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A REMARK ON THE N-INVARIANT GEOMETRY OF BOUNDED
HOMOGENEOUS DOMAINS

LAURA GEATTI® anpD ANDREA TANNUZZI

Abstract. Let D be a bounded homogeneous domain in C". In this note,
we give a characterization of the Stein domains in D which are invariant
under a maximal unipotent subgroup N of Aut(D). We also exhibit an N-
invariant potential of the Bergman metric of D, expressed in a Lie theoretical
fashion. These results extend the ones previously obtained by the authors in
the symmetric case.

81. Introduction

By the results of Gindikin, Pijatetcki-Shapiro, and Vinberg (see [4], [8]), every bounded
homogeneous domain D in C" admits a realization as a Siegel domain. Such a realization
relies on the existence of a simply transitive real split solvable group S of holomorphic
automorphisms of D. In the symmetric case, the group G = Aut(D) is semisimple and
S = AN, where A and N are the abelian and the unipotent subgroups arising from an
Iwasawa decomposition of G.

In [3], the N-invariant Stein domains in irreducible symmetric Siegel domains were
characterized. The goal of this note is to prove a similar characterization for N-invariant
Stein domains in arbitrary homogeneous Siegel domains, which form a much wider class of
domains containing the symmetric ones as special cases.

As in the symmetric case, to an N-invariant domain D in D, we associate an
r-dimensional tube domain in H", the product of r copies of the upper half plane H in
C (here r is the rank of D). Then we prove that D is Stein if and only if the base of
the associated tube is convex and satisfies an additional geometric condition (see Theorem
3.4). In the symmetric case, such condition only depends on whether D is of tube type or
of non-tube type, while in the general case it depends on the specific root decomposition of
the normal J-algebra s = Lie(.S) of D.

The univalence of holomorphically separable, N-equivariant, Riemann domains over D
continues to hold true in this more general context, yielding a precise description of the
envelope of holomorphy (cf. [9]) of an arbitrary N-invariant domain in D (see Corollary 3.5).

Finally, we exhibit an N-invariant potential of the Bergman metric of D, expressed in
a Lie theoretical fashion and obtained via an explicit N-moment map with respect to the
Bergman Kahler structure of D (see Proposition 4.3).

§82. Preliminaries

Every bounded homogeneous domain D in C" admits a real split solvable group S of
holomorphic automorphisms acting simply transitively on D. The Lie algebra s of S has
the structure of a normal J-algebra, with the complex structure J inherited from D and
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2 L. GEATTI AND A. TANNUZZI

the linear form — fp € §* inducing the Bergman metric (cf. [7]). This means in particular
that w(X,Y) := —fo([X,Y]) is a nondegenerate skew-symmetric J-invariant bilinear form
on s and (X,Y) := —fo([JX,Y]) is a J-invariant positive definite inner product on s.

2.1 The normal J-algebra of a bounded domain

For the structure of normal J-algebras, we mainly refer to [10, §5A]. Further details
and comments can be found in [3]. Denote by n:= [s,s] the nilradical of s, and let a be
the orthogonal complement of n in s, with respect to the inner product (-,-). Then a is an
abelian subalgebra, whose dimension r is by definition the rank of D. The adjoint action of
a on § is symmetric with respect to (-,-) and decomposes s into the orthogonal direct sum
of root spaces s* ={X €s | [H,X|=«a(H)X, VH € a}. There exist ey,...,e, € 5" such that
the roots « are of the form

ej—e, eji+te, 1<j<Ii<r, 2ej, e;, 1<j5<r.

