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Keeping a tube from being plugged by a fluid is an important process in applications.
An interesting re-entrant phenomenon for the capillary state with the occluding state
sandwiching the non-occluding state from both the high- and low-Bond-number regions
can appear by inserting a rod into a horizontal tube at an eccentric position (Tan
et al., J. Fluid Mech, vol. 946, 2022, A7). Containers with rounded corners are very
common. We theoretically investigate a situation for a horizontal open tube with rounded
corner(s). The results show that a re-entrant non-occlusion at a contact angle can also
appear without the insertion of any object. The competition between the rounded corner
wetting/non-wetting effect and gravity effect can lead to a re-entrant non-occlusion. The
re-entrant non-occlusion is affected by the shape and orientation of the rounded corner(s).
For a tube with only one rounded corner, the re-entrant non-occlusion exists when the
rounded corner has a not-so-large corner radius and is not in a landscape orientation. For
a tube with two (or more) rounded corners, the corner(s) with the strongest corner effect
will determine the existence or non-existence of the re-entrant non-occlusion. This paper
provides an effective scheme for designing a high-performance capillary with corners
that are not easily occluded by a fluid and removing fluid blockage from a capillary in
optofluidic/microfluidic applications.

Key words: capillary flows

1. Introduction

In many processes, a tube containing multiphase fluids can be plugged by a fluid and lead
to fluid blockage, thus possibly degrading the performance of the related fluid container
(Zhang, Yang & Wang 2006; Mirski et al. 2007). The characteristic lengths of capillary
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plugs in narrow containers can range from millimetre to micrometre sizes. Removing a
fluid blockage by capillary non-occlusion is an important process. In a transverse body
force field, the shape of a gas–liquid interface in a tube is more complex.

Researchers have sought effective measures to remove fluid blockages in capillaries. In
theoretical research, a sharp corner, a rounded corner (a curved corner with a constant
curvature radius) or a small gap can lead to liquid non-occlusion in a tube due to the
effect of surface tension. Concus & Finn (1969) analysed the wetting behaviour of a sharp
corner and found that for a cylindrical tube containing a sharp corner under zero gravity,
a bounded occluding surface fails to exist in the tube when the condition α/2 + γ <π/2
or γ − α/2 > π/2 is satisfied, with α and γ being the corner angle and the contact angle,
respectively. Concus & Finn (1987) considered two typical cross-section shapes, each of
which contained a rounded corner, and found that rounded corner wetting can prevent
the formation of a bounded occluding surface in the tube under zero gravity when the
contact angle is smaller than the critical value. Concus & Finn (1990) discussed several
examples of geometries with corners and theoretically investigated the effect of rounding
a corner on the critical wetting condition. A near-rhombus-shaped cross-section with two
sharp corners (Concus & Finn 1992) and a proboscis-shaped cross-section with a rounded
corner (Fischer & Finn 1993) were proposed for an accurate theoretical determination of
the critical contact angle for discontinuous or nearly discontinuous behaviour of liquid
bulk in certain container geometries in a microgravity environment. Chen & Collicott
(2004, 2006) investigated the critical wetting of a symmetrical and asymmetrical gap
formed between a vane and a tank wall in a liquid propellant tank in weightlessness
and determined the critical contact angle below which the wetting liquid was confined
in the gap region and extended to an infinite height. In addition, they also determined the
maximum gap size for a given liquid to have critical wetting. Smedley (1990) and Pour
& Thiessen (2019) theoretically found that capillary non-occlusion under zero gravity can
occur due to the eccentricity-induced ‘wedge’-shaped slit effect, which is essentially the
effect of surface tension.

Under the effect of an external force, corner wetting can still occur in a sharp or curved
interior corner at a contact angle, which prevents the formation of an occluding surface in
a tube. In a transverse body force field, capillary non-occlusion was theoretically observed
to occur in at least one of the sharp/curved corners of a triangular (Rascón, Parry &
Aarts 2016) or rectangular tube (Manning & Collicott 2015; Verma et al. 2020; Zhu,
Zhou & Zhang 2020) that satisfies the Concus & Finn (1969) condition or an elliptical
tube (Rascón et al. 2016) with a sufficiently large aspect ratio. Manning, Collicott &
Finn (2011) proposed a flattened ice-cream-cone-shaped cylinder for liquid non-occlusion
for any contact angle γ /=π/2, where the sharp corner can prevent the formation of an
occluding surface.

In addition to the wetting effect in a corner or a small gap, a large transverse body
force is also a key factor that can cause liquid non-occlusion in a tube. Manning et al.
(2011) was the first to theoretically determine the effect of a transverse body force on
a critical non-occlusion and took a circular tube as a typical example to calculate the
corresponding critical Bond number in the presence of a transverse gravity field. In
addition to the case of a circular tube, in a non-circular open tube (e.g. a slit (Parry et al.
2012), rectangular tube (Manning & Collicott 2015; Verma et al. 2020; Zhu et al. 2020),
elliptical or triangular tube (Rascón et al. 2016)) or in a concentric tube (Zhou et al. 2021),
capillary non-occlusion is determined for Bond numbers larger than the critical value.

Tan et al. (2022) investigated the capillary non-occlusion of a horizontal tube with a
rod inserted into it at an eccentric position in a downward gravity field and determined
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Re-entrant non-occlusion in a horizontal tube

two critical Bond numbers at a contact angle, which exhibits a phenomenon of re-entrant
non-occlusion. The re-entrant non-occlusion indicates that the liquid occlusion only exists
for Bond numbers between the critical ones, whereas the non-occlusion is determined
for relatively low or high Bond numbers. The existence of the re-entrant non-occlusion is
attributed to the insertion of a rod into a tube at an eccentric position and the integration of
the two factors (i.e. eccentricity and a transverse body force) causing liquid non-occlusion.
Does the re-entrant capillary non-occlusion appear in other situations without an inserted
object, for example, the integrating the two factors, i.e. a transverse body force and sharp
or curved corner(s)?

Because the Concus & Finn (1969) condition for the non-existence of an occluding
surface in a tube with a sharp corner is not influenced by a transverse body force (see
Appendix A), generally speaking, the integration of a transverse body force and only sharp
corner(s) does not lead to a re-entrant non-occlusion. Containers with curved corners are
very common. In reality, a corner is not ideally sharp but curved to a certain extent during
the production process of a container. Moreover, a sharp corner can be deformed into a
curved shape by the action of an external force (e.g. due to elastocapillarity) during use or
by material ageing and can possibly be curved by the filling of limescale and the like into
the corner. Accordingly, cases of curved corners are interesting and practical.

To answer the above question, we theoretically investigate the critical conditions of
capillary non-occlusion for a horizontal open tube with rounded corners (representative
of curved corners) and find a phenomenon of re-entrant non-occlusion following the
first observation by Tan et al. (2022) in a horizontal tube with a rod inserted into it
at an eccentric position. The critical capillary non-occluding conditions of a tube with
one or two corners for different corner angles, different corner radii, different corner
orientations and different contact angles are analysed. This work extends the discussion
on tubes with multiple rounded corners. Notably, this research investigated a series of
static equilibrium conditions under different parameters, not a process over time. The fluid
dynamic responses to the change in parameters, such as Bond number, contact angle and
liquid volume, in a tube can be interesting but beyond the scope of this research.

2. Mathematical model

2.1. Geometric construction
The cross-section of the tube studied in this research is convex. The most essential
constructed geometry is a horizontal tube with only one rounded corner in a downward
gravity field, as shown in figure 1(a). Two straight tangent edges of a circle of radius R are
inclined to each other to form a corner at an angle α. The corner is blunted with an arc
of a constant curvature radius r̃ to form a so-called rounded corner, and the corner arc is
tangent to the two straight edges so that the whole boundary is smooth. The rounded corner
is under the geometrical constraints 0° < α < 180° and 0 ≤ r̃ ≤ R, and it degenerates to a
sharp corner when r̃ = 0. The tube cross-section with only one rounded corner is reduced
to a circle of radius R when r̃ = R. This geometry in figure 1(a) was theoretically studied
by Concus & Finn (1987) and Smedley (1990) for its critical wetting condition under zero
gravity.

