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Power Residues of Fourier Coefficients

of Modular Forms

Tom Weston

Abstract. Let ρ : GQ → GLn(Qℓ) be a motivic ℓ-adic Galois representation. For fixed m > 1 we initi-

ate an investigation of the density of the set of primes p such that the trace of the image of an arithmetic

Frobenius at p under ρ is an m-th power residue modulo p. Based on numerical investigations with

modular forms we conjecture (with Ramakrishna) that this density equals 1/m whenever the image

of ρ is open. We further conjecture that for such ρ the set of these primes p is independent of any set

defined by Cebatorev-style Galois-theoretic conditions (in an appropriate sense). We then compute

these densities for certain m in the complementary case of modular forms of CM-type with rational

Fourier coefficients; our proofs are a combination of the Cebatorev density theorem (which does apply

in the CM case) and reciprocity laws applied to Hecke characters. We also discuss a potential applica-

tion (suggested by Ramakrishna) to computing inertial degrees at p in abelian extensions of imaginary

quadratic fields unramified away from p.

Let f =
∑

anqn be a newform of weight k ≥ 2 with rational Fourier coefficients.

For an integer m ≥ 2 let δm( f ) denote the relative density (assuming that it exists) of

the set

(0.1) {p ≡ 1 (mod m) ; ap is a non-zero m-th power modulo p}

inside the set of primes p ≡ 1 (mod m) such that ap is non-zero modulo p. Based

on computations with various newforms we make the following conjecture.

Conjecture The density δm( f ) exists. It equals 1
m

unless f has complex multiplication

and m is not relatively prime to 6(k − 1).

In fact, we suspect that much more is true: we conjecture that this relative density

does not change after restriction to any set of primes defined by a Cebatorev-style

Frobenius condition; that is, we expect that the sets (0.1) yield sets of primes of posi-

tive density which are quite different from those sets determined by Galois-theoretic

conditions. See Conjecture 1.2 for a precise statement.

For CM-forms f and some m dividing 6(k − 1), the set (0.1) is in fact defined

by Galois-theoretic conditions. We use this to prove the following result; see Theo-

rems 3.3, 4.2, and 4.3 for precise statements. (In particular, Theorem 3.3 includes the

cases d = 1, 3 when m = 2.)

Theorem Let K = Q(
√
−d) be an imaginary quadratic field with odd class number h.

Fix k ≥ 2, k ≡ 1 (mod h), and let SK−cm
k (Q) denote the set of newforms of weight k

with rational coefficients and complex multiplication by K.
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(1) Assume that d 6= 1, 3 and k even. Then δ2( f ) =
1
2

for all but two f ∈ SK−cm
k (Q);

for these two forms, δ2( f ) equals 1
4

or 3
4
.

(2) Assume that d 6= 1, 3 and k odd. Then δ2( f ) =
3
4

for all but two f ∈ SK−cm
k (Q);

for these two forms, δ2( f ) equals 1
2

or 1.

(3) Assume that d = 3. Then δ3( f ) equals either 5
9

or 1 for f ∈ SK−cm
k (Q).

(4) Assume that d > 3. Then for any m | k − 1 we have δm( f ) =
3
4

for all but finitely

many forms f ∈ SK−cm
k (Q); for these exceptional forms,δm( f ) equals either 1

2
or 1.

We fully expect that similar results can be proven for imaginary quadratic fields

with even class number, but our methods here require the class number to be odd for

a key step when a Legendre symbol is raised to the h-th power.

The original motivation for this work was the following question of Ramakrishna:

If E is an elliptic curve over Q, are the Fourier coefficients ap(E) := p + 1 − #E(Fp)

cubes for infinitely many p ≡ 1 (mod 3)? This question in turn was motivated by

the following observation of Ramakrishna (in the case m = 3), which we discuss in

detail in Section 2.3.

Proposition Let K be an imaginary quadratic field of class number one and let m be

a prime relatively prime to #O
×
K . Let p ≡ 1 (mod m) be a prime greater than 3 which

splits in K/Q and let Km
p be the maximal abelian m-extension of K which is unramified

away from p. Then p has inertial degree one in Km
p /Q if and only if ap(E) is an m-th

power modulo p, where E is any rational elliptic curve with complex multiplication by

K and good reduction at p.

In fact, one can state the above criterion in terms of modular forms of higher

weight as well; see Remark 2.9. Unfortunately, our methods do not yield a single case

in which we can show that the criterion of the proposition is satisfied for infinitely

many p.

In Section 1 we formulate our precise conjectures and discuss the numerical evi-

dence. In Section 2 we begin the study of the CM-case, relating the power residues of

Fourier coefficients of CM-forms to power residues of the associated Hecke character.

In Section 3 we combine this formula with the quadratic reciprocity law to compute

δ2( f ) for CM-forms f . We consider the cases d = m = 3 and m | k − 1 for f of

weight k in Section 4.

We remark that the methods of this paper are essentially elementary. We suspect

that it will require much deeper methods to make any progress on our conjectures in

the general case.