In the nonsymmetric case, not all possibilities need occur. Here, the roots are normalized so
that, in the symmetric case, they coincide with the restricted roots. The complex structure
J permutes the root spaces as follows:

Ja= @52‘3]‘, Js¢ e = geiter Js% = g%
J

Let Hy,...,H, be the basis of a dual to eg,...,e, € a*. As dims?% =1, for j =1,...,r, one
can fix generators EY € s2% such that the pairs {H;, E7} satisfy

[H;,E'|=6;2E', JEI=iHj, for j,l=1,...,r.
For j =1,...,r, the real split solvable subalgebras generated by {H;, E’} pairwise commute
and are isomorphic to the a@®n-component of an Iwasawa decomposition of s[(2,R).
Set Hy := %Z] Hj; € a. The adjoint action of Hj decomposes s and n as
5§ =50 D51/2Ds1, n=nodn;pOny,
where n; =nNs; and
fene @ e sam @ o B e @ e
1<j<I<r 1<j<r 1<j<r 1<j<I<r

If 51,2 = {0}, then the domain D is of tube type, otherwise it is of non-tube type.
Set Fy:= Zj EJ. The complex structure on sq is given by JX = [Ey, X], for all X € s¢.
The orbit

V.= AdexpngO
is a sharp convex cone in s; and
F:81/2%81/9 — 57, F(W,W') 32%([JW/7W}_Z'[W/7W])7

is a V-valued Hermitian form, that is, it is sesquilinear and F(W,W) € V (the topological
closure of V'), for all W € 5,/5. The group S acts on T sy /2 by affine transformations,
given by

5 (Z,W) = (Adexpy Z + & + 20 F (Adesp W, O) +1F(C,0), Adexp W +C),  (2.1)
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where s = exp(exp{expy, with ¢ € 51/5, £ € 51, v € 50. If we fix the base point
po := (iEp,0) € 5(1C ©61/2, then the map

L:S— DV, F), S+ S-Pg (2.2)
defines a biholomorphism between D = S and the Siegel domain
D(V,F)={(Z,W) € 8§ ®s1/9 | Im(Z) - F(W,W) €V}
(cf. [10, Lem. 5.2, p. 330]). Denote by
(EY*, ... (E")*

the elements in the dual n* of n, with the property that (E7)*(E') = §; and (E7)*(X) =0,
for all X € 5%, with o ¢ {2e1,...,2e,}.

LEMMA 2.1. (a) The form —fo: s — R is given by —fo = >, ck(EX)*, for some
CL € R>0,

(b) Let X € 5% \{0}. Then [JX,X]|=sE7, for some s € R>Y. Let X,Y € 5%\ {0},
satisfying (X,Y)=0. Then [JX,Y]=0.

(c) Let X € 5%\ {0}. Then [JX,X]|=tE, for some t € R*?. Let X,V € 5% \ {0},
satisfying (X,Y)=0. Then [JX,Y]=0.

Proof. The proof of statement (a) is contained in [10]. For the sake of completeness, we
recall the main arguments. Let f; also denote the C-linear extension of fy to s©. From the
integrability of J, one has that fo([X +iJX,Y 4+iJY]) =0, for all X,Y € s. This implies that
fo([H,X]) = fo(J[H,X]) =0, for all H € aand X €q:=5;,2®; ;57 . Since [a,q] =¢
and Jq=251/5®€D,; ;5% 7, the form fo identically vanishes on g and —fo =", ¢; (E7)*, for
some ¢; € R. The identity ¢; = — fo(E’) = —3 fo([H;, E’]) = — fo([JE?, EY]) = (EJ,Ej> >0
concludes the proof.

(b) Let X € s%~¢\{0}. Then JX = [E!, X] € s%T¢. Since s2% is one-dimensional,
[JX,X]=sE’, for some s € R. By applying — fj to both terms, one obtains — fo([J X, X]) =
(X,X) =cjs > 0. Since ¢; >0, also s > 0. For the second part of the statement, write
[JX,Y]=sE7, for some s € R. Then, from

0=(X,Y)=—fo([JX,Y]) chEk (sE7)

one obtains s = 0 and therefore [JX,Y] =0, as desired.
As 5% is J-invariant, statement (c) follows in a similar way. 0

REMARK 2.2. The forms chj(Ej)*, where the ¢;’s vary in R”? for j =1,...,r,
determine all S-homogeneous Kahler metrics on D(V,F) (cf. [2, Th. 1, p. 304]).
By [1, Th. 4], one such metric is Kéahler—Einstein if and only if the quantity
c%-(l + idimﬁei +%Zj<lsej+el) is a constant independent of j =1,...,r