A tube cross-section with two rounded corners (see figure 1b) is formed in the
same approach as that with only one rounded corner. The tube cross-sections shown in
figure 1(a,b) can be extended to cases with more than two rounded corners. For a tube
with two or more rounded corners, an extra geometrical constraint should be imposed to
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Figure 1. Schematic of a general cross-section of liquid partially filling a horizontal open tube with (a) a
rounded corner or (b) two rounded corners in a downward gravity field. In (a), two straight tangent lines of a
circle with radius R with the centre located at point O are inclined to one another to form a corner at an angle α,
and the corner is rounded with a circular arc of radius r = r̃/R with the centre located at point O′. Here θ is the
angle between the connecting line OO′ and the positive x-axis. In (b), two rounded corners are formed in the
same approach as (a). We use α1 and r1 = r̃1/R to denote the corner angle and corner radius (corresponding
to the arc centre) of one corner, respectively, and α2 and r2 = r̃2/R to denote the corner angle and corner
radius (corresponding to the arc centre) of the other corner, respectively. Here θ1 (θ2) is the angle between the
connecting line OO′

1 (OO′
2) and the positive x-axis. The angles θ , θ1 and θ2 all start from the positive x-axis

and are oriented counterclockwise. The contact angle γ of the liquid on the tube wall is considered uniform.
The total perimeter and area of the cross-section are Σ and Ω , respectively. The gas–liquid interface Γ meets
the tube wall. The wetting perimeter and liquid area are Σ∗ and Ω∗, respectively. Note that the case with a
rounded corner r1 or r2 = 1 in (b) is equivalent to the case in (a), whereas the case with a rounded corner r = 1
in (a) is equivalent to a circle.

avoid overlaps between any two corners, which can be expressed as

|θi − θj| + (αi + αj)/2 ≤ 180◦, |θi − θj| < 180◦,
||θi − θj| − 360◦| + (αi + αj)/2 ≤ 180◦, |θi − θj| ≥ 180◦,

}
(2.1)

where θ is the orientation angle (see figure 1) of any rounded corner in the range (−180°,
180°] and the subscripts i and j denote any two corners of the tube. The horizontal
capillaries, each having the cross-section of an equilateral triangle studied by Rascón et al.
(2016) and those each having the cross-section of a square studied by Manning & Collicott
(2015) and Zhu et al. (2020), have three or four identical sharp corners, which are the
specific cases of three or four corners.

2.2. General cases
The tube with the cross-section as constructed in the previous section is in a downward
gravity field in Cartesian coordinates (x, y, z), the origin of which lies at the centre (point
O, see figure 1) of the primary circular arc (radius R). The dimensionless rounding radii
r, r1 and r2 are obtained using non-dimensionalisation by the characteristic length R as
r = r̃/R, r1 = r̃1/R and r2 = r̃2/R, respectively. The tube is assumed to be infinitely long
and is filled with two immiscible fluids (a liquid and a gas). When the tube is occluded,
the occlusions are semi-infinite plugs.
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Re-entrant non-occlusion in a horizontal tube

The forces of the liquid in a tube are the capillary force due to surface tension and
gravity. The Bond number, which is used to characterise the relative strength of gravity to
the surface tension force, is defined as

Bo = R2/l2ca, (2.2)

where the capillary length lca is given by lca = √
σ/ρg, where σ is the surface tension

between the liquid and gas, ρ is the density difference (positive) between the liquid and
gas, and g is the gravitational acceleration.

The equilibrium of the liquid droplet in this tube is attained when the total free energy
E of a three-dimensional (3-D) liquid droplet in a tube given by (Finn 1986)

E = EI + EW + EG + λV, (2.3)

reaches the minimum. EI is the interfacial energy, EW is the wetting energy, EG is the
gravitational potential energy, λ is the Lagrange parameter and V is the volume of the
liquid. The total free energy of a liquid droplet in equilibrium in a tube is finite. When
the liquid droplet plugging the tube reaches the critical condition of liquid non-occlusion,
the liquid tongue can be seen to be infinitely long and have a translationally invariant
cross-section. Under the critical condition, the total free energy per unit length of the
tongue is equal to zero (Rascón et al. 2016). In other words, the 3-D problem of
finding the critical condition for a tube plugging by a 3-D liquid droplet is reduced
to a two-dimensional (2-D) problem of finding the condition that the minimum value
of the energy functional (needed for equilibrium) of the associated 2-D droplet in the
cross-section of the tube is equal to zero.

The energy functional of a 2-D droplet in the cross-section of a tube can be expressed
as (Manning et al. 2011)

Φ = |Γ | − |Σ∗| cos γ + l−2
ca

∫
Ω∗

y dx dy + λ|Ω∗|, (2.4)

where y is the height of the interface. Note that the energy functional Φ is expressed in the
form of lengths in (2.4). The full form of the energy of a 2-D droplet should be σΦ, and
(2.4) can be obtained by dividing all terms of the energy equation by the surface tension
σ . The Lagrange parameter λ in (2.4) is written as

λ = 1
|Ω|

(
|Σ | cos γ − l−2

ca

∫
Ω

y dx dy
)

. (2.5)

Minimisation of the energy functional Φ can lead to the Young–Laplace equation (Finn
1986; Bhatnagar & Finn 2016) describing the shape of the gas–liquid interface in two
dimensions in the form given by(

yx

(1 + y2
x)

0.5

)
x

= l−2
ca y + λ. (2.6)

For a given contact angle, at a Bond number, in the cross-section of a tube, there is possibly
more than one interface (described using (2.6)) with the contact angle condition

ν · ∇y

(1 + |∇y|2)0.5 = cos γ, (2.7)

satisfied, where ν is the unit exterior normal to the tube on the perimeter Σ of
the cross-section. The values of the energy functional are calculated using (2.4) for all
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possible interfaces. The minimum Φmin of the values of the energy functional is
determined, and the corresponding interface (Γ ) and other parameters (Ω∗ and Σ∗) are
chosen. The tube is non-occluding when Φmin < 0, while a liquid plug is permitted when
Φmin > 0 (Manning et al. 2011). If the Bond number satisfies the relationship

Φmin = 0, (2.8)

then it is just the critical Bond number for non-occluding. The key process of the
computational procedure for determining the critical Bond number(s) of a tube is to plot
the variational curve of Φmin as a function of Bond number ranging from zero to a large
enough value and to determine the point(s) satisfying (2.8) if the point(s) exist (Tan et al.
2022).

For a tube with rounded corners, different solutions to (2.8) could be obtained, which
correspond to different types of capillary non-occlusion for various Bond numbers. If
Φmin < 0 for all Bond numbers (that is, there is not one solution of (2.8) as shown in
figure 2c) at a contact angle, then capillary plugging does not exist in a tube, which
corresponds to the unconditional liquid non-occlusion at the contact angle regardless of
the Bond number. Φmin > 0 at a Bond number permits at least a critical Bond number
(satisfying (2.8)) between the Bond number and a large enough Bond number that has
to cause liquid non-occlusion, implying Φmin < 0. If there is only one solution of (2.8)
obtained for a contact angle, corresponding to one critical Bond number Boc, capillary
plugging does not exist when the following condition is satisfied (Manning et al. 2011;
Manning & Collicott 2015; Rascón et al. 2016; Zhu et al. 2020; Zhou et al. 2021):

Bo > Boc. (2.9)

In other words, the tube is non-occluding in a single region of sufficiently high Bond
numbers (Boc, +∞) (see figure 2a). If there are two solutions of (2.8) obtained for a
contact angle, corresponding to the lower and upper critical Bond numbers (Bocl and
Bocu, Bocl < Bocu), then capillary plugging does not exist when the following condition
is satisfied (Tan et al. 2022):

Bo > Bocu or Bo < Bocl. (2.10)

The case admitting two critical Bond numbers exhibits a re-entrant non-occlusion with
different Bond numbers. That is, in addition to the region of higher Bond numbers (Bocu,
+∞), the tube is also determined to be non-occluding in a second region of lower Bond
number [0, Bocl) (see figure 2b).

In summary, for a tube at a contact angle, no critical Bond number corresponds to the
non-occlusion regardless of Bond numbers, i.e. unconditional non-occlusion, one critical
Bond number corresponds to the non-occlusion for a single Bond number region, and two
critical Bond numbers correspond to the non-occlusion for two distinct regions, i.e. the
re-entrant non-occlusion.

