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Inequalities connecting the
eigenvalues of a hermitian matrix
with the eigenvalues of
complementary principal submatrices

Robert C. Thompson and S. Therianos

Let C = [i* g] be a hermitian matrix in partitioned form.
Let the eigenvalues of A4, B, ¢ be al Z .02 ad .
B, = ... = Bb O E ] Y, > respectively. In this paper

four classes of inequalities are proved comparing the ai and

Bj with the Yk . The simplest of these is:

Y. . + Y, _ < a. + B.
s=1 te*Ig™®  gm1 MM ooy Y g=1 g
if the subscripts is’ js satisfy 1 = il < ... < im fa,
i o< g
=4, <. I = b

1. Introduction

Let A4, B, C = A + B be hermitian matrices with eigenvalues

wz..oza , Bl = ... = Bn s Yy Z e 2, respectively. The
inequality
(1) Yi+j-1 Sa + Bj , l=<i,d<sn,i+j-1<n,

is due to Weyl [15]. The inequality
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m m
(2) Y v. =) o + § 8

is due to LidskiV [8] and Wielandt [16]. An inequality containing both (1)
and (2) as special cases was found by Amir-Moéz [7]. His scmewhat

complicated result goes as follows. If we are given integers il, ooy im

satisfying 1 =%, = ... < im =n and is =n-m+s for

.=
§=1, ..., m , define zl, . i; by i; = il . i; = max(z . 3 ot +1) ,
< g < < 4 < < 5 < < 4 < 4 < 3
2<s8=m. If 1= 1,5 ... 52, =n, 1= Jl < ... = Ip S and if
i+ js -lsn-m+s for 8=1, ..., m , Amir-Moéz's inequality for

the eigenvalues of 4, B, C = A + B then takes the form
(3) ZY "—zan"’zsn-

Recently it has been shown [/]1] that a simpler and sharper

generalization of (1) and (2) may be found: if

(L) 15i1<...<im5n,15j1<...<jm5n,im+jm-m5n,
then
(5) B.

=1 Vi s -s = s=1 ‘s s=l Ig

It was shown in [17] that (5) implies (3). (It is also shown in [9] that
(5) is equal in strength to a more complicated inequality given by Hersch
and Zwahlen [7, 19].)

Now let

_ A x
- [t 3]
be a partitioned hermitian matrix, where A, B are square (not necessarily

of the same size), and where the eigenvalues of 4, B, C are

4z ...z o, 81 B Bb s Yy ZT ..o Z Y, »

respectively. Then an inequality of Aronszajn {3, 6] states that
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i4j-1 ty, sa + Bj sy 1271 =a,1=<4§=<b.

(6) Y

In [10] a generalization of (6) in the spirit of (3) was found, namely

m m m m
(1) szl Y(i s 1) szl Yy mrs S szl %o * szl BJ.;
if
(1.1) 1, s...54 Sa, 1sj,s...s§, sb,
(1.2) i,Sa-m+s, josb-m+s, s=1, ...,m.

The proof of (7) given in [10] has recently been simplified by Amir-Moéz
and Perry [2].

Since (5) is sharper then (3), it is natural to ask whether an
improvement and simplification of (7) along the lines of {(5) is possible.
That such a simplification will exist is suggested by the fact that some of
the subscripts in the first part of the left-hand side of (7) may coincide
with some of the subscripts in the second part of the left-hand side. The
proposed generalization of (6) along the lines suggested by (5) should take
the following form:

m

a, + ) B,
s=l 's s=1 Yg

(8)

Il e~3

m
Z Yo-m+s =

i
Y ooq ot
8=1 1s+Js 8 1

8

if 154 <...<4 Sa, 15§, <...<j sb.

It is not difficult to show that (8) is free of the defect that blemishes
(7), that is, the subscripts in the left-hand side of (8) are distinct.
Moreover, were (8) true, it would be sharper than (and simpler than) (7),

in the same way that (5) is sharper and simpler than (3).