Notation

For m ≥ 2 and p a prime of a number field K with residue field of order q congruent

to 1 modulo m we write
(

·
p

)

m
for the m-th power residue symbol modulo p; thus

for α ∈ OK , α /∈ p, we have
(

α
p

)

m
∈ µm,

( α

p

)

m
≡ α(q−1)/m (mod p),
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and
(

α
p

)

m
= 1 if and only if α is a non-zero m-th power residue modulo p. We

simply write
(

α
p

)

in the case m = 2.

By a Hecke character over a number field K we mean a continuous homomorphism

χ : A×
K /K× → Q̄×

with AK the adeles of K. We say that χ is unramified at a prime p of OK if χ(O×
Kp

) = 1

(where we embed the completion K×
p of K at p into A×

K in the obvious manner). In

this case we write χ(p) for the value of χ on any uniformizer of Kp and we extend χ
to a character on all unramified fractional ideals in the obvious way.

If P is a set of primes, by the density of P we always mean the Dirichlet density,

although all results in this paper remain true for natural density as well. For α ∈ Q×

we write D(α) for the discriminant of Q(
√
α) over Q.

1 Conjectures

1.1 Galois Representations

Consider a Galois representation

ρ : Gal(Q̄/Q) → GLn(Qℓ).

Suppose that ρ is motivic in the sense that there is a smooth, projective variety X over

Q and a projector p in the ring of algebraic correspondences on X such that ρ is the

Galois representation on

p∗Hi
ét

(

XQ̄,Qℓ( j)
)

for some i, j. (According to the Fontaine–Mazur conjectures [4] it should be equiv-

alent to suppose that ρ is finitely ramified and potentially semistable at ℓ.) It follows

from Deligne’s proof of the Weil conjectures [2] that

ap(ρ) := tr ρ(Frobp)

is a rational integer for almost all primes p, independent of the choice of arithmetic

Frobenius element Frobp.

For an integer m ≥ 2, define

δm(ρ) =

density of
{

p ≡ 1 (mod m) ;
( ap(ρ)

p

)

m
= 1
}

density of {p ≡ 1 (mod m) ; ap(ρ) 6≡ 0 (mod p)}

if these densities exist. With Ramakrishna, we make the following conjecture.

Conjecture 1.1 Let ρ be a motivic Galois representation as above. If the image of ρ is

open, then

δm(ρ) =
1

m
.
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We remark that Conjecture 1.1 is certainly false for many infinitely ramified Galois

representations, as by [6] it is possible to control the Frobenius polynomials (and thus

the ap(ρ)) at a set of primes of density one.

Note that when ρ has open image, one expects the set of primes p which divide

ap(ρ) to have density zero, so that δm(ρ) should be an absolute density in this case.

Of course, one could attempt to formulate an analogous conjecture for Galois

representations of number fields taking values in larger ℓ-adic fields. We have not

attempted to do so here; we only point out that the density δm(ρ) is certainly de-

pendent on the choice of coefficient field, so that the conjectures must be somewhat

more complicated in the general case.

1.2 Fourier Coefficients of Modular Forms

The motivation for Conjecture 1.1 comes from numerical investigations with Fourier

coefficients of modular forms. Let f =
∑

anqn be a newform of weight k ≥ 2 and

level N with rational Fourier coefficients. For any prime ℓ Deligne has constructed a

motivic Galois representation

ρ f : Gal(Q̄/Q) → GL2(Qℓ)

with the property that tr ρ f (Frob p) = ap for p ∤ Nℓ; see [10], for example. By [8,

Theorem 5.7] the image of ρ f is open provided that f is not of CM-type.

We briefly discuss the numerical evidence for Conjecture 1.1 for the representa-

tions ρ f ; we simply write δm( f ) for δm(ρ f ) in this case, or δm(E) if f is the newform

corresponding to a rational elliptic curve E. For integers P1 < P2 define

δm( f ; P1, P2) =

#
{

p ≡ 1 (mod m) ;
( ap

p

)

m
= 1, P1 ≤ p ≤ P2

}

#{p ≡ 1 (mod m) ; ap 6≡ 0 (mod p), P1 ≤ p ≤ P2}
.

We have computed:

(1) δm(E; 108, 2·108) for m ≤ 10 and various rational elliptic curves of small conduc-

tor;

(2) δm( f ; 1, 1000) for m ≤ 10 and various modular forms f of weight at least 3

contained in the tables [12];

(3) δm(∆; 106, 2 ·106) for m ≤ 10 and the modular form ∆ =
∑

τ (n)qn with τ (n)

the Ramanujan τ -function.

In each case we obtained results consistent with Conjecture 1.1. To give a single

example, we report the information obtained for the elliptic curve E = X0(11). The

data reported below are for the set of primes

{p ≡ 1 (mod m) ; 108 ≤ p ≤ 2 · 108}.
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m #p s.t.
( ap

p

)

m
= 1 #p s.t. p ∤ ap δm(E; 108, 2 · 108)

2 2662953 5317482 0.5008

3 888792 2658461 0.3343

4 667722 2658316 0.2512

5 266666 1329469 0.2006

6 446913 2658461 0.1681

7 127203 886591 0.1435

8 168427 1329053 0.1267

9 99178 886298 0.1119

10 133116 1329469 0.1001

S. Wong has pointed out that in most cases the data appear to be slightly biased,

so that the approximate densities are usually larger than 1
m

. For the case of elliptic

curves this may be at least partially explained by the fact that |ap| ≤ 2
√

p and such

small values are slightly more likely to be power residues. In any event, Conjecture 1.1

asserts that in the limit these biases disappear.