2.3. Zero-gravity cases

2.3.1. Rounded corner wetting/non-wetting under zero gravity
We consider the condition of zero gravity (i.e. Bo = 0) for the prediction of the type
of capillary non-occlusion. As shown in figure 2, the unconditional non-occlusion and
re-entrant non-occlusion require the tube to be non-occluding at a zero Bond number (i.e.
Φmin(Bo = 0) < 0), while for the type of non-occlusion for a single region, the liquid plug
is permitted at a zero Bond number (i.e. Φmin(Bo = 0) > 0). Furthermore, we have proven
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Figure 2. Three types of capillary non-occlusion for Bond numbers: (a) non-occlusion for a single region,
(b) non-occlusion for two distinct regions (re-entrant non-occlusion) and (c) unconditional liquid
non-occlusion. For the horizontal tube with only one rounded corner (α = 30°, r = 0.1 and θ = 90°), the contact
angle is given by (a) γ = 75°, (b) γ = 55° and (c) γ = 35°. The red dotted lines denote the solutions of (2.8)
(i.e. Bo = Boc in (a) and Bo = Bocl and Bo = Bocu in (b)). In (b), the non-occluded liquid configurations on
the left and right correspond to Bo = Bocl and Bo = Bocu, respectively. The 3-D interfaces of the liquid plug as
the Bond number gradually increases are computed using Surface Evolver (Brakke 1992) and integrated in a
horizontal tube.

(see Appendix B) that under zero gravity, for a tube constructed as described in § 2.1, only
the ‘corner liquid configuration’ such as shown in figure 3 can reach the minimum energy
of the 2-D droplet Φmin(Bo = 0). This means that the capillary non-occlusion under zero
gravity depends on whether the energy of the ‘corner liquid configuration’ is negative. If
so, the corner wetting/non-wetting will be permitted in the corresponding corner, where
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Rs

Гi
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r̃i
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(a) (b)

γ

γΩi
∗

Σi
∗

αi

Figure 3. Schematic of the ‘corner liquid configuration’ in the ith rounded corner of a tube under zero gravity
for (a) the wetting case (γ < 90°) and (b) the non-wetting case (γ > 90°). For the ‘corner liquid configuration’,
the contact points are prescribed on the two straight edges of a corner. The contact angles in (a) and (b) are
complementary angles.

the fluid (i.e. the liquid for the wetting case or the gas for the non-wetting case) is confined
to the corner and extends to an infinite length, leading to the capillary non-occlusion. It
follows that the corner wetting/non-wetting under zero gravity must be permitted in the
tube when the re-entrant or unconditional non-occlusion occurs at a contact angle.

Since the interface (described using (2.6)) of the 2-D droplet is a circular arc under
zero gravity (Concus & Finn 1990), the energy of the ‘corner liquid configuration’ can be
theoretically given.

Note that the case of two or more corners should be under the geometrical constraint
(2.1). For a tube with n (n ≥ 1) rounded corners under zero gravity, the expression of the
Lagrange parameter (2.5) is reduced to λ = |Σ | cos γ /|Ω|, which is rewritten as

λ = 2 cos γ

R

2π +
n∑

i=1
[αi − π + 2(1 − ri) cot(αi/2) + ri(π − αi)]

2π +
n∑

i=1
[αi − π + 2(1 − r2

i ) cot(αi/2) + r2
i (π − αi)]

. (2.11)

and the interface is a circular arc, the radius of which can be written as

Rs = 1
λ

= R
2π +

n∑
i=1

[αi − π + 2(1 − r2
i ) cot(αi/2) + r2

i (π − αi)]

2 cos γ

{
2π +

n∑
i=1

[αi − π + 2(1 − ri) cot(αi/2) + ri(π − αi)]
} . (2.12)

For the wetting case, according to the calculation, the ‘corner liquid configuration’ exists
in the ith corner when satisfying the condition

γ < cos−1

⎛
⎝Rri +

√
2R2

s − (Rri)
2

2Rs

⎞
⎠ . (2.13)

The upper limit of the contact angle in (2.13) is determined when the endpoints of the
interface are just on the intersections between the corner arc and the corner straight edges.
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Re-entrant non-occlusion in a horizontal tube

As the energies of the liquid configurations identified by two complementary contact
angles (such as figure 3a,b) are equal (Manning et al 2011; Tan et al. 2022), it suffices
to consider only the wetting case when calculating the energy for the ‘corner liquid
configuration’.

Denote φ as the energy functional for the ‘corner liquid configuration’. For the wetting
case, if the ‘corner liquid configuration’ exists in the ith rounded corner (i.e. (2.13) is
satisfied), the corresponding energy functional φi is expressed as

φi = |Γi| − |Σ∗
i | cos γ + λ|Ω∗

i |, (2.14)

where Γi, Σ∗
i and Ω∗

i are the interface, the wetting perimeter and the liquid area in the
ith rounded corner, respectively. Based on the geometric relationship shown in figure 3(a),
the parameters can be obtained as

|Γi| = Rs(π − αi − 2γ ), (2.15a)

|Σ∗
i | = 2Rs cos γ − 2ri

tan(αi/2)
− 2Rs sin γ + ri(π − αi), (2.15b)

|Ω∗
i | = R2

s cos γ cos(γ + αi/2)

sin(αi/2)
− 1

2
R2

s (π − αi − 2γ ) − r2
i

tan(αi/2)
+ 1

2
r2

i (π − αi).

(2.15c)

By substituting (2.15) into (2.14), we can calculate the energy functional φi.
The corner wetting/non-wetting under zero gravity is permitted in the ith corner when

φi < 0. We consider the critical case

φi = 0. (2.16)

For wetting liquids (γ < 90°), the critical contact angle γ i,cr of a rounded corner can
be obtained by solving (2.16) with the given geometric parameters of the tube. Then,
the corner wetting in the ith corner is permitted for γ < γ i,cr, while it is not permitted
for γ i,cr <γ < 90° (Finn 1986; Concus & Finn 1990). Regarding non-wetting liquids
(γ > 90°), the critical contact angle γ ∗

i,cr can be obtained by the relation γ ∗
i,cr = 180◦ −

γi,cr (Tan et al. 2022). Likewise, the corner non-wetting in the ith corner is permitted for
γ > γ ∗

i,cr but is not permitted for 90◦ < γ < γ ∗
i,cr. If no such critical contact angle γ i,cr

or γ ∗
i,cr exists between 0° and 180°, the corner wetting/non-wetting under zero gravity will

not occur in the ith corner for any liquid.
Note that for the special case of the corner with r = 0 (the corner being a sharp

corner), there is no need to solve (2.16) for the critical contact angle, as the corner
wetting/non-wetting is permitted in a sharp corner only if satisfying the Concus & Finn
(1969) condition, i.e. γ < π/2 −α/2 or γ > π/2 +α/2. From (2.12), (2.14), (2.15) and
(2.16), it can be seen that for a rounded corner, the critical contact angle is affected by
the other corners in the tube, whereas for a sharp corner, it only depends on the sharp
corner angle according to the Concus & Finn (1969) condition.

If some corners in a tube have the same critical contact angle, these corners are
considered to have an equal corner effect, as they identify the same contact angle ranges
in which the corner wetting/non-wetting under zero gravity is permitted. For a pair of
corners, the geometric condition for them to have the equal corner effect is given by

φi = φj = 0. (2.17)

Setting the radii ri,e and rj,e of the two corners as variables and fixing the other geometric
parameters of the tube, a relation between the two radii ri,e and rj,e can be obtained based
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on (2.17). Then, these two corners have an equal corner effect (e.g. the points on the black
solid line in figure 10a). For the tube with only two corners, the two corners having an
equal corner effect may lead to the disappearance of the re-entrant non-occlusion, which
is discussed in detail in § 3.2.1. For a rounded corner in a tube with other parameters fixed,
a smaller corner radius (or a smaller corner angle) for the corner leads to a larger contact
angle range for the corner wetting/non-wetting under zero gravity, which corresponds to a
stronger corner effect. We note that the terms ‘equal’ or ‘stronger’ used here only indicate
the same or the larger contact angle range for corner wetting/non-wetting but do not refer
to the performance of the corner flow in dynamics.

2.3.2. Critical contact angle and limiting geometric condition for a tube
For the tube with n corners, the energy of the ‘corner liquid configuration’ for each
corner would be calculated, and then the minimum energy is obtained as Φmin(Bo =
0) = min(φ1, φ2, . . . , φi, . . . , φn). Note that for some corners in a tube, the ‘corner liquid
configuration’ may not exist (i.e. it may not satisfy (2.13)) and, thus, the calculations for
the corresponding corners should be abandoned.