After this preamble, we announce one of the main results of this
paper: the inequality (8) is valid. We shall in fact prove four classes

of inequalities comparing the eigenvalues of a partitioned hermitian matrix

¢= (Ast)lss,tsk

with those of its main diagonal blocks Att , t=1, ..., k . One of

these classes will contain (8) as a special case. Two proofs will be
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given. The first will use a device of Wielandt [18, p. 120] to derive (8)
from (5), and the second will derive (8) directly by invoking the
properties of a subspace constructed in [13].

2. The basic result

[a x
= [ 3]

be a hermitian n-square matrix partitioned as indicated, where A 1is

THEOREM 1. Let

axa and B 1s b X b , and where

(9) W ... 20, Bl > .02 Bb s Yy Z e ZY

denote the eigenvalues of A, B, C respectively. Let 0 =u <a and

0 =V =Db. Letintegers <., ..., iu » jl, cee jv satisfy

l,

’ < ... <1 i< ... < g .
1= Zy < 1U <a, 1= Jy Jy = b

Define is =a-u+s for s>u and Jg=b- V+s for s>v. Then

Hiv

(10) Yoy

i 47 g =
s=1 E Js

REMARK. If one sets W = v =m then (10) reduces to (8).

First proof. (Compare [7§], p. 120.) The inequality (10) is
invariant under translation of 4, B, C by scalar matrices. VWe may
therefore assume C is positive definite. Let C = X*X . Partition
X = (X,, X2) where X, is mXa and X, is nXb . Then A = XX,
and B = X;X2 . Also Xx* = Xle + XZX; . The eigenvalues of Xle and
Xng coincide, except for zeros, with the eigenvalues of Xle = A and
X;X2 = B , and the eigenvalues of XX* are those of ( . Thus if we apply
(5) to Xx* = Xle + XZX; , we obtain

By

u
sél Yis+js-3 = le A LB, 0o

completing the proof.

Second proof. Let gys o> 9, be an orthonormal system of column
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n-tuple eigenvectors of ( associated with the eigenvalues Yys ones Y, -

Let e cers @y be an orthonormal system of column ag-tuple eigenvectors

l’
of A associated respectively with Qs e aa and let fl, e fz be
an orthonormal system of column b-tuple eigenvectors of B associated

respectively with Bl, ceey Bb . Define column n-tuples Es, Fs by

es 0
Es = [ ] s 8 =1, ..., a Fs = [f ] , §=1, ..., b .
0 8

It is known [13] that a p-dimensional space
= ( - ) = . i
Lp Xl’ , Xp (Yi, y Yp) exists (the symbol ( ) denotes the

linear span of the enclosed vectors) such that

Xs € <Eis, ey E&) , 8=1, ..., U,

]
=
M

cees V

(11) XSJ’(z € (Fjs, vy Fb> , 8=

YSE<gl, ceo g gis+js-s>’ s:l, eees HFV = p .

Here Xl, cees Xu+v are orthonormal, as are Yl, ey Yu+v . Set
= § = .
Xs = [Z] s, 8=1, ey U,
o]
Xs+u = Lr3+u] s, 8=1, (.., V.
Taking the trace of the restriction of C to Lp s, we get
H+Y . u . 1254% X
(12) szl ricy = szl X3CK + s=121+1 xex
H . H+V .
= szl x Ams + 8=E+1 stxs .
Since
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Y*]Yy =z vy, .. s &=1, ..., Wtv , by (11),
8 8 Tgtdg—s
x;Azs < ai s 8§ =1, .v., MU , because xg € <ei s eees ea> ,
s -]
* =
xu+sBmu+s = Bjs s, 8§ =1, ..,V , because xs+u € <f38, ey fb> s

we immediately obtain (8) from (12).

3. The four principal classes of inequalities

Throughout this section we let

¢= @sgsdzlv.”k
be a partitioned hermitian matrix, in which diagonal block Att is
n -square, t=1, ..., k. Let
> >
(13) 0, Z ...z atnt

be the eigenvalues of 4 s, t=1, ..., k , and let Yl E Yn be

tt
the eigenvalues of (¢ . By induction on k it is relatively simple to

establish the following generalization of Theorem 1.