1.3 Cebatorev Sets

We have also computed densities as above for sets of primes satisfying additional con-

gruence conditions (that is, with prescribed splitting in cyclotomic fields) and with

specified inertial degrees in splitting fields of various cubic polynomials. These com-

putations suggest a stronger statement than Conjecture 1.1. For ρ a motivic Galois

representation as above and for P a set of rational primes of positive density, we de-

fine

δm(ρ; P) =

density of
{

p ≡ 1 (mod m) ;
( ap(ρ)

p

)

m
= 1
}

∩ P

density of {p ≡ 1 (mod m) ; ap 6≡ 0 (mod p)} ∩ P

if these densities exist. We say that such a set P is a Cebatorev set if there is a finite

Galois extension K of Q and a subset S ⊆ Gal(K/Q), stable under conjugation, such

that, up to finite sets, P is the set of primes p with Gal(K/Q)-Frobenius lying in S.

Conjecture 1.2 Let ρ be a motivic Galois representation with open image as above.

Then for any Cebatorev set P,

δm(ρ; P) =
1

m
.

Conjecture 1.2 essentially asserts that the sets

(1.1)
{

p ≡ 1 (mod m) ;
( ap(ρ)

p

)

m
= 1
}

can not be described in terms of Cebatorev sets. If Conjecture 1.2 holds, it would

thus yield an entirely new collection of naturally occurring sets of primes of positive

density.
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1.4 CM-Representations

The case where ρ has smaller image in GLn(Qℓ) does not appear to admit a uniform

statement such as Conjecture 1.1. We do not speculate on the form of a general

conjecture. However, in certain cases we expect that the analogous result holds.

Conjecture 1.3 Let f be a rational newform of weight k ≥ 2 with complex multipli-

cation by the field Q(
√
−d). If d 6= 3 and m is relatively prime to 2(k − 1), or if d = 3

and m is relatively prime to 6(k − 1), then

δm( f ) =
1

m
.

In the remainder of the paper we consider the exceptional cases m = 2 and

m | k − 1 (and m = d = 3). In these cases we will see that, in contrast to Conjec-

ture 1.2, (1.1) is a Cebatorev set and thus that we can compute its density. (Roughly

speaking, the case m = 2 is exceptional due to the relation between CM modular

forms and quadratic fields, while the case m | k − 1 is exceptional due to the relation

between a CM form of weight k and the (k − 1)st power of a Hecke character.)

2 Modular Forms of CM-Type with Rational Fourier Coefficients

For the remainder of the paper we fix an imaginary quadratic field K with ring of

integers O. We write d for the unique squarefree integer such that K = Q(
√
−d), D

for the discriminant of K, and w for the order of O×. For α ∈ K, we write ᾱ for the

conjugate of α.

Let H denote the Hilbert class field of K, so that [H : K] equals the class number h

of K. We always assume that h is odd, so that either d ∈ {1, 2} or d ≡ 3 ( mod 4). For

later use we set ε = 2 (resp., ε = −1, resp., ε = 1) for d = 1 (resp., d ≡ 3 (mod 8),

resp., d ≡ 7 (mod 8) or d = 2).

2.1 Hecke Characters

By [5, Section 11.2], for d > 3 there is a unique Hecke character

ψ ′ : A×
H /H× → K×,

unramified away from D, with the property that for any prime P of OH (relatively

prime to D) ψ ′(P) is the unique generator of the principal ideal NH/K P which is a

square modulo
√
−d. (Note that w = 2 and d ≡ 3 (mod 4), so that there is indeed a

unique such generator.) Since ψ ′ ◦ σ has the same property for any σ ∈ Gal(H/K),

the Hecke character ψ ′ is invariant under the action of Gal(H/K) on A×
H /H×.

Define a Hecke character ψ : AK/K× → K× as the composition

A×
K /K× → A×

H /H× ψ ′

−→ K×;

it follows from Lemma 2.1 below that ψ has infinity type (h, 0) (in the sense of [3,

Section II.1.1]).
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Lemma 2.1 Let p be a prime ideal of O relatively prime to D. Then ψ(p) is the unique

generator of ph which is a square modulo
√
−d.

Proof Let ̟p ∈ A×
K be an idele which is trivial away from p and which is a uni-

formizer at p. Then the image of ̟p in A×
H can be written as ̟P1

· · ·̟Pg
for anal-

ogously defined ideles ̟Pi
; here pOH = P1 · · ·Pg is the decomposition of p into

primes of OH . Since ψ ′ is Gal(H/K)-invariant it follows that

ψ(p) = ψ ′(P1) · · ·ψ ′(Pg) = ψ ′(P1)g .

