β ≤ α,

x−1
β xα(A \Hxα,yα)yαy−1

β ∩ B = ∅ and x−1
α xβAyβ y−1

α ∩ (B \ Kxα,yα) = ∅,

so

xα(A \Hxα,yα)yα ∩ xβByβ = ∅ and xβAyβ ∩ xα(B \ Kxα,yα)yα = ∅,

and consequently, for every α, β < κ,

xα(A \Hxα,yα)yα ∩ xβ(B \ Kxβ ,yβ )yβ = ∅.

It is easy to see that the corresponding versions of Lemmas 4 and 5 also hold.
Hence, we obtain the following analogue of Theorem 3.

Theorem 12 Let κ be a regular cardinal. Then I ′(G) = {I ′p : p ∈ U (G)}. Further-
more, for any p, q ∈ U (G), I ′p ∩ I ′q = ∅ if and only if there are A ∈ p and B ∈ q such
that |(xAy) ∩ B| < κ for all x, y ∈ G.

The next lemma will allow us to compute the cardinality of I ′(G).

Lemma 13 Let A ∈ [G]κ. Then there are B ∈ [A]κ and Fx,y ∈ [G]<κ for every
x, y ∈ G such that whenever B0,B1 ∈ [B]κ and B0 ∩ B1 = ∅, one has( ⋃

x,y∈G
x(B0 \ Fx,y)y

)
∩
( ⋃

x,y∈G
x(B1 \ Fx,y)y

)
= ∅.

Proof Enumerate G× G as {(xα, yα) : α < κ}. Construct inductively a κ-sequence
(aγ)γ<κ in A such that for every γ < κ and α ≤ γ,

xαaγ yα /∈ {xβaδ yβ : β ≤ δ < γ}.

Define B ∈ [A]κ and Fxα,yα ∈ [G]<κ for every α < κ by

B = {aγ : γ < κ} and Fxα,yα = {aβ : β < α}.

We claim that these are as required. Indeed, assume the contrary. Then xαaγ yα =
xβaδ yβ for some α, β < κ and some distinct γ, δ < κ such that α ≤ γ and β ≤ δ.
But this is a contradiction.

Corollary 14 If κ is a regular cardinal, then |I ′(G)| = 22κ , and for every I ∈ I ′(G),
I is nowhere dense in U (G).
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Proof Let A ∈ [G]κ and let B be a subset of A guaranteed by Lemma 13. Then
|U (B)| = 22κ and for any distinct p, q ∈ U (B), Ip ∩ Iq = ∅.

To see that I is nowhere dense in U (G), suppose that U (A)∩ I 6= ∅. If U (B)∩ I =
∅, we are done. Otherwise, I = Ip for some p ∈ U (B). Pick C ∈ [B]κ such that
C /∈ p. Then U (C) ∩ I = ∅.

The next theorem covers in some sense the case where κ is a singular cardinal.

Theorem 15 If κ > ω, then there is a decomposition J of U (G) into closed left ideals
of βG such that

(i) the corresponding quotient space of U (G) is homeomorphic to U (κ);
(ii) for every J ∈ J, JG ⊆ J;
(iii) for every J ∈ J, J is nowhere dense in U (G).

The proof of Theorem 15 is based on the following lemma.

Lemma 16 Let κ > ω. Then there is a surjective function f : G→ κ such that

(a) for every α < κ, | f−1(α)| < κ;
(b) whenever x, y ∈ G and f (x) < f (y), one has f (xy) = f (yx) = f (y).

Proof Construct inductively a κ-sequence (Gα)α<κ of subgroups of G such that

(i) for every α < κ, |Gα| < κ;
(ii) for every α < κ, Gα ⊂ Gα+1;
(iii) for every limit ordinal α < κ, Gα =

⋃
β<α Gβ ;

(iv)
⋃
α<κ Gα = G.

Note that G is a disjoint union of nonempty sets Gα+1 \ Gα, where α < κ, and G0.
Define f : G→ κ by

f (x) =

{
α if x ∈ Gα+1 \ Gα,

0 if x ∈ G0.

Clearly, f is surjective and satisfies (a). To check (b), let x, y ∈ G and f (x) < f (y).
Then x ∈ Gβ and y ∈ Gα+1 \ Gα for some β ≤ α < κ. It follows that both xy and
yx also belong to Gα+1 \ Gα. Hence, f (xy) = f (yx) = f (y).

Proof of Theorem 15 Let f : G→ κ be a function guaranteed by Lemma 16 and let
f : βG→ βκ be the continuous extension of f . Then

(i) f (U (G)) = U (κ) and f
−1

(U (κ)) = U (G);
(ii) f (qp) = f (p) for all p ∈ U (G) and q ∈ βG;
(iii) f (px) = f (p) for all p ∈ U (G) and x ∈ G;
(iv) for every u ∈ U (κ), f

−1
(u) is nowhere dense in U (G).

Indeed, (i) follows from surjectivity of f and condition (a). To see (ii), let A ∈ p.
For every x ∈ G, let Ax = A\{y ∈ G : f (y) ≤ f (x)}. Then Ax ∈ p, and by condition
(b), f (xy) = f (y) ∈ f (A) for all y ∈ Ax. Consequently, B =

⋃
x∈G xAx ∈ qp and

f (B) ⊆ f (A). Hence, f (qp) = f (p). Checking (iii) is similar. Finally, to see (iv), let

A ∈ [G]κ and suppose that U (A)∩ f
−1

(u) 6= ∅. Then E = f (A) ∈ u. Pick D ∈ [E]κ
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such that D /∈ u and let B = f−1(D) ∩ A. Then B ⊆ A, U (B) 6= ∅, but f (B) /∈ u,

and so U (B) ∩ f
−1

(u) = ∅. Hence, f
−1

(u) is nowhere dense in U (G).

Now let J = { f
−1

(u) : u ∈ U (κ)}. It then follows from (i)–(iv) that J is as
required.

Applying Theorem 15 in the case κ > ω and Corollary 14 in the case κ = ω, we
obtain the result from [4].

Theorem 17 |I ′(G)| = 22κ , and for every I ∈ I ′(G), I is nowhere dense in U (G).

Clearly, Theorem 17 remains true with I ′(G) replaced by I(G).
We conclude this note with the following question.

Question Is I(G) the finest decomposition of U (G) into closed left ideals of βG?

Of special interest is the case G = Z.
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