THEOREM 2. Let C = (Ast] be as described above. Let integers

Mys J4g satisfy

(1k) 0Osm, =mn,, 127, <. <Jt’mt5nt,

and define

(15) Jyg=my-m +s forall s>m, .

Let m = myt e kmy . Then the eigemvalues Yi of C and the

etigenvalues %ue of its main diagonal blocks Ay satisfy
; (o

(16) Yi . s [a}
sm1 F1gtiogt e Hipe (k-1)s em1 Loy Ead g
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REMARK. If we set k = n and each n, = 1 , then specifying

t
mo=..=m =1, m. . =..=m =0 reduces the inequality (16) to
i )
(17) Y = e,
s=1 s+n-r =1 tt

where C = The inequality (17) is & classical result of

(cst)s,t=l,...,n .
Fan [4] asserting that the sum of r diagonal elements of a hermitian
matrix C dominates the sum of the r lowest eigenvalues of ( . Thus

Fan's result is included in (16) as a special case.

In the following we let 6x(y) be a jump function: 6x(y) =0 if

B
A

x , dx(y) =1 if y>zx .

THEOREM 3. Let integers Pys e Py satisfy

0=p Sm, -.es 05pp =1y Suppose that integers z satisfy

ts
(18) Oiztls"'fzt,nt-ptSPt’ t=1, ..., k.
Define
(19) 2, =p, for §>n, -p, .
Set p = Pyt ..o Py - Let
k
(20) g, = Z 2, 40 E= 1, e, mp
p_
Define subseripts its and kt by
(21) 2, =8 +§ (s)+ ... +38 (s) ,
ts z
tl t,nt—pt
s=l’ ’pt’t l, ’kJ
(22) k =s8+8,_(8)+ ...+ 86 () , e=1, ..., p.
s 9 *n-p

Then the eigenvalues y; of €= (a and the eigemvalues a,. of

st) ti

Att » i1ts main diagonal blocks, satisfy
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k [ P:
(23) i Y, = 1 Yoo, . .
8=1 ks t=1 \s=1 t’tts

Proof. Define jtp =z 0 +p forall p=1 and m

t R
Then the conditions of Theorem 2 are satisfied. We now use the following

fact proved in the Lemma of [9]: if integers a vees an—p satisfy

19

< ... < < i t Yy e ' i i
1= al an—p 7 then the integers as . ap satisfying
<=a' <...<a' = isti i
1= al ap n and distinct from al, N an—p are given by the
formula

Q
"

n-—
''=g + Zpé_p(s),s=l,...,p.
=1 %

By this fact the integers in 1, ..., n, complementary to the jts s

, are the < defined above, and the integers in

=1, ..., m ts

t

1, ..., n complementary to the integers j, + ...+ jks - (k-1)s ,
8 =1, ..., m , are the kS s 8=1, ..., P , given above. Since

traceC = traced eea + traceAkk , it is clear that the inequality of

+
11
Theorem 2 induces an inequality in the opposite sense involving these
complementary subscripts.

THEOREM 4. Let ¢ = (4 t) be as deseribed above. For each fized

t, l1=1t=k, let integers Pys 2 s=1, 2, ... , satisfy

ts
0= p,=mn,,
> > > > >
Pe22n 2 lp = 2l p 200
= > -
th 0 for p Ny =Py
Define subscripts Is and K, by
Its=s+6z (s)+...+52 (s) , s=1, .,pt,t=l,...,k,
t1 t,nt—pt
K =8 +6,_(8)+... +86 (s) s 8=1, ...y D,
8 & En_p
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where p = Py * ..ot Py » and Ep = zlp + ...+ ka s P=1, ..., n=p .