As ψ ′(P1)OK = NH/K P1 = ph/g , we conclude that ψ(p)OK = ph. Each ψ ′(Pi)

is a square modulo
√
−d, so that the same is true of ψ(p); thus ψ(p) is the unique

generator of ph which is a square modulo
√
−d, as claimed.

We define the Hecke character ψ : A×
K /K× → K× for d = 1 (resp., d = 2, resp.,

d = 3) as the Hecke character over K associated (as in [11, Theorem 9.2]) to the

Q-isogeny class of the elliptic curve 32A (resp., 256D, resp., 27A) of [1].

Lemma 2.2 Let p be a prime ideal of O relatively prime to D. Then for d = 1 (resp.,

d = 3) ψ(p) is the unique generator of p which is congruent to 1 modulo 2 + 2i (resp.,

modulo 3). For d = 2, ψ(p) is the unique generator of p which is congruent to one of

(2.1)
{

1, 3, 5 +
√
−2, 7 +

√
−2, 5 + 2

√
−2, 7 + 2

√
−2, 5 + 3

√
−2, 7 + 3

√
−2
}

modulo 4
√
−2.

Proof This is well-known for d = 1, 3; see for example [11, Example II.10.6 and

Exercise II..34]. For d = 2, by [11, Proposition 10.4] ψ(p) is a generator of p for

all p 6=
√
−2O. Since ψ has conductor dividing

√
256 = 16, to determine ψ, it

suffices to determine the sign of this generator for the principal ideals generated by

representatives for all classes in (O/16O)×. This is straightforward via [11, Corollary

10.4.1] and results in the characterization given above.

Definition 2.3 For any α ∈ Q× and any k ≥ 2 which is congruent to 1 modulo h,

let

ψk
α : A×

K /K× → K×

denote the Hecke character unramified away from D and α such that

ψk
α(p) = ψ(p)(k−1)/h ·

( ε

p

) (k−1)/h

w
·
( α

p

)

w

for any p relatively prime to D and α.

The extra twist by ε is included to simplify the statements below. Note that ψk
α has

infinity type (k − 1, 0).
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2.2 Modular Forms

Fix k ≥ 2, k ≡ 1 (mod h), and α ∈ Q×. By [8, Theorem 3.4] the Fourier series

gk
α :=

∑

(a,D)=(a,α)=1

ψk
α(a)qNa

(summing over ideals of O prime to D and α) is a cusp form of weight k for Γ1(Nm)

(with m the conductor of ψk
α) which is an eigenform for the Hecke operators Tn

with n prime to D and α.

Definition 2.4 Let

f k
α =

∑

an( f k
α)qn

denote the normalized newform associated to gk
α; we have an( f k

α) = an(gk
α) for n

prime to D and α.

We claim that f k
α has rational Fourier coefficients. Indeed, for p relatively prime

to D and α, Lemmas 2.1 and 2.2 show that ψk
α(p̄) = ψk

α(p), so that

(2.2) ap( f k
α) = ψk

α(p) + ψk
α(p̄) ∈ Q.

By [8, Corollary 3.1] the ap( f k
α) for almost all primes p generate the field of all Fourier

coefficients of f k
α , so that the rationality of an( f k

α) for all n ≥ 1 follows.

Note that f k
α = f k

−dα, but otherwise the f k
α are all distinct. (This can perhaps be

seen most easily by considering the restriction of the Galois representation associated

to f k
α to the field Q(

√
−d).) In fact, any modular form of weight k ≡ 1 (mod h) with

complex multiplication by K and with rational Fourier coefficients is equal to f k
α for

some α ∈ Q×, although we will not prove this here. (In general there may also be

such forms of weights congruent to 1 modulo the exponent of the class group of O,

but these are the only other possible weights.)

The next lemma gives the relation between the power residues of the Fourier co-

efficients of the CM-form f k
α and the values of the Hecke character ψk

α.

Lemma 2.5 Fix m ≥ 1, k ≥ 2, k ≡ 1 (mod h), and α ∈ Q×. Let p be a rational

prime such that:

(1) p ≡ 1 (mod m);

(2) p splits as pp̄ in K/Q;

(3) p is relatively prime to α.

Then
( ap( f k

α)

p

)

m
=

( ψk
α(p)

p̄

)

m
.

Proof Since p̄ has norm p we have by (2.2) that

( ap( f k
α)

p

)

m
=

( ψk
α(p) + ψk

α(p̄)

p̄

)

m
.
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Note that by Lemmas 2.1 and 2.2 ψ(p̄), and thus ψk
α(p̄), is divisible by p̄. Thus

( ψk
α(p) + ψk

α(p̄)

p̄

)

m
=

( ψk
α(p)

p̄

)

m

and the lemma follows.

2.3 Applications to Abelian Extensions of K

In this section we assume for simplicity that h = 1. Fix a prime m relatively prime to

w (that is, m is odd and if d = 3 then we also require m 6= 3) and fix p ≡ 1 (mod m)

which splits as pp̄ in K/Q; assume also that p > 3. Let Km
p denote the maximal

abelian extension of K of exponent m which is unramified away from p and p̄.