The condition for the capillary non-occlusion under zero gravity can be expressed as

Φmin(Bo = 0) = min(φ1, φ2, . . . , φi, . . . , φn) < 0, (2.18)

which implies that if (one of the n corners of) the tube permits the corner
wetting/non-wetting under zero gravity, the non-occlusion will occur for the tube. In
addition, condition (2.18) is necessary for the occurrence of the re-entrant or unconditional
non-occlusion at a contact angle. With the given geometric parameters, the critical contact
angle for the corner wetting/non-wetting in a tube is obtained by solving

Φmin(Bo = 0) = min(φ1, φ2, . . . , φi, . . . , φn) = 0. (2.19)

For wetting liquids (γ < 90°), the solution of (2.19) obtained as γ cr is the maximum
value of γ i,cr (where i = 1, 2, . . . , n). Likewise, for non-wetting liquids (γ > 90°), the
critical contact angle γ ∗

cr is the minimum value of γ ∗
i,cr (where i = 1, 2, . . . , n) and

follows the relation γ ∗
cr = 180◦ − γcr. Then, the corner wetting/non-wetting under zero

gravity could occur for contact angles in the range γ <γ cr and γ > γ ∗
cr, whereas it

will not occur for γcr < γ < γ ∗
cr. If γ cr or γ ∗

cr does not exist between 0° and 180°, the
corner wetting/non-wetting under zero gravity will not occur in the tube for any contact
angle, which also implies that the tube will not permit the re-entrant non-occlusion
and unconditional non-occlusion. Then, a limiting geometric condition for the corner
wetting/non-wetting under zero gravity in the tube can be determined by letting γ cr = 0°,
i.e. solving the equation

Φmin(Bo = 0, γ = 0◦) = 0. (2.20)

It suffices to solve (2.20) to obtain the limiting geometric condition, as the equation for the
complementary case Φmin(Bo = 0, γ = 180◦) = 0 is equivalent to (2.20).

3. Results and discussion

In this section, we investigate the effects of different parameters (including wettability
and geometric parameters) on non-occlusions, especially the case of two non-occluding
regions for Bond numbers, i.e. the re-entrant non-occlusion (see figure 2b). The tubes with
only one corner and two corners are analysed in §§ 3.1 and 3.2, respectively. In addition,
§ 3.3 provides a qualitative discussion on the tube with multiple (more than two) corners.
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Re-entrant non-occlusion in a horizontal tube

3.1. A rounded corner
We begin by considering a tube with only one rounded corner. We comprehensively
analyse the effect of the geometric parameters of the corner (i.e. the corner angle, the
corner radius and the corner orientation) on the capillary non-occlusion and then present
the phase diagrams of the types of capillary non-occlusion in a parameter space (γ , r).

3.1.1. Effect of the corner shape
Consider a horizontal open tube with only one rounded corner. The corner shape is
identified by the corner angle and the constant corner radius. Figure 4 shows the critical
Bond numbers of the open tubes for different corner radii and corner angles with a portrait
corner orientation (θ = 90°). Interestingly, followed by the first observation in a horizontal
eccentric tube (Tan et al. 2022), the re-entrant non-occlusion is also observed for the tube
with a rounded corner (for example, the cases of 0 < r ≤ 0.5 in figure 4a–c).

The plot of a critical Bond number line exhibits different types of capillary
non-occlusion for Bond numbers at different contact angles. Take the case of α = 30°
and r = 0.1 as an example (see the thick red line in figure 4a). The critical Bond number
line intersects the γ axis at two points, and the values of γ of the two intersection points
are γ cr (<90°) and γ ∗

cr (>90°), which can be theoretically determined by solving (2.19)
and satisfy γcr = 180◦ − γ ∗

cr, as mentioned in § 2.3.2. For the contact angle in the range
γcr < γ < γ ∗

cr, only one critical Bond number is identified, which corresponds to the
non-occlusion for a single Bond number region. The lower limit of the contact angle
identifying two critical Bond numbers is denoted by γ l (e.g. the contact angle value of
point L on the thick red line in figure 4a). For γ l <γ <γ cr, two critical Bond numbers are
identified, which correspond to the re-entrant non-occlusion. For γ > γ ∗

cr or γ <γ l, no
critical Bond number is identified, which corresponds to the unconditional non-occlusion.
The results indicate that the re-entrant non-occlusion and the unconditional non-occlusion
only occur for contact angles γ <γ cr or γ > γ ∗

cr, i.e. the contact angles permitting the
corner wetting in the tube under zero gravity.

The re-entrant non-occlusion arises from the competition between the rounded corner
wetting/non-wetting effect and the gravity effect. Consider the wetting case. For the
tube with a top corner, the corner wetting effect tends to pull the wetting liquid in the
top corner, whereas gravity tends to pull the liquid down to the bottom, which leads
to competition between the corner wetting effect and gravity effect to place the liquid.
For γ l < γ < γ cr, gravity vanishes at a zero Bond number, and the corner wetting leads
to the non-occlusion of the tube. When the Bond number ranges from zero to a small
value less than Bocl (the lower critical Bond number), the corner wetting effect dominates
over the gravity effect and still keeps the liquid in the top rounded corner (see, e.g., the
non-occluded liquid configuration of point A in figure 4a), which prevents the formation
of an occluding surface. When the Bond number is betwee Bocl and Bocu (the lower and
upper critical Bond numbers), the liquid under the offsetting effects of corner wetting
and gravity can occlude the tube. Regarding liquid plugging, the upper and lower tongues
of the plugged capillary surface directly computed via Surface Evolver (Brakke 1992)
at γ = 55° gradually become shorter and longer, respectively, for a larger Bond number
(see figure 4a). When Bo approaches the lower (upper) critical Bond number, the upper
(lower) tongue is much longer than the lower (upper) tongue (see also figure 2b). For
Bond numbers larger than Bocu, the gravity effect dominates over the rounded corner
wetting effect, and the liquid is pulled down and spreads along the bottom of the tube (see,
e.g., the non-occluded liquid configuration of point B in figure 4a), which leads to liquid
non-occlusion. Naturally, the re-entrant non-occlusion is observed with the Bond number
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Figure 4. Critical Bond numbers of a horizontal tube with only one rounded interior corner for different corner
radii and different corner angles: (a) α = 30°, (b) α = 90° and (c) α = 150° at θ = 90° versus contact angle. The
grey dotted lines are the critical contact angles of the Concus & Finn (1969) condition, i.e. (a) γ = 75° and
γ = 105°, (b) γ = 45° and γ = 135° and (c) γ = 15° and γ = 165°. In (a), for the case of r = 0.1 at γ = 55°,
points P1, P2, P3 and P4 correspond to the capillary states permitting the liquid plug, the 3-D interfaces (an
oblique view) of which are directly computed via Surface Evolver (Brakke 1992), as shown on the right-hand
side.
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Re-entrant non-occlusion in a horizontal tube

varying from zero to a sufficiently large value, which is validated by direct computation
via Surface Evolver (Brakke 1992). Details about the Surface Evolver calculation can be
seen in the supplementary material available at https://doi.org/10.1017/jfm.2023.1014.

As shown in figure 4, when the re-entrant non-occlusion occurs (for γ l <γ <γ cr), the
lower critical Bond number increases as the contact angle decreases because the condition
of being more hydrophilic is more favourable for corner wetting, and a greater gravity is
needed to pull the wetting liquid down to occlude the tube. For the non-wetting liquid with
γ > γ ∗

cr, the competition between the corner non-wetting effect and gravity effect does not
exist because both effects tend to pull the non-wetting liquid out of the top rounded corner,
which prevents the formation of an occluding surface and leads to the unconditional liquid
non-occlusion regardless of the Bond number.

For the tube with only one corner, the re-entrant non-occlusion can exist for the
not-so-large corner radius r but does not exist when r reduces to zero (sharp corner). As
shown in figure 4(a–c), all the cases with r = 0 permit the unconditional non-occlusion
but do not exhibit the re-entrant non-occlusion. In addition, the critical Bond number
only exists within the range π/2 + α/2 < γ <π/2 − α/2. This implies that the computed
results of the contact angle range for the unconditional non-occlusion are consistent
with the Concus & Finn (1969) condition (i.e. γ < π/2 −α/2 or γ >π/2 + α/2). This
range also matches with the ‘non-occluding pipe’ condition (Manning et al. 2011). The
‘non-occluding pipe’, of which the shape is the same as with the sharp-corner cases in
figure 4 but the sharp corner is in an opposite orientation, was theoretically proposed
by Manning et al. (2011) to keep non-occluding under gravity through the sharp corner
wetting effect. In fact, when the contact angle satisfies the Concus & Finn (1969) condition
of the sharp corner of a tube, the capillary non-occlusion will occur regardless of
corner orientation and gravity (proven in Appendix A), which leads to an unconditional
non-occlusion and prevents the re-entrant non-occlusion.