Then the eigenvalues Y; of € and the eigemwalues o of Att , its

ti

main diagonal blocks, satisfy
£y s b [1
Y, <= a
s=1 Ks t=1 |&=1 t’Its

Z and

Proof. Apply Theorem 3 to -C = (—Ast) » setting Zis T Pp T Yys

using the fact that
1 - dz(u) = Gq_z(q+l—u) .
THEOREM 5. Let C = (Ast) be as described above. For each fixed

t, 1=<t=k, let m,,d satisfy 0 < m, <n

t® “ts t?

(2k) ngzd,, > ... > Jt’mt =1,
= - > .

{25) Jyg=m, +1-s for s>m,

Let m = ml + ...+ mk .

Apg s its main diagonal blocks, satisfy

Then the eigemvalues Y; of C and o, of

m
1 if Zt
(26) Y > o
T A A S = Ul P=T PN

Proof. Apply Theorem 3 to -C = (—Ast) , taking Jpg =1y +1- Jts .

REMARK. The Y subscripts on the left-hand side of (26) decrease as

t increases.

4. Comparison with previously known inequalities

The previously known inequalities are those in []0]. We compare the
inequalities in [10, Theorem 2] with the inequalities in Theorem 1 above.

Thus we shall compare the subscripts in (7) and (8).

Given a set of integers is’ js satisfying (7.1) and (7.2) let

(27) I = i; , J.=4" , 1=s=m.
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Then

1= Il < .<I 2=a, 1=J, <...<J =b.

We may sharpen the inequality (7) if the integers is’ js are decreased in
such a fashion that the Is’ Js remain unaltered and such that (7.1)

continues to hold. Assuming that all possible such decreases in the

7 have been made, we say that the resulting set of is’ js are fully

s’ js
reduced. For a fully reduced set of is’ js » let K = (is+js-l)” s
s=1, ..., m . The (7) becomes

m m m m
28 szl YKs : szl Yn-m+s = szl 0LI:; : sZ BJ )

For each fixed s , 1 <s =<m , the proof of Theorem 2 of [11] gives

Ks = Is + JS - 1- max(Is-ﬂs, JS—JS)

]
~
+
e,

t

R s = 8% {(s—l)—max(Is-is, Js—js]} .
Thus

(29) Ks = Is + JS -8, 8§=1, ..., m.

In (8) take the O and B subscripts to be Is’ Js , respectively. Then
(8) becomes

m m
(30)

I ~-1 3
R

+
e~ 3
Q‘l:b

L Yrag et L Yo ag S
s=1 Is+Js 8 s=1 n-m+s

By virtue of (29), it is clear that (30) is a sharper assertion than (28).

Thus the inequalities in this paper are stronger than the inequalities
in [10].

It is also clear from the first proof of Theorem 1 that the
inequalities of [10] could have been derived from [7]. This was not
realized until some time after Theorem 1 was proved (by the method of the

second proof).
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5. Singular value inequalities
Throughout this section we let C( = (Ast)lis,tik be a not necessarily

hermitian matrix, in partitioned form, with 4 having dimensions

tt
n, X my s t=1, ..., k. We let (13) be the singular values of Att ,
for t=1, ..., kK, and we let Yy L Yn be the singular values of
C . Thus Yl z ... 2 Yn > —Yn Z ... 2 -Yl are the eigenvalues of the

(2n)-square hermitian matrix

R

On this matrix perform the unitary similarity in which we rearrange the
block rows and block columns in the same way, by taking them in the order
1, k+1, 2, k+2, 3, k+3, ..., k, 2k . Let K Dbe the resulting matrix. Its

eigenvalues are still Yl Z .00z Yn b4 _Yn ... 2 —Yl , but now down the

block diagonal we see the matrices

0 Ass
As = .
A% 6]
L
which have eigenvalues o . = ... =2 @ = -0 > ... 2 -0 H
sl CRION s,ns 8,1

s§=1, «.., k.
THEOREM 6. Let the not necessarily hermitian matrix C = (Ast) be

as described above. Let 0 = P =n_,, §=1, ..., k , and let integers

8

- satisfy (18) and (19). Define subscripts ist’ ky by (20), (21), and

(22). Then the singular values Y, of € and the singular values o

2

ti

of Ay s its main diagonal blocks, satisfy (23).