One can construct Km
p via the Hecke character ψ as follows. Let ψ̃p : GK → O

×
p be

the p-adic Galois character associated to ψ via class field theory. Let

ψ̄p : GK → (O/p)× ∼= F×
p × F×

p

be the reduction of ψ̃p (which is surjective by [9, Corollary 5.20]) and let

ψ̄m
p : GK ։ (Z/mZ)2

denote the composition of ψ̄p with some fixed surjection (O/p)× ։ (Z/mZ)2. We

write K(ψ̄p) and K(ψ̄m
p ) for the fixed fields of the kernels of these characters. Note

that K(ψ̄p) is equal to K(E[p]) with E a rational elliptic curve corresponding to ψ
over K.

Lemma 2.6 With notation as above, Km
p = K(ψ̄m

p ).

Proof By [11, Theorem II.5.6] the field K(ψ̄p) contains the ray class field of K of

conductor p, so that it certainly contains Km
p . Since K(ψ̄m

p ) is the maximal subex-

tension of K(ψ̄p)/K of exponent m, to prove the lemma it thus suffices to show that

K(ψ̄m
p )/K is unramified away from p and p̄. To see this, note that K(ψ̄p)/K is unram-

ified away from Dp sinceψ is unramified away from D. Furthermore, by [9, Theorem

5.15] the image under ψ̃p of an inertia group at a prime dividing D has order divid-

ing w. Since we are requiring m to be relatively prime to w, it follows that K(ψ̄m
p )/K

must be unramified at all such primes, which completes the proof.

It follows from Lemma 2.6 that

Gal(Km
p /K) ∼= (Z/mZ)2.

In particular, Km
p is a Galois extension of Q of degree 2m2; thus

ep fpgp = 2m2
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where ep (resp., fp, resp., gp) is the ramification index (resp., inertial degree, resp.,

splitting degree) of p in Km
p /Q. Since K has no everywhere unramified extensions,

Km
p /Q must be ramified at p and since p 6= m the inertia groups at p must be cyclic

(as the tame inertia group of Qp is pro-cyclic); as m is prime it follows that ep = m.

Since 2 divides gp, it follows that there are two possibilities:

ep = m, fp = m, gp = 2

or

ep = m, fp = 1, gp = 2m.

The next proposition shows that one can determine which of these occurs in terms

of the power residue of the p-th Fourier coefficient of E.

Proposition 2.7 Let E be a rational elliptic curve with Hecke character ψ over K.

For p ≡ 1 (mod m) greater than 3 and split in K/Q, we have fp = 1 if and only if
( ap(E)

p

)

m
= 1.

Proof Since

Gal(K(E[p])/K) ∼= (O/p)× ∼= (Z/(p − 1)Z)2

and

Gal(Km
p /K) ∼= Gal(K(E[p])/K)/m · Gal(K(E[p])/K),

one sees easily that fp = 1 if and only if the inertial degree of Qp(E[p])/Qp divides

(p − 1)/m. The latter condition is equivalent to the p-torsion of E over F̄p being

defined over Fp(p−1)/m . Since E is ordinary at p (as p splits in K/Q) and thus has one-

dimensional p-torsion over F̄p, it follows that to prove the proposition it suffices to

show that
( ap(E)

p

)

m
= 1 if and only if p divides #E(Fp(p−1)/m ).

Let α, β be the p-adic roots of the Frobenius polynomial

x2 − ap(E)x + p;

since E is ordinary at p we may choose α, β so that α is a p-adic unit and β is divisible

by p. In particular,

α ≡ ap(E) (mod p).

By the Riemann hypotheses for elliptic curves over finite fields we have

#E(Fp(p−1)/m ) = p(p−1)/m + 1 − α(p−1)/m − β(p−1)/m

≡ 1 − ap(E)(p−1)/m (mod p).

Since

ap(E)(p−1)/m ≡
( ap(E)

p

)

m
(mod p),

the proposition follows from this.
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Remark 2.8 If m is not relatively prime to w, then one can easily obtain the analogue

of Proposition 2.7 via Kummer theory.

Remark 2.9 Fix k ≥ 2 and α ∈ Q×. If k− 1 is relatively prime to m (which in turn

is still assumed relatively prime to w), then it follows from Lemma 2.5 that

( ap( f k
α)

p

)

m
=

( ap(E)

p

)

m
.

Thus one can also compute fp via the Fourier coefficients of f k
α . (In particular, this

shows that it does not matter which rational elliptic curve with complex multiplica-

tion by K one uses in Proposition 2.7.) Unfortunately, the various hypotheses on m

and k above rule out any case in which we are able to calculate
( ap( f k

α)

p

)

m
.

Remark 2.10 When considering Proposition 2.7 for ap( f k
α) as above, it is perhaps

somewhat more enlightening to regard Gal(Km
p /K) as a quotient of the mod p Galois

representation associated to f k
α ; Proposition 2.7 can then be recovered from the fact

that the restriction of this Galois representation to a decomposition group at p has

the form
(

χk−1ϕ−1 ∗
0 ϕ

)

with χ the cyclotomic character and ϕ an unramified character with the property

that

ϕ(Frob p) ≡ ap( f k
α) (mod p).