2.2 N-invariant domains in D(V, F') and tube domains in H"
In § = NA, consider the unipotent abelian subgroup R :=expJa, isomorphic to R". The
R-invariant set

Rexp(a) - po
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is an r-dimensional closed complex submanifold of D(V,F'), intersecting all N-orbits in
D(V,F). Define the positive octant in Ja

Jat = {1 yE* : yp >0, for k=1,...,r}.
Then the map £ defined in (2.1) and (2.2) restricts to a biholomorphism

Rexp(a) — Ja®iJat,

given by
exp(zj ejEj) exp(d . hiHy) — Zj ejEj + iAdexp(Zk heHy,) Eo- (2.3)
In particular, £|ep(q) defines a diffeomorphism L: a—J a™ given by
Z hiHy — Adexp(zk thk)Eg = Z €2hj EJ. (2.4)
k J

Write an N-invariant domain in a rank-r homogeneous Siegel domain D(V,F') as
D = NexpD-pg, for some domain D C a. Then, as in the symmetric case (see [3, §3]),
one can associate with D an r-dimensional tube domain.

DEFINITION 2.3. The r-dimensional tube domain associated with an N-invariant
domain D in D(V,F) is the image of the set Rexp(D) under £, namely,

DN (Ja®iJat)=Ja+iQ, where Q:= L(D).

83. N-invariant Stein domains in a homogeneous Siegel domain

Let D(V,F') be a homogeneous bounded domain. In this section, we give a characteriza-
tion of the
N-invariant Stein domains D in D(V,F) in terms of the associated tube domain. If D
is Stein, then such tube domain is Stein and its base € is an open convex set in Ja*. On
the other hand, we will see that ) must satisfy some further geometric conditions which
depend on the specific root decomposition of the normal J-algebra of D(V, F).

Let D be an N-invariant domain in D(V, F'). Then

D={(ZW)e D(V,F) | Im(Z)—F(W,W) € Q},
where € is the Adexpn,-invariant open subset in V' determined by
1Q:=DnNiV.
By (2.2)—(2.4), the base of the associated tube is
Q=QnJat.

Note that, since AdgFy = Ja™, the set i) is a slice both for the Adexpn,-action on €2 and
for the N-action on D.
For D(V,F) irreducible, define a cone in Ja™ as follows:

O Cy,in the tube case,
‘ Cnt,in the non-tube case,
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where C; := cone{E’};, with j € {1,...,r — 1} such that %~ # {0} for some [ > j, and
Cpt = cone{E’};, with j € {1,...,r} such that either 5%~ # {0} for some [ > j, or 5% # {0}.
(Here, given nonzero vectors vi,..., v, we set cone{vi,...,vi}:={>_;t;v;, t; >0}.)

In the reducible case, if D(V,F') decomposes in the product of irreducible domains as
DV FM) s ... x D(V™) F) then the normal J-algebra s and all its related objects
decompose accordingly. In particular, the cone decomposes as C' = C®) x .. x C™) | where
C® is the cone associated with the i-th irreducible component of D(V, F).

EXAMPLE 3.1. (a) If D(V,F) is irreducible symmetric, then C; = cone{E',..., E""'}
and Cy; = cone{E',...,E"} (see (9) in [3]).
(b) Let D(V') be the tube domain over the five-dimensional Vinberg cone

Z11 0 Z13 5
. — >0
D(V)= 0 292 293 | | 2ij =i +iyi; € C, {y11y33 y;?’ =0 and y33>0
213 223 233 Y22Y33 — Ya3
Then
s=ad Jads" T psE, dima =3, dims%*“ =1

and C; = cone{E*', E?}.
(b) Let D(V,F) be the four-dimensional nonsymmetric domain

G {(CE 22) ’w> | 2ij = @4 +iyij, weC, {;Z::(lwp)yzz —yiy > 0}.
Then
s=a®Jadste2 s dima =2, dims“*% =1, dims® =2
and Cp; = cone{E'}.