For the tube permitting the corner wetting/non-wetting, a larger corner radius or a larger
corner angle reduces the effectiveness of corner wetting/non-wetting, which leads to liquid
occlusion over a broader range of contact angles and Bond numbers (see figure 4). Too
large a corner radius will not lead to corner wetting/non-wetting at a zero Bond number for
any contact angle, thereby preventing the appearance of re-entrant non-occlusion. For the
case of only one rounded corner, the limiting corner radius for corner wetting/non-wetting
under zero gravity can be obtained by solving (2.20). As shown in figure 5, for any corner
with 0° <α < 180°, the corner wetting/non-wetting under zero gravity can occur in the
tube provided that the corner radius satisfies r ≤ 0.5. Moreover, under the condition of the
corner not in a landscape orientation (i.e. θ /= 0° and 180°), the limiting corner radius for
corner wetting/non-wetting (see the blue curve in figure 5) also indicates the maximum
corner radius for existence of the re-entrant non-occlusion in the tube. The effect of the
corner orientation is discussed in the following section.

3.1.2. Effect of the corner orientation
To study the effect of the orientation of the rounded corner, figure 6 shows the critical Bond
number lines of an open tube with a rounded corner at an orientation angle θ ranging from
−90° through 0° to 90°. The critical Bond number for a contact angle γ at an orientation
θ is equal to that for the complementary contact angle 180° − γ at the opposite orientation
–θ (e.g. the critical points A and D have the same value of Bond number, and the critical
points B and C have the same value of Bond number). According to Tan et al. (2022),
a gas–liquid interface for an orientation angle –θ and a contact angle 180° − γ that is
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Figure 5. The limiting corner radii for permitting the corner wetting/non-wetting under zero gravity with
corner angles varying in the range 0° <α < 180°. The blue curve theoretically determined by (2.20) denotes
the limiting corner radii for various corner angles. The black dotted line denotes the straight line r = 0.5. The
limiting corner radius decreases monotonically as the corner angle increases, and the limiting corner radius
approaches 0.5 when the corner angle approaches 180°.
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Figure 6. Critical Bond numbers of a horizontal tube with only one rounded interior corner with angle α = 30°
and corner radius r = 0.1 for different orientation angles θ ranging from −90° through 0° to 90° versus contact
angle.

symmetric to a given interface for an orientation angle θ and a contact angle γ can be
found (see, e.g., the non-occluded liquid configurations of A and D, or the non-occluded
liquid configurations of B and C), and the values of the energy functional calculated from
(2.4) for the two sets of orientation angles and contact angles are equal. Therefore, the
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critical Bond numbers satisfying (2.8) for the two sets of orientation angles and contact
angles are equal, which can also be seen in figure 6. An orientation angle range from 0°
to 90° is sufficient for research on the effect of the orientation angle of the corner for the
case of only one corner.

In figure 6, the intersection points of the critical Bond number line and the γ axis are
fixed with θ varying, because the critical contact angles for corner wetting/non-wetting
under zero gravity (i.e. γ cr and γ ∗

cr) are independent of θ . With θ decreasing from 90° to 0°,
two characteristics of the change in the critical Bond number lines are worth considering.
First, the contact angle range of the re-entrant non-occlusion tends to be narrower, and
the re-entrant non-occlusion does not occur for the corner in a landscape orientation
(θ = 0° or 180°). Since the re-entrant non-occlusion arises from the competition between
the corner wetting effect and gravity effect, the gravity effect to pull the liquid out of the
corner against the corner wetting effect is weakened with θ varying from 90° to 0°, thus
causing a reduction in the permitting contact range for the re-entrant non-occlusion. This
characteristic means that the corner approaching the landscape orientation is beneficial
to liquid non-occluding at a moderate Bond number. Second, the upper critical Bond
number Bocu, especially for contact angles γcr < γ < γ ∗

cr (for which only one critical
Bond number is identified), becomes larger. This means that the variation in θ from 90°
to 0° is not favourable for removing a liquid plug, especially for contact angles close to
90°. Similar characteristics appear in the tubes with other geometries. For example, for
a rectangular (Manning & Collicott 2015) or an elliptical (Rascón et al. 2016) occluded
tube, removing a liquid plug requires a lower gravity for the tube in a portrait orientation
(long side of the rectangle or major axis of the ellipse parallel to the direction of gravity)
than that in a landscape orientation (long side of the rectangle or major axis of the ellipse
perpendicular to the direction of gravity).

For θ = 0°, the critical Bond number line is symmetric with respect to the line γ = 90°,
which is attributed to the geometric symmetry of the tube with respect to the vertical axis.
For two supplementary contact angles, the corresponding two critical Bond numbers are
equal (both satisfy (2.8)) due to this symmetry.

From the above results, we conclude that for the tube with only one rounded corner, the
re-entrant non-occlusion will occur, if the rounded corner wetting/non-wetting condition
is satisfied and the rounded corner is not in a landscape orientation.

3.1.3. Phase diagram
As mentioned previously, the capillary non-occlusion prescribed in this paper can be
classified into three types according to the number of the critical Bond number Boc, i.e.
unconditional liquid non-occlusion (corresponding to zero Boc), non-occlusion for a single
Bond number region (corresponding to one Boc) and non-occlusion for two Bond number
regions (or, say, re-entrant non-occlusion corresponding to two Boc). To demonstrate the
effect of the corner shape, corner orientation and wettability on the types of the capillary
non-occlusion more clearly, figure 7 illustrates the number of Boc in a parameter space
(γ , r).

As shown in figure 7(a), the zero-Boc cases and the two-Boc cases would not exist for
a large corner radius (r > 0.57), regardless of the magnitude of the contact angle. The
boundary line (black solid line) of the one-Boc region does not change with θ ( just as
γ cr and γ ∗

cr do not change with θ as shown in figure 6), while the two-Boc region in the
parameter space decreases with θ decreasing from 90° until it disappears when θ = 0°. The
two-Boc cases only occur at γ < 90° for 0◦ < θ ≤ 90◦, and the range of r corresponding
to the case becomes larger with decreasing γ . The two-Boc cases will occur at γ > 90° for
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Figure 7. Phase diagram of the cases having different numbers of Boc in a parameter space (γ , r) for
(a) different orientation angles 0◦ ≤ θ ≤ 90◦ at α = 30° and for (b) the orientation angle θ = 90° at different
corner angles α = 30°, 90° and 150°. In (a), boundaries between different regions are presented, and the
different line colours correspond to the cases for different θ . The dashed line is the boundary between the left
zero-Boc region and the two-Boc region. The solid line, which does not change with different θ , is the boundary
between the two-Boc region and the one-Boc region and is also the boundary between the one-Boc region and
the right zero-Boc region. Note that the dashed line for θ = 0° coincides with the left part of the solid line.
In (b), the meanings of the different line types are the same as those in (a), and the different line colours
correspond to the cases for different α.

−90◦ ≤ θ < 0◦, and the region is symmetric to that for 0◦ < θ ≤ 90◦ with respect to the
vertical line γ = 90°.

As shown in figure 7(b), θ = 90° is used as an example to analyse the effect of the
corner angle on the boundary lines. With an increasing corner angle, both the two-Boc
region (between the solid and dashed curves of the same colour) and the zero-Boc region
(below the dashed curve) are reduced. It can be concluded that a smaller corner angle can
lead to an effective increase in the possibility of unconditional liquid non-occlusion in a
tube with only one corner.

3.2. Two rounded corners
In this section, we consider a tube with only two rounded corners. Each corner is
determined by three geometric parameters (the corner angle, the corner radius and the
orientation angle of the corner), and thus the geometry of the tube with two corners relates
to a six-dimensional parameter space, which corresponds to numerous cases. However, we
focus on the re-entrant non-occlusion only for some typical cases. In the following, we first
keep the two corners at the same angle. Then, we analyse the cases with the two corners
having different angles and different rounding radii. Phase diagrams are then given to
illustrate the existence of the re-entrant non-occlusion for tubes with different geometric
parameters.