3 Squares

3.1 Preliminaries

In order to determine the quadratic character of Hecke characters over imaginary

quadratic fields with odd class number we will need the following result. Recall that

ε = −1 (resp., ε = 1) if d ≡ 3 (mod 8) (resp., d ≡ 7 (mod 8)).

Lemma 3.1 Let p be a prime which splits as pp̄ in K/Q and let π be a generator of

ph. (If d = 1, further assume that π ≡ 1 (mod 2 + 2i).)

(1) If p ≡ 1 (mod 4), then
( π

p̄

)

=

( −d

p

)

4
.

(2) If d 6= 2 and p ≡ 3 (mod 4), then

( π

p̄

)

= ε
( π√

−d

)

.

(3) If d = 2 and p ≡ 3 (mod 4), then
(

π
p̄

)

= 1 if and only if π is congruent to an

element of (2.1) modulo 4
√
−2.
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Proof Write π = a + b
√
−d with a, b ∈ 1

2
Z; if we write a = 2ra ′, b = 2sb ′ with

a ′, b ′ odd integers, then r = −1 if and only if s = −1.

We assume first that p ≡ 1 (mod 4). Since π̄ ∈ p̄, we have

(3.1)
( π

p̄

)

=

( π − π̄

p̄

)

=

( 2b
√
−d

p̄

)

=

( 2b

p̄

)(

√
−d

p̄

)

.

Since 2b is an integer and p̄ has norm p, we have

( 2b

p̄

)

=

(

2b

p

)

=

( 2

p

) s+1( b ′

p

)

.

By quadratic reciprocity and the fact that h is odd we have

( b ′

p

)

=

( p

b ′

)

=

( ph

b ′

)

=

( a2 + db2

b ′

)

=

( a2

b ′

)

= 1.

As
(

√
−d
p

)

=
(

−d
p

)

4
by (3.1) we conclude that

(3.2)
( π

p̄

)

=

( 2

p

) s+1( −d

p

)

4
.

If p ≡ 1 (mod 8) this completes the proof. If p ≡ 5 (mod 8), then one shows easily

(using that π ≡ 1 (mod 2 + 2i) in the case d = 1) that s = ±1; thus (3.2) completes

the proof in this case as well.

Next assume p ≡ 3 (mod 4); in particular, we now have d 6= 1. We have

( π

p̄

)

=

( π + π̄

p̄

)

=

( 2a

p̄

)

=

( 2a

p

)

=

( 2

p

) r+1( a ′

p

)

.

Using quadratic reciprocity and the fact that h is odd, we obtain

(3.3)
( π

p̄

)

=

( 2

p

) r+1
(−1

a ′

)

( p

a ′

)

=

( 2

p

) r+1( −1

a ′

)( ph

a ′

)

=

( 2

p

) r+1( −1

a ′

)( a2 + db2

a ′

)

=

( 2

p

) r+1( −1

a ′

)

(

d

a ′

)

.

For d 6= 2 we have d ≡ 3 (mod 4), so that a second application of quadratic reci-

procity now yields

( π

p̄

)

=

( 2

p

) r+1( a ′

d

)

=

( 2

p

) r+1( 2

d

)−r( a

d

)

.

If p ≡ d (mod 8), then this immediately yields the lemma since
(

2
p

)

=
(

2
d

)

= ε. If

p 6≡ d (mod 8), one finds easily that r = ±1; the lemma thus follows in this case as

well.
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When d = 2, one must have p ≡ 3 (mod 8) and r = s = 0. In particular, π must

be congruent to an element of

{1 +
√
−2, 3 +

√
−2, 5 +

√
−2, 7 +

√
−2, 1 + 3

√
−2, 3 + 3

√
−2, 5 + 3

√
−2, 7 + 3

√
−2}

modulo 4
√
−2. By (3.3) we have

( π

p̄

)

=

( 2

p

)( −2

a

)

= −
( −2

a

)

,

which is 1 if and only if a = 5, 7. The lemma thus follows from the definition of (2.1).

3.2 Densities

Combining Lemma 2.5 with Lemma 3.1 yields the following result on the quadratic

character of the Fourier coefficients of the CM forms f k
α .

Proposition 3.2 Fix k ≥ 2, k ≡ 1 (mod h), and α ∈ Q×. Let p be a rational prime,

relatively prime to α, which splits as pp̄ in K/Q.

(1) For d 6= 1,

( ap( f k
α)

p

)

=











1 p ≡ 1 (mod 4) and k odd;
(

−d
p

)

4
p ≡ 1 (mod 4) and k even;

(

α
p

)

p ≡ 3 (mod 4).

(2) For d = 1,
( ap( f k

α)

p

)

=

{

1 p ≡ 1 (mod 8);
(

α
p

)

p ≡ 5 (mod 8).

Proof Assume first that d 6= 1, 3, so that w = 2. By Lemma 2.5 and the definition

of ψk
α we have

( ap( f k
α)

p

)

=

(

ψ(p)(k−1)/h ·
(

ε
p

) (k−1)/h ·
(

α
p

)

p̄

)

=

( ψ(p)

p̄

) (k−1)/h

·
( (

ε
p

)

p

) (k−1)/h

·
( (

α
p

)

p

)

.