Proof. Apply Theorem 3 to the 2n-square matrix K in which the main

diagonal blocks are the 2nt—square matrices Att .  Note that

= > -
éztp(s) 0 for s=p, and p>n, -p,,

since 2z, = P, for p>n Also note that

tp t~ Pgo
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s () =0 for s<p and p>n-p,
le+.. .+ka

since if p >n-~-p = (nl—pl) + ...+ (nk-pk) z ny; =Dy > Ve have
2,5 =P s hence 25 + ...+ 2o
Theorem 3 applied to X yields (23).

=py + ...+ Pp =P - Using these facts,

THEOREM 7. Let the not necessarily hermitian matrixz C be as

deseribed above. Let 0 <=m, =n t=1, ..., k and let integers J

t~-t?
satisfy (24) and (25). Then the singular values Y; of C and the

ts

singular values a,. of A

i » 1ts main diagonal block, satisfy (26).

tt

Proof. Apply Theorem 5 to K . One may verify that

Jls + .00 % Jk

negative eigenvalues of X enter when we apply Theorem 5 to KX .

st (k-1)(s-1) =n for 1 <8 <m and so none of the

REMARK |, In Theorem 6 set each zsp = ps . Then the inequality (23)

becomes

8 s=1

( i Zi ( ‘Et
31) Y. = a
=1 =1 l ts

In Theorem T set Jts = mt +1 -85 for all s, t . Then the inequality
(26) reduces to (31). The inequality (31) is known; it is due to Gohberg
and KreTn and appears as (5.4) on page 53 of [5]. Thus both Theorems 5 and

T generalize the inequality of Gohberg and Kre¥n.

REMARK 2. By considering a nonsingular matrix with zero blocks on its
main diagonal it is easy to see that Theorem 2 and 4 cannot be valid for

singular values.

6. Applications

_[a B
2= 4]
Ay z

Bt
be hermitian. Let oy Z0o,z ..., Al >

1. Let

be the eigenvalues of

A and L respectively. Let
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_fJo B
o= [

> ... be the eigenvalues of D2 . In [16] it was shown

v
O

[}

v

and let Gf >
that if ap 2 0 then
2 2

2
2 AS - = 26
(32) o o 1

The proof involved a combination of the Aronszajn inequality

Y, a + B for the

..ty =0, +8.,
i+j-1 Yn at B‘7 with the Wey! inequality v.

i+j-1 ~
eigenvalues of a sum C = A4 + B . By using the generalization (8) of
Aronszajn's inequality and the LidskiY inequality (see [8] or [17]) for the
eigenvalues of a sum, and slightly sharpening the argument in [716], the
following generalization of (32) may be established: If

f < i < < .
zl 12 . tp and azp 2 0 , then

f (2-2)<3 &
Yt Y =1

t=1

Here St =0 if t exceeds the number of rows in D .

2. Let C = {g gj where all blocks A4, X, Y, B are k-square. Let

> >
@ ..., Tz

A, X, B, Y , respectively. Let Yy > ... Dbe the singular values of (C .

N Bl R ¥y 2 ... Dbe the singular values of

If 1S4y <...<4 sk, 1=j, <...<j <k, then
. m m
2 2
R SZG‘?+ZB-+2x+2y
= = =]_"7 s=1 8=1
If, instead, we have k=27, > ... > 1 =21, k=zg4.> ... > jm =1, then

m m m
T o¥2 . + 7 Y22 ) az + ) 8§ + z z°

- * L Y.
8=1 Ls+Js+s 1 1 8 8=1 s=1 k-m+s 8=1 k-m+s

These inequalities may be obtained by applying Theorems 3 and S to CC* in
vhich AA* + XX*, YY* + BB* are the main diagonal blocks, and using

Lidski7's inequalities.
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Many other inequalities of this nature may be proved by combining
Theorems 3-6 with the inequalities in [9, 17] for the eigenvalues of the

sum of hermitian matrices.
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