3.2.1. Two rounded corners with the same corner angle
For a vertically symmetrical tube with two equal corner angles, the critical Bond
numbers for various corner radii are shown in figure 8(a). It is found that the re-entrant
non-occlusion does not occur for any contact angle when r1 = r2.
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Figure 8. Critical Bond numbers of a horizontal tube with only two rounded corners with the same angle
(α1 =α2 = 90°) versus contact angle for (a) r2 = 0.3 and different values of r1 at θ1 = 90° and θ2 =−90° and
(b) different combinations of the orientation angles θ1 ranging between 0° and 90° and θ2 ranging between
−180° and −90°. In the inset of (b), the contact angle ranges of the re-entrant non-occlusion for all the curves
are given.

According to the previous sections, the rounded corner wetting/non-wetting effect and
gravity effect compete to place the liquid, which can lead to the re-entrant non-occlusion.
Consider a tube with only two corners, of which one is in an upper orientation
(0 <θ1 < 180°) and the other is in a lower orientation (−180° <θ2 < 0°), as the cases
shown in figure 8(a). If both the upper and lower corners permit the corner wetting
(non-wetting) under zero gravity at a contact angle, the liquid (gas) will be trapped in
the lower (upper) corner because of a lower gravitational potential energy when applying
a downward gravity. Then, in this case, both the corner wetting (non-wetting) effect
and the gravity effect tend to pull the liquid down to the bottom and, thus, competition
between these two effects does not exist, leading to the non-occurrence of the re-entrant
non-occlusion. The re-entrant non-occlusion does not exist for any contact angle in the
case of r1 = 0.3 in figure 8(a), because the identical upper and lower corners naturally
have the equal corner effect (i.e. satisfy (2.17)), which identifies the same contact ranges
for permitting the rounded corner wetting/non-wetting under zero gravity. Not limited to
the case with the identical upper and lower corners, the conclusion of non-existence of
the re-entrant non-occlusion is valid only if the upper and lower corners have the equal
corner effect. Moreover, under the condition that the two corners have the equal corner
effect and are at the same side (both the corners in the upper or the lower orientation),
the competition between the corner wetting/non-wetting and gravity will exist, and the
re-entrant non-occlusion is expected to exist, which is similar to the case of only one
rounded corner.

For the cases shown in figure 8(a), changing r1 from 0.3 to a smaller (not zero) or to
a larger value makes the upper corner and the lower corner non-identical, which leads to
the re-entrant non-occlusion for some contact angles. When 0 < r1 < r2 = 0.3, the upper
corner (with a smaller radius) has a stronger corner effect (i.e. has a larger contact angle
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range for corner wetting/non-wetting under zero gravity) than the lower corner. For some
contact angles, only the upper corner permits the corner wetting/non-wetting under zero
gravity. Thus, in a downward gravity field, there exists a competition between the upper
corner wetting effect and gravity effect to place the wetting liquid, which leads to the
occurrence of the re-entrant non-occlusion for some wetting liquids (for γ l < γ < γ cr,
where γ l denotes the lower limit of the contact angle corresponding to two critical Bond
numbers such as the contact angle value of point L on the black curve). By analogy, when
r1 > r2 = 0.3, the lower corner (with a smaller radius) has a stronger corner effect. The
competition between the lower corner non-wetting effect and gravity effect leads to the
occurrence of the re-entrant non-occlusion for some non-wetting liquids (for γ ∗

cr < γ <

γu, where γ u denotes the upper limit of the contact angle corresponding to two critical
Bond numbers such as the contact angle value of point U on the blue curve).

To illuminate the effects of the orientations, the critical Bond number for different
combinations of the orientation angles θ1 and θ2 are shown in figure 8(b). The two corners
are set to have the non-equal corner effect, and corner 1 (with a smaller radius) has a
stronger corner effect. From the result shown in figure 8(b), the re-entrant non-occlusion
occurs for some wetting liquids when corner 1 is in an upper orientation (e.g. the
case of θ1 = 90°), and it occurs for some non-wetting liquids when corner 1 is in a
lower orientation (e.g. the cases of θ1 = −45°), while it disappears when θ1 = 0°. The
orientation of the other corner θ2 can only affect the contact angle range of the re-entrant
non-occlusion to some degree (comparing the contact angle ranges between the green
line, the blue line and the magenta line shown in the inset of figure 8b). The re-entrant
non-occlusion mainly depends on θ1 (for which the corner has a stronger corner effect),
and the effect of θ1 is similar to the effect of the corner orientation angle in the tube of
only one corner (see figure 6).

According to the above results, we can conclude that for the tube with only two
corners, the corner exhibiting a stronger corner effect plays the leading role in the
re-entrant non-occlusion of the tube. The re-entrant non-occlusion occurs for some wetting
(non-wetting) liquids when the stronger corner is in an upper (lower) orientation, whereas
it will not appear in the tube when the stronger corner is in a landscape orientation. In the
following, we keep θ1 = 90° and θ2 =−90°.

3.2.2. Two rounded corners with different corner angles
Identifying the corner with a stronger corner effect (i.e. a larger contact angle range for
corner wetting/non-wetting under zero gravity) is essential to analyse the phenomenon of
re-entrant non-occlusion. As discussed in the previous section, when the two rounded
corners have the same angle, that with a smaller radius has a stronger corner effect.
Likewise, when the two rounded corners have the same radius, that with a smaller angle
has a stronger corner effect. In the following, we discuss the two rounded corners that are
not identical in both angle and radius.

Four representative cases of the critical Bond number for two non-identical rounded
corners (α1 = 30°, α2 = 90° and r1 /= r2) are shown in figure 9(a). If both corners have too
large radii (e.g. the case of r1 = 0.8 and r2 = 0.8 in figure 9a), corner wetting/non-wetting
will not be permitted for any liquid under zero gravity in both corners and, thus, the
re-entrant non-occlusion and the unconditional non-occlusion will not occur. Assuming
that the corner wetting/non-wetting is permitted for a set of fixed geometric parameters
(α1 = 30°, α2 = 90° and r2 = 0.3), by solving (2.17), we can determine a value of corner
1 as r1,e (= 0.46). Then, corner 1 with radius r = r1,e has an equal corner effect to
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Figure 9. Critical Bond numbers of a horizontal tube with only two non-identical rounded corners (α1 /= α2
and r1 /= r2) with angles α1 = 30° and α2 = 90° at θ1 = 90° and θ2 = −90° for (a) different sets of rounding
radii r1 and r2 and (b) r2 = 0 and different values of r1 versus contact angle. In (b), the grey dotted lines are
the critical contact angles of the Concus & Finn (1969) condition with α2 = 90°, i.e. γ = 45° and γ = 135°.

corner 2. Therefore, for the case of r1 = r1,e (e.g. the case of r1 = 0.46 and r2 = 0.3
in figure 9a), the re-entrant non-occlusion does not occur for any contact angles. For
0 < r1 < r1,e (e.g. the case of r1 = 0.2 and r2 = 0.3 in figure 9a), corner 1 (i.e. the
upper corner) has a stronger corner effect, and the re-entrant non-occlusion occurs for
some wetting liquids. Likewise, for r1 > r1,e (e.g. the case of r1 = 0.7 and r2 = 0.3 in
figure 9a), corner 2 (i.e. the lower corner) has a stronger corner effect, and the re-entrant
non-occlusion occurs for some non-wetting liquids. Note that the determination of the
equivalent corner radius based on the zero Bond number is independent of the orientation
angles θ1 and θ2 (obtained from (2.17)), which implies that the values of θ1 and θ2 have
no effect on the comparison between the two corners.