DEFINITION 3.2. A domain Q C Ja' is C-invariant if £ € Q implies E+C C Q or,
equivalently, if E € Q implies E+C C .

Denote by
p:isy —iJa
the projection onto iJa, parallel to i(®s% 1) and by
pr sy @81 —iJa

the projection onto i.Ja parallel to s; ®i(®s%T) D sy /o.
For simplicity, the next lemma is formulated in the irreducible case. In the reducible case,
it applies to each irreducible component.

LEMMA 3.3. The following statements hold true.

(i)  Assume that s £ {0}, for some I > j, and let X € s~ be a nonzero element.
Then [[E', X],X] = sE’, for some s € R>?,

(ii) Let E=Y yxE* € Jat. Then p(iAdexpn,F) = i(E +Cy).

(iii) Let E € Jat. Then p(N-(iE,0)) = i(E +Cpns).
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Proof. (i) Since [[E', X],X] = [JX, X], then the statement follows from Lemma 2.1(b).
(ii) Fix 1 < j <r—1 and define £; := @ ;5% . In each root space s~ # {0} in L;,
there exists an orthogonal basis {E}, such that for X =37, , 2% E7 € L;, one has

(B9) (Adexpx B) = y;(1+ Y, (@7)2)  and  (E")*(AdexpxE) =y,

(cf. Lemma 2.1(b) and (c)). Moreover, from a discussion similar to the one in [10, p. 363],
one obtains

(E)"(Adexpng ) = (E7)" Adexp ., B

10, Th. 4.10 and (4.13)]. Hence, p(iAdexpn, E) = i(E +Cy), as claimed.
p1g
(iii) The N-orbit of the point (iE,0) € sT ® sy /o is given by

{(5+Z.(AdexpnoE+F(g>g))7C) : 66517 §€51/2}' (31)
By (3.1) and Lemma 3.3(ii), one has

P(N - (iE,0)) =i(E+Cy) +{p(iF(C,C)) = CE€51/2}.
If 5% # {0} and ¢ # 0 in %, then by Lemma 2.1(c), the element F((,¢) = 1[J(,(] is a

) - — 4
positive multiple of E7. Therefore, p(N - (iF,0)) = i(E +Cy), as claimed. 0
THEOREM 3.4. Let D(V,F) be a homogeneous Siegel domain of rank r. Let D be an
N -invariant domain in D(V,F), and let Q be the base of the associated tube domain. Then
D s Stein if and only if Q is convex and C-invariant.

Proof of Theorem 3.4. We first prove that D Stein implies 2 convex and C-invariant.
Then we show that Q convex and C-invariant implies D convex and therefore Stein (cf. [5,
Vol. 1, Th. 10, p. 67]). In particular, if D is Stein, then it is necessarily convex. An essential
fact is that the N-action on D is affine and every affine map commutes with taking convex
hulls.

3.1

We begin with the tube case. An N-invariant domain D in a homogeneous tube domain
D(V) is itself a tube domain with base the Adexpn,-invariant set Q. Since D is Stein if and
only if its base is convex, all we have to show is that €2 convex and C;-invariant is equivalent
to £ being convex.

If Q is convex, then € is clearly convex. In order to prove that ) is C;-invariant, let
E= ZkykEk € Q, with yi >0, for k= 1,...,r. If the root space s~ # {0}, let X be a
nonzero element therein. Since adx is two-step nilpotent, for every ¢ € R,

AdexthE - E+tyl [X7 El] + %7523/1 [Xa [Xa El]]

is an element of €2. As €2 is convex, by replacing ¢t with —t, one finds that also the midpoint
E+ 3t?y[X,[X, E"]] lies in £2. This says that E+ AE7 lies in €2, for all A > 0. The same
argument applied to all j € {1,...,7 — 1} for which s%~¢ £ {0}, for some [ > j, and the
convexity of 0 imply that Q+4C; C €2, as desired.