When p ≡ 1 (mod 4), the last two Legendre symbols above are trivial so that this

yields
( ap( f k

α)

p

)

=

( ψ(p)

p̄

) (k−1)/h

=

( −d

p

) (k−1)/h

4
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by Lemma 3.1 and the fact that ψ(p) generates ph. Since
(

−d
p

)

4
= ±1 (as p splits in

K) and (k − 1)/h is even if and only if k is odd, the lemma follows in this case.

When p ≡ 3 (mod 4) we instead obtain

( ap( f k
α)

p

)

=

( ψ(p)

p̄

) (k−1)/h

· ε(k−1)/h ·
( α

p

)

.

By Lemmas 2.1, 2.2 and 3.1 we have
(

ψ(p)
p̄

)

= ε, so that the lemma follows in this

case as well.

The proof for d = 3 is similar using that

( (

α
p

)

6

p̄

)

=

{

1 p ≡ 1 (mod 12);
(

α
p

)

p ≡ 7 (mod 12).

The proof for d = 1 also proceeds similarly, taking into account that ε = 2, that
(

−1
p

)

4
= 1 for p ≡ 1 (mod 8), and that

( (

α
p

)

4

p̄

)

=

{

1 p ≡ 1 (mod 8);
(

α
p

)

p ≡ 5 (mod 8).

It is now a simple matter to determine the density of squares among the non-zero

Fourier coefficients of f k
α . By the definition of f k

α we see that ap( f k
α) = 0 for p inert

in K/Q while p ∤ ap( f k
α) for p split in K/Q and relatively prime to α. Thus

δ2( f k
α) :=

density of
{

p ;
( ap( f k

α)

p

)

= 1
}

density of {p ; ap( f k
α) 6≡ 0 (mod p)}

=

density of
{

p ;
( ap( f k

α)

p

)

= 1
}

density of {p ; p split in K/Q}

= 2 ·
(

density of

{

p ;
( ap( f k

α)

p

)

= 1

})

if this density is defined.

Theorem 3.3 Fix k ≥ 2, k ≡ 1 (mod h), and α ∈ Q×.

• For d 6= 1 and k even

δ2( f k
α) =











3/4 D(α) ∈ {1,D};

1/4 D(α) ∈ {−4, 4d};

1/2 otherwise.
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• For d 6= 1 and k odd

δ2( f k
α) =











1 D(α) ∈ {1,D};

1/2 D(α) ∈ {−4, 4d};

3/4 otherwise.

• For d = 1,

δ2( f k
α) =











1 D(α) ∈ {1,−4};

1/2 D(α) ∈ {±8};

3/4 otherwise.

Proof We consider d 6= 1; the proof for d = 1 is handled in an entirely similar fash-

ion, taking into account the different form of Proposition 3.2 in this case. Consider

first primes p ≡ 1 (mod 4), p relatively prime to α and split in K/Q. These primes

are (up to a finite set) precisely those which split completely in Q(
√
−d, i)/Q. By

Proposition 3.2, if k is odd then every such p satisfies

(3.4)
( ap( f k

α)

p

)

= 1,

while if k is even such a p satisfies (3.4) if and only if it splits completely in

Q( 4
√
−d, i)/Q. By the Cebatorev density theorem the set of such primes has den-

sity 1
4

or 1
8
, respectively.

Next consider primes p ≡ 3 (mod 4), p relatively prime to α and split in K/Q.

These primes are inert in Q(i)/Q, and by Proposition 3.2 they satisfy(3.4) if and only

if they split in Q(
√
α)/Q. In particular, the set of such primes has density 1

8
unless

Q(
√
α) lies in Q(

√
−d, i). This occurs only if D(α) ∈ {1,D} or D(α ′) ∈ {−4, 4d},

in which case these primes have density 1
4

or 0, respectively. The proposition now

follows easily in these cases.

4 Higher powers

4.1 Cubes

For the field K = Q(
√
−3) it is possible to use the law of cubic reciprocity to study

the cubic character of the Fourier coefficients of the CM form f k
α .

Proposition 4.1 Assume d = 3. Fix k ≥ 2 and α ∈ Q×. Let p ≡ 1 (mod 3) be a

rational prime, relatively prime to α, which splits in K/Q. Then

( ap( f k
α)

p

)

3
=











1 p ≡ 1 (mod 9);
(

α
p

) 2

3
p ≡ 4 (mod 9);

(

α
p

)

3
p ≡ 7 (mod 9).
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Proof Let π be a prime divisor of p which is congruent to 1 modulo 3. By the law

of cubic reciprocity (see, for example, [7, Section 7.2]) we have

( π

π̄

)

3
=

( π̄

π

)

3
.

On the other hand,
( π

π̄

)

3
=

( π̄

π

)

3
;

it follows that in fact
(

π
π̄

)

3
= 1. In particular, by Lemma 2.5 and the definition of ψk

α

we have

( ap( f k
α)

p

)

3
=

( π

π̄

) k−1

3

( (

−1
p

)

p

) k−1

3

( (

α
p

)

6

π̄

)

3

=

( (

α
p

)

6

π̄

)

3

=

( α

p

) (p−1)/3

6
=

( α

p

) (p−1)/6

3
;

the proposition follows easily.