For the tube with only one sharp corner, the re-entrant non-occlusion does not exist,
and the unconditional non-occlusion occurs when satisfying the Concus & Finn (1969)
condition (as the cases of r = 0 shown in figure 4a–c). However, for a tube with only two
corners containing a sharp corner and a rounded corner, the re-entrant non-occlusion can
exist when the rounded one has a stronger corner effect (e.g. the case of r1 = 0.05 and
r2 = 0, and the case of r1 = 0.15 and r2 = 0 in figure 9b), whereas it cannot exist when the
two corners have an equal corner effect (e.g. the case of r1 = 0.05 and r2 = 0, and the case
of r1 = 0.15 and r2 = 0 in figure 9b) or the sharp one has a stronger corner effect (e.g. the
case of r1 = 0.35 and r2 = 0 in figure 9b). In addition, when the contact angle satisfies the
Concus & Finn (1969) condition for the sharp corner, the unconditional non-occlusion for
the tube also occurs and the re-entrant non-occlusion does not exist. This is the reason why
in the case of r1 = 0.15 in figure 9(b), the re-entrant non-occlusion is limited in a contact
angle range larger than γ = 45°.
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Figure 10. (a) Phase diagram of the re-entrant non-occlusion in a parameter space (r1, r2) for a horizontal tube
with two non-identical rounded interior corners with angles α1 = 30° and α2 = 90° at θ1 = 90° and θ2 =−90°
and (b) boundary lines in the parameter space (r1, r2) for different sets of angles of two corners α1 = 30°
and α2 = 90°, α1 = 90° and α2 = 90° and α1 = 150° and α2 = 90°. In (a), the black dotted line is determined
by (2.20), the black solid line is determined by (2.17), and the black dashed line starts from the intersection
point between the black solid line and the vertical line r2 = 0 and ends at (0, 1). Points i, ii, iii and iv are
(r1, r2) = (0.2, 0.3), (0.46, 0.3), (0.7, 0.3) and (0.8, 0.8), respectively, and correspond to the cases in figure 9(a).
Points v, vi, vii and viii are (r1, r2) = (0.05, 0), (0.15, 0), (0.244, 0) and (0.35, 0), respectively, and correspond
to the cases in figure 9(b). The white circle denotes the origin (r1, r2) = (0, 0). In (b), the meanings of the
different line types are the same as those in (a), and the different line colours correspond to the cases for
different (α1, α2).

3.2.3. Phase diagram
For a tube with two known corner angles α1 and α2, the existence of re-entrant
non-occlusion in the radius parameter space (r1, r2) is shown in figure 10. Notably, we
prescribe θ1 = 90° and θ2 = −90°.

As shown in figure 10(a), the space is divided into different regions. The points on
the black dotted line determined by (2.20) correspond to the limiting radii for the tube
to permit corner wetting/non-wetting. Then, for the points in the region (in the upper
right of the diagram) surrounded by the black dotted line, corner wetting/non-wetting
cannot occur for any wettability under zero gravity and, thus, the re-entrant non-occlusion
does not exist (for any contact angles). The points on the black solid line determined by
(2.17) correspond to the two corners having an equal corner effect, for which re-entrant
non-occlusion does not exist. The black solid line separates the region (with larger r1) of
re-entrant non-occlusion occurrence for some wetting liquids from the region (with smaller
r1) of re-entrant non-occlusion occurrence for some non-wetting liquids. The points on
the black dashed line correspond to the tubes in which the sharp corner (corner 1) has
a stronger corner effect and, thus, the re-entrant non-occlusion does not exist for these
points. The origin denoted by the white circle corresponds to the special tube with two
sharp corners, for which the re-entrant non-occlusion does not exist. In summary, except
for the points in the no re-entrant non-occlusion region and the points on the boundary
line.

The phase diagram shown in figure 10(a) can be regarded as the representative case for
α1 <α2. In figure 10(b), the representative cases for α1 > α2 (i.e. the case of α1 = 150°
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and α2 = 90°) and for α1 = α2 (i.e. the case of α1 = 90° and α2 = 90°) are also given. Note
that the re-entrant non-occlusion will never occur for the case of α1 =α2 (see the red curve
in figure 10b) if one of the corners is sharp.

3.3. Discussion on multiple rounded corners
The cases of one corner and two corners are the general cases for the study of
how corners influence the existence of a re-entrant non-occlusion. The conclusions
of these cases can be generalised and applied to predicting cases of multiple corners
(e.g. the cases of three corners and four corners) in an open tube. First, the rounded
corner wetting/non-wetting permitted under zero gravity is necessary for the existence
of the re-entrant non-occlusion for a lower Bond number. Second, the competition
between the rounded corner wetting/non-wetting effect and gravity effect can lead to
the re-entrant non-occlusion. Third, deduced from the results of two-corner cases, the
corner with the strongest corner effect (i.e. having the largest contact angle range for
corner wetting/non-wetting under zero gravity) will play the leading role in the re-entrant
non-occlusion. Based on these points, a qualitative analysis of the re-entrant non-occlusion
of a tube with multiple rounded corners can be conducted by following the steps below.

First, based on (2.18), determine whether the corner wetting/non-wetting in the tube at a
zero Bond number is permitted, and if not, then the re-entrant non-occlusion will not exist.

If (2.18) is satisfied, we then obtain the critical contact angles of each corner by solving
(2.16) and determining which corner(s) has the strongest corner effect. Note that if the
corner(s) with the strongest corner effect satisfies r = 0 (sharp corner), then the re-entrant
non-occlusion will not exist.

Finally, according to the orientation of the determined rounded corner(s) with the
strongest corner effect, we analyse the competition between corner wetting/non-wetting
and gravity to determine whether the re-entrant non-occlusion exists. Specifically, the
re-entrant non-occlusion is expected to exist for some wetting liquids for the corner(s)
with the strongest corner effect at the upper side in the orientation angle range (0, 180°),
whereas it will exist for some non-wetting liquids for the corner(s) at the lower side in the
orientation angle range (−180°, 0°).

4. Conclusions

The capillary state in a horizontal open tube with corners in a downward gravity field has
been theoretically investigated. When the rounded corner in a tube satisfies the rounded
corner wetting/non-wetting condition, an interesting phenomenon regarding the re-entrant
non-occlusion can occur for the tube, i.e. the capillary plug exists only for some medium
Bond numbers, whereas the capillary non-occlusion is determined for sufficient low or
high Bond numbers. In contrast, for the sharp corner in a tube, once satisfying the Concus
& Finn (1969) condition, the capillary plug cannot form regardless of the Bond numbers
and, thus, the re-entrant non-occlusion does not occur. These results indicate a difference
in the performances of a rounded corner and a sharp corner with respect to the capillary
statics.

Tubes with only one corner and two corners are focused on, and the conditions
under which a re-entrant non-occlusion possibly exists are obtained. Above all, when a
re-entrant non-occlusion occurs, the rounded corner wetting/wetting under zero gravity
must be permitted in the tube, which requires the radius of the rounded corner r to
be not so large but also not zero (i.e. not a sharp corner). For a tube with only one
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rounded corner permitting the corner wetting, the re-entrant non-occlusion depends on
the corner orientation (i.e. the value of θ ). For an upper orientation (0° <θ < 180°), the
re-entrant non-occlusion occurs for some wetting liquids (some contact angles γ below
90°), and for a lower orientation (−180 < θ < 0°), the re-entrant non-occlusion occurs for
some non-wetting liquids (some contact angles γ above 90°), whereas for a landscape
orientation (θ = 0° or 180°), it cannot occur.

For a tube with only two corners, when the corners have an equal corner effect (i.e.
have the same contact angle range for corner wetting/non-wetting under zero gravity),
the re-entrant non-occlusion is expected to exist only for the special case of both corners
at the same side (both the corners in the upper or the lower orientation). When the two
corners have a non-equal corner effect, the re-entrant non-occlusion mainly depends on
the corner with a stronger corner effect (i.e. having a larger contact angle range for corner
wetting/non-wetting under zero gravity). If the stronger one is rounded (not sharp) and is
not in a landscape orientation, a re-entrant non-occlusion will exist, which is similar to the
case with only one corner.

Furthermore, according to the conclusions on the one-corner case and two-corner case,
a qualitative discussion on the case of multiple (more than two) corners is provided.
It is hoped that this paper lays a solid foundation for capillary non-occlusion and the
vertical shift of droplets (so long as they are not spilled out) in optofluidic/microfluidic
applications.
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Appendix A. The Concus & Finn (1969) condition for a sharp corner in a transverse
body force field

Consider the wetting liquids (γ < 90°). In a sharp corner of a tube in a transverse body
force field (taking the downward gravity field as an example, see figure 11), a straight line
Γp is specified as a special surface of liquid that is perpendicular to the axis of symmetry of
the corner. The wetting perimeter and liquid area are denoted by Σ∗

p and Ω∗
p , respectively,

which are given by

|Σ∗
p | = |Γp|

sin(α/2)
, |Ω∗

p | = |Γp|2
4 tan(α/2)

. (A1a,b)

By substituting (A1a,b) into (2.4), the energy functional for the indicated liquid
configuration can be given by

Φp = |Γp|
(

1 − cos γ

sin(α/2)

)
+ |Γp|2

(
l−2
ca y∗

p + λ
4 tan(α/2)

)
, (A2)

where y∗
p denotes the y coordinate of the liquid area Ω∗

p .
When |Γp| is an infinitesimal (i.e. |Γp| → 0), the second term on the right-hand side

of (A2) is a higher-order infinitesimal, which could be omitted. Then, if the condition
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Figure 11. Schematic of a non-occluded liquid configuration in a corner of a tube in a transverse body force
field.