Conversely, assume that € is convex and C;-invariant. We are going to prove that
conv() C Q. Since Q = Adexpn, 2, from Lemma 3.3(ii) and the C-invariance of €2, one
has

p(iQ) = p(i Adexpn, ) = i(Q+C;) CiQ.
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From the above inclusion and the convexity of €2, one has
conv(iQ¥) NiJa C p(conv(if2)) = conv(p(i?)) C €.
Finally, from the Adexpn,-invariance of conv(i€2), it follows that
conv(i€2) = Adexpn, (conv(i2) NiJa) C Adexpn, i€ = i.
This completes the proof of the theorem in the tube case.

3.2

Next we deal with the non-tube case. Let D be an N-invariant domain in a homogeneous
Siegel domain D(V,F). Denote by conv(D) the convex hull of D in s§ & s;/5, which is
N-invariant as well.

If D is Stein, then DN (s§ x {0}) = {(Z,0) € sT D15 [Im(Z) € 2} is biholomorphic to a
Stein tube domain in 5(1C, invariant under exp(ng@®ny). Hence, by Theorem 3.4 in the tube
case, the set  is convex and Q+C; C Q. The fact that Q+C,,; C € follows from (3.1) and
the fact that F((,¢) is an arbitrary positive multiple of E7, when ¢ varies in 5% \ {0}.

Conversely, assume that € is convex and C,;-invariant. By Lemma 3.3(iii), one has

p(D) =p(N i) = i(Q+Cpy) C i
Moreover,
conv(D)NiJa C p(conv(D)) = conv(p(D)) C if.
By the N-invariance of conv(D), one obtains
conv(D) = N - (conv(D)NiJa) C N-iQd=D.

Hence, D is convex and therefore Stein (cf. [5, Vol. 1, Th. 10, p. 67]). This concludes the
proof of the theorem. [

We conclude this section by observing that holomorphically separable, N-equivariant,
Riemann domains over a bounded homogeneous domain D are univalent: the same proof as
in the symmetric case works in this more general case (see [3, Prop. 3.7]). As a consequence,
one obtains the following corollary.

COROLLARY 3.5. The envelope of holomorphy D of an N-invariant domain D in D is
the smallest Stein domain in D containing D. Namely, D is the N-invariant domain such
that the base 1 of the associated tube is the convex C-invariant hull of €.

84. An N-invariant potential of the Bergman metric

Let D(V, F) be a homogeneous Siegel domain, and let (s, J, — fo) be the associated normal
J-algebra, where — fy € * is the form inducing the Bergman metric g on D(V,F). In this
section, we exhibit an N-invariant potential of g, expressed in a Lie theoretical fashion. In
order to do this, we determine an explicit formula for the N-moment map associated with g.

For X € s, denote by X the vector field on D(V,F) induced by the left S-action. Its value
at z =s-pg is given by )Z'z = %‘tzoexth-z. If z=a-pg, with a =expH and H € a, and
X €% then X, =eoHg, X,
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LEMMA 4.1. (a) The map ps: D(V,F) — s*, defined by
MS(Z)(X) = _fO(Ads—lX)7 z2=s8-py, X €85,

is an S-moment map with respect to g.
(b) The map un: D(V,F) — n*, defined by

pn(2)(X) == —(Ad; fo)(Ad,-1X),  z=na-py, X €n,
1s an N-moment map with respect to g.

Proof. (a) By definition, the map ug is S-equivariant and satisfies pug(po) = — fo.
We identify D(V,F') with the group S by the map (2.1), and prove that

dud (s)(2) =wy(X,.Z), ZeT,S, Xes. (4.1)
Let WeT,S=s. Then

dﬂg‘((W) = %‘t:()ug{ (eXptW) = % t=0 fO(AdeXp(—tW)X) = _fo(%‘tzoeadith)

= —fo(=[W,X]) = = fo([X,W]) = w(X,W).
Now take s € S and let s, W € TsS = s,5. On the left-hand side of (4.1), we find

(dpz ) (5. W) = %L‘:O (3 (sexptW) = %}tzo — fo(Adexp —tw Ads-1 X)

= —fo(—=[W, Ady-1 X]) = — fo([Ads— X, W]).