Theorem 4.2 Assume d = 3. Fix k ≥ 2 and α ∈ Q×. Then

δ3( f k
α) =

{

1 α ∈ Q×3;

5/9 α /∈ Q×3.

Proof If α ∈ Q×3, then
(

α
p

)

3
= 1 for all p ≡ 1 (mod 3), so that δ3( f k

α) = 1 by

Proposition 4.1. On the other hand, if α /∈ Q×3, then primes p ≡ 1 (mod 9) always

satisfy

(4.1)
( ap(ψk

α)

p

)

3
= 1,

while primes p ≡ 4, 7 (mod 9) satisfy (4.1) if and only if
(

α
p

)

3
= 1. The former

condition is equivalent to p splitting completely in Q(µ9)/Q, so that the set of such

p has density 1
6
. The latter condition is equivalent to p having inertial degree 3 in

Q(µ9)/Q and splitting completely in Q(µ9, 3
√
α)/Q(µ9). The unique cubic subfield

of Q(µ9) is Q(µ9)+, which is Galois over Q and thus can not contain any non-trivial

cube roots. Thus Q(µ9)∩Q( 3
√
α) = Q, so that the set of such p has density 2

3
· 1

2
· 1

3
=

1
9
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by the Cebatorev theorem.

Q(µ9, 3
√
α)

split

qqqqqqqqq

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;
;

;

Q(µ9)

split

Q(µ9)+

inert MMMMMMMMMMM

Q( 3
√
α)

qqqqqqqqqq

Q

Combining these results, we see that the set of p ≡ 1 (mod 3) with

( ap( f k
α)

p

)

3
= 1

has density 5
18

, from which it follows that δ3( f k
α) =

5
9
, as claimed.

4.2 m-th Powers, m | k − 1

For any α ∈ Q× we write D(α) for the discriminant of the quadratic field Q(
√
α)

over Q. For simplicity we state the next result only for d > 3; the cases become

overwhelming for d ≤ 3.

Theorem 4.3 Assume that d > 3 and fix k ≥ 2, k ≡ 1 (mod h), and α ∈ Q×. Then

for any m | k − 1 we have

δm( f k
α) =



















1 m odd or D(α)|m or D(−dα)|m;

1/2 m even and D(α) ∤ m and D(−dα) ∤ m and either

D(α)|2m or D(−dα)|2m;

3/4 otherwise.

Proof Let p ≡ 1 (mod m) be a prime which splits as pp̄ in K/Q. By Lemma 2.5

and the definition of ψk
α we have

( ap( f k
α)

p

)

m
=

(

ψ ′k−1(P) ·
(

ε
p

) (k−1)/h ·
(

α
p

)

p̄

)

m

=

( (

ε
p

) (k−1)/h ·
(

α
p

)

p

)

m

for any prime P of H lying over p. Since h is odd and
(

ε
p

)

= ±1, we certainly have

( (

ε
p

)

p

) (k−1)/h

m

= 1,
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so that
( ap( f k

α)

p

)

m
=

( (

α
p

)

p

)

m

.

This is not equal to 1 if and only if both
(

α
p

)

and
(

−1
p

)

m
equal −1. (Note that

(

−1
p

)

m
= ±1 since p ≡ 1 (mod m).) This in turn is equivalent to the following

splitting behavior of p:

Q(
√
α,

√
−d, µm)

inert QQQQQQQQQQQ

Q(
√
−d, µ2m)

inertnnnnnnnnnn

Q(
√
−d, µm)

split

Q

In particular, there are no such primes (so that δm( f k
α) = 1) if and only if either

of the top two extensions are trivial. If both of these extensions are non-trivial, then

it follows from the Cebatorev theorem that δm( f k
α) =

3
4

unless the two extensions

coincide, in which case δm( f k
α) =

1
2
. One now checks easily using Lemma 4.4 below

(and the fact that Q(µm) = Q(µ2m) if and only if m is odd) that the conditions given

in the statement of the theorem are equivalent to these field theoretic conditions.

We remark that this result recovers Theorem 3.3 when k is odd.

Lemma 4.4 Fix n ≥ 1 and α, β ∈ Q×. Then

[Q(
√
α,
√

β, µn) : Q] =











ϕ(n) D(α) and D(β) divide n;

2ϕ(n) exactly one of D(α),D(β),D(αβ) divides n;

4ϕ(n) otherwise.

Proof Set F = Q(
√
α,

√
β). We have

[F(µn) : Q] = [F : F ∩ Q(µn)] · [Q(µn) : Q] = [F : F ∩ Q(µn)] · ϕ(n).

Note that Q(µD(α)) is the smallest cyclotomic field containing
√
α, so that in general√

α ∈ Q(µn) if and only if D(α) divides n. As every subfield of F is generated by some

subset of {√α,
√
β,

√
αβ}, this allows one to easily compute F ∩ Q(µn) in terms of

D(α), D(β), and D(αβ). The lemma follows from this computation.
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