γ < (π −α)/2 is satisfied, one obtains

Φmin ≤ Φp < 0, (A3)

which indicates the liquid non-occlusion of the tube. Regarding the non-wetting liquids
(γ > 90°), based on a similar derivation, the liquid non-occlusion of the tube will also be
determined when satisfying the condition γ > (π +α)/2.

The corner orientation and the strength of gravity field do not affect the above derivation.
Therefore, we can conclude that when a tube contains the sharp corner satisfying the
Concus & Finn (1969) corner condition (i.e. γ < (π −α)/2 or γ > (π +α)/2), the liquid
non-occlusion will occur in the tube regardless of the corner orientation and the strength
of the gravity field.

Appendix B. Reduction of non-occluded liquid configurations under zero gravity

Under zero gravity, the interface determined by the 2-D Young–Laplace equation (2.6) and
the contact angle condition (2.7) is a circular arc Γ with radius Rs = 1/λ. It is possible to
theoretically exclude the circular arcs solutions that cannot minimise the energy functional
(2.4). This appendix is based on the theorems and corollary from Finn (1986) to exclude
the non-minimising configurations in the tube geometries described in § 2.1 under zero
gravity.

Finn (1986) conducted formal mathematical research on the minimal interface problem
under zero gravity conditions and obtained a series of theorems, corollaries and lemmas.
Based on the theorems and corollary in Finn (1986), Concus & Finn (1990) excluded the
non-minimising configurations in a rounded rectangle-shaped cross-section, and Fischer &
Finn (1993) excluded the non-minimising configurations in a modified proboscis-shaped
cross-section.

Here, dispensing with the corresponding mathematical derivation, we quote the
theorems and corollary from Finn (1986). The theorems and corollary to be used are as
follows. Theorem 6.11 in Finn (1986) states the following: if the contact angle satisfies
0° <γ < 90°, then on any minimising arc Γ there holds 2δ < 180◦, where δ is half of the
circular arc angle of Γ (see figure 12a). Corollary to Theorem 6.12 in Finn (1986) states the
following: if γ > 0° and if the curvatures k1 and k2 at the intersections with the boundary
Σ of every minor arc Γ satisfy (k1 + k2)Rs ≥ 2 cos γ , then there exists a solution of the
occluding surface. Theorem 6.16 (second half) in Finn (1986) is as follows: if k1 + k2 ≥ 0
and if δ + γ >π/2, then Γ cannot yield a minimum.

Based on the above theorems or corollary, a tube with only two rounded corners is
taken as an example to discuss the energy-minimising configuration in the tube. We first
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Figure 12. The non-occluded liquid configurations possibly exist in a tube with two rounded corners with
contact angles of 0 < γ <π/2. Representative cases of six types of configurations (the classification of the
types depends on the locations of the contact points Q1 and Q2): case 1 for (a) in which both Q1 and Q2 are
located on the arcs of the circle, case 2 for (b,c) in which both Q1 and Q2 are located on the arcs of rounded
corners, case 3 for (d–g) in which both Q1 and Q2 are located on straight edges, case 4 for (h) in which Q1 is
located on arcs of the circle and Q2 is located on a straight edge, case 5 for (i) in which Q1 is located on the
arcs of the circle and Q2 is located on the arc of a rounded corner and case 6 for ( j,k) in which Q1 is located
on a straight edge and Q2 is located on the arc of a rounded corner. The red lines denote the parts on which
the contact points are located. The dot-dashed line in (a) denotes the internal bisector of the circular arc angle
of Γ . Here s and Rs are the centre and the radius of the interface Γ respectively, which becomes a circular arc
in zero gravity, δ is half of the circular arc angle of Γ and d is the distance from s to the straight edge on which
the contact point is located.

list all the typical non-occluded liquid configurations that may exist in the tube. The
non-occluded liquid configurations are classified based on the location of the contact
points. There are at most six combinations between the two contact points (Q1 and Q2) and
the three different parts of a tube (i.e. the arcs of the circle, the arcs of the rounded corners
and the straight edges of the corners), which correspond to the six types of cases for
non-occluded liquid configurations. The discussion about excluding the non-minimising
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Re-entrant non-occlusion in a horizontal tube

configuration is conducted based on the six types of cases in which subcases may
exist.

For simplicity, we only consider Γ to be a minor arc (2δ < π), which is a necessary
condition for a minimising configuration according to Theorem 6.11 in Finn (1986).
We only discuss the wetting cases (γ < 90°), as the results of the wetting cases can be
extended to the non-wetting cases (γ < 90°). The representative cases for the six types of
non-occluded liquid configurations are shown in figure 12.

1. Γ meets Σ with both contact points at the arcs of the circle (figure 12a). For a minor
arc Γ , this configuration can only occur if Rs > R, which contradicts Corollary to
Theorem 6.12 in Finn (1986). Thus, this configuration can be excluded.

2. Γ meets Σ with both contact points on the arcs of the rounded corners.
A. The two contact points are located on the arc of the same corner (figure 12b).

For a minor arc Γ , this subcase can only occur if Rs is larger than the radius of
the corner arc, which contradicts the Corollary to Theorem 6.12 in Finn (1986),
similar to case 1. Thus, this subcase can be excluded.

B. The two contact points are located on different corners (figure 12c). For a minor
arc Γ (figure 12c), this subcase can only occur if Rs is larger than the radii of
both rounded corners and thus can be excluded, similar to case 1.

3. Γ meets Σ with both contact points at the straight edges.
A. The two contact points are located on the same edge (figure 12d). This subcase

can occur only when 2δ < π is satisfied, which contradicts Theorem 6.11 in Finn
(1986). Thus, it can be excluded.

B. The two contact points are located on different edges of a corner with liquid
confined in the corner (figure 12e). This subcase cannot be excluded.

C. The two contact points are located on different edges of a corner without liquid
confined in the corner (figure 12 f ). For this subcase, we can easily obtain
δ + γ > π/2 for the configuration. Note that k1 = k2 = 0; then, this subcase can
be excluded according to Theorem 6.16 in Finn (1986).
As k1 + k2 ≥ 0 is always satisfied for any liquid configuration in this tube and
the comparison between δ + γ and π/2 can be easily given, the configurations
with δ + γ >π/2 are excluded and not discussed individually in the following
cases for simplicity.

D. The two contact points are located on different edges from different corners
(figure 12g). For a minor arc Γ with δ + γ ≤ π/2, the only configuration may
exist for this subcase, as shown in figure 12(g). Define d = Rs cos γ as the
distance from s to an edge that Γ meets; then, the relation d > R is necessary for
the configuration. However, we can easily obtain the contrary that Rs < R/cos γ

from the expression (2.12) of Rs and, thus, this subcase cannot actually occur
and can be excluded.

4. Γ meets Σ with Q1 at the arc of the circle and Q2 at a straight edge (figure 12h). For
this subcase, we can obtain γ 1 /= γ 2 and, thus, it can be excluded.

5. Γ meets Σ with Q1 at the arc of the circle and Q2 at the arc of a corner (figure 12i).
For a minor arc Γ , this case can only occur if Rs is larger than the radius of the circle
and the radius of the corner and, thus, can be excluded, similar to case 1.

6. Γ meets Σ with Q1 on a straight edge and Q2 on the arc of a corner.
A. The straight edge is tangent to the arc of the corner (figure 12 j). For this subcase,

we can obtain γ 1 /= γ 2 and, thus, it can be excluded.
B. The straight edge is not tangent to the arc of the corner (figure 12k). For a minor

arc Γ with δ + γ ≤ π/2, the only configuration may exist for this subcase, as
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shown in figure 12(k). Similar to subcase 3D, the relation d > R is necessary for
this configuration but contrary to (2.12), and this subcase cannot actually occur
and can be excluded.

In conclusion, only subcase 3B (i.e. the ‘corner liquid configuration’, in which the
contact points are located on different straight edges of a corner and the liquid is confined
in the corner) is reserved for the tube with contact angle 0 < γ < 90° under zero gravity.
Note that the above discussion covers all types of liquid configurations and is not limited to
tubes with two corners. This conclusion is applicable to the tube with n rounded corner(s)
constructed as described in § 2.1.
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