Since also the right-hand side of (4.1) is given by
d
Wy (dt}tzoexth . 5,5*W> =ws(84Adg—1 X, 8, W) =w(Ady—1 X, W) = — fo([Ad ;- X, W]),

the proof of (a) is complete.

(b) The restriction of pg to n defines an N-moment map puy on D(V,F). Since uy is
N-equivariant, it is uniquely determined by pn(a-po)(X) = —Ad} fo(X), for X € n. It
follows that un(2)(X) = —(Ad} fo)(Ad,-1X), is an N-invariant moment map with respect
to g as claimed. O

The moment map pg defined in Lemma 4.1 is an embedding of D(V,F) in s* as the
coadjoint orbit of — fy, with trivial isotropy subgroup. The image pg(D(V, F)) is the convex
domain s§+s7,, + V™" in §*, where V*:={¢ € 5] | $(X) >0, VX € V'\ {0}} is the dual
cone of V in 57 (cf. [10, Lem. 3.5, p. 350]). Similarly, the image pn(D(V,F)) is the convex
domain ny +s7 o+ V" in n*.

Convexity properties of the moment map have been studied in several settings (see [6]
and the references therein). Here, we show that the image under py of a Stein N-invariant
domain in D(V, F') is not necessarily convex.

Let D(V, F) be a homogeneous Siegel domain, and let D = N i) be an N-invariant Stein
domain therein. One has

(Ja)" NN (D(V, F)) = (Ja)" NV* = (JaT)",

and one can easily verify that uy maps A-py =iJa™ bijectively onto(Ja™t)*.
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Therefore, puy(iQ2) = (Ja)* Nun (D). Consequently, if pn (i) is not convex, then py (D)
is not convex either.

EXAMPLE 4.2. Let P={Z=X+iY | Z'=Z,Y > 0} be the Siegel upper half-plane

of rank 2. Then
o (Y1 0
APO-{1<0 y2> |y1a?/2>0}

us(i(% o)) =3B + LB

Let D := N -iQ) be the Stein N-invariant domain in P associated with the convex,

Ci-invariant domain
(Y1 0
Q= 1.
(6 ) 1me1}

v (i) = {m (E")* +m2(E?)* | 1,12 <0, mna < 9}

is clearly not convex. Therefore, (D) is not convex either.

and

The image

As the domain Q C Ja™ is convex and also C,;-invariant, a similar construction provides
examples of N-invariant Stein domains with non-convex moment image in all rank-2
symmetric Siegel domains, both of tube type and of non-tube type.

PROPOSITION 4.3. The N-invariant function p: D(V,F) — R, given by
p(na-po) =23, cphi,

where a=exp H, for H=Y", hpHy, € a, and — fo =", ck(E¥)*, is a potential for the Kdihler
metric induced by — fq.

Proof. As in the previous lemma, we identify D(V,F) with S. In order to check that
—dd°p = w, we need to show that d°p(X,) = ux(s), for all s € S. By the N-invariance of
p and of J, one has

d°p(Xna) = d°p(Ad, 1 X,),
for every na € S. Then, as uy is IN-equivariant, it is enough to show that
p(Ka) = i (a), (4.2)
forall a € A and X €n. If X = E7, then
d°p((E9)o) = e 26 dp(a, JET) = Le=?i &| _ p(exp(H +sH;))

_ 6_2hjcj — _fO(AdaflEj) — :u’ﬁj (a)

If X €5% with 0# a ¢ {2e1,...,2¢,.}, then JX €57, with 0 # 3 ¢ {2e4,...,2¢,}. By the
N-invariance of p, one obtains

dep(X,) = e dp(a, JX) = e’o‘(HHﬂ(H)%}S:Op(exp(sJX)a) =0.
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Since

i (a) = = fo(Ady1 X) = —e U fy(X) =0,
equation (4.2) holds true and the proposition follows. U

REMARK 4.4. The above computation produces an N-invariant potential and an
associated N-moment map, for any S-invariant Kahler metric on D induced by an element
> dj(E7)* € %, with d; € R>?, for j =1,...,7 (cf. Remark 2.2).
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