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KNOTS WITH FREE PERIOD 

RICHARD HARTLEY 

At the Georgia conference in 1961 Fox presented a paper, "Knots and 
periodic transformations", in which he asked which knots may be fixed 
by a periodic transformation of the 3-sphere. He distinguished eight cases 
according to the type of fixed point set of T and its relationship to the 
knot. Except for case a), all these cases have since received some atten
tion and conditions have been given for knots to fall into each of these 
classes. In fact, the problem of deciding which knots fall into category 
d) (that is "periodic knots"; I will refer to them as cyclically periodic 
knots) has been the subject of at least six papers [2], [3], [13], [15], 
[17], [22], but measured by their effectiveness at determining the periods 
of the knots to nine crossings, the theorems contained in these papers are 
not entirely satisfactory. 

Knots of type a), however, which are those knots fixed setwise by a 
periodic transformation, T, of the 3-sphere without fixed points have, to 
my knowledge, received no attention until now (although Fox observed 
that torus knots have infinitely many free periods). I call such knots 
freely periodic if as well as T being fixed point free, so is each power of T 
less than its period. The purpose of this paper is to give two necessary 
conditions for a knot to have a free period. These conditions turn out to 
be quite effective at determining the periods of the classical knots to nine 
crossings, the periods of only two knots being undecided. (In fact the 
possible periods of all knots to 10 crossings are determined here.) Knots 
in an arbitrary homology 3-sphere rather than just 5 3 are considered, 
since this represents no added difficulty. The key observation is that 
knots with free period are algebraically very closely related to knots fixed 
pointwise by a periodic transformation of a homology 3-sphere. In fact 
both our conditions are also necessary conditions for a knot to be the 
fixed point set of a periodic transformation of a homology 3-sphere, and 
one of them was discovered by Kinoshita and Fox in considering this 
latter phenomenon. Thus, in fact most of this paper relates both to knots 
with a free period and to knots which are fixed point sets of periodic 
transformations. 

1. The polynomial condition. A periodic transformation of period p 
of a space will be called free if Tl has no fixed points for i — 
1, 2, . . . , p — 1. Consider a (polygonal) knot, K, in a homology 3-sphere, 
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X, and suppose that K is fixed (setwise) by a free periodic transformation, 
T, of X of period p. (A covering translation of the universal covering space 
of a lens space gives an example of such a periodic transformation.) K will 
be called freely periodic, and will be said to have free period p, or simply 
period p. Now, the orbit space of X under T is a 3-manifold, X and K 
lies over a knot, K in X. The identification map, p:X —>X is a p-îo\d 
covering projection. I claim that Hi(K) = Zp. In fact, TI(X) < 7n(X), 
so 

T!(X) = [T1(X),1T1(X)] < k 1 (X) ,X 1 (X)] . 

Therefore, 

|7r1(X):[^1(X),x1(X)] | < | T I ( X ) : T I ( X ) | = />. 

However, the group of covering translations is Zv, and so 7ri(X) maps 
onto Zp. So, 7ri(X)/[7ri(X), 7ri(X)] maps onto Zp. This map must there
fore be an isomorphism. 

As a singular 1-cycle, the knot K must represent a generator of i7i(X), 
otherwise K would have more than one component. By Theorem 2.1 of 
[11], Hi(X - K) ^ Z. Let N(K) be a regular neighbourhood of K and 
put Y = cl(X - N(K)). Then H^Y) 9Ë # i ( X - K) ^ Z. We show 
that the generator of Hi(Y) may be represented by a cycle in diV(K). 
Let tn be the boundary of a meridianal disc of iV(K). Let a generate 
Hi(Y) and suppose that as an element of i f i (X) , a ^ j K . Let 1 be a 
curve on dN(K) with 1 — K in iV(K). Then, a - jK ~ 0 in iJ i (X). 
Thus, a — j \ ~ km, and a ~ j \ + &m in Hi(Y). But 7 and & must be 
coprime, and so j l + km is represented by a curve in diV(K). Now, let 
F be a solid torus with core, K'. Let X ' be the manifold obtained from 
the disjoint union F © Y by sewing a meridian, m ' of F to a curve 

j \ + km generating Hx (Y). Let h : V © Y —-> X' be the identification map, 
call h(K') simply K', and let V = TV(K'). Then, X' is a homology 
3-sphere and X' - iV(K') is homeomorphic to X - iV(K). LetK' be the 
p-îold cyclic branched covering space of X' branched over K', let Kr 

cover K' and N(K') cover iV(K'). Then 

X' - N(K') 9*X - N(K). 

Therefore, 

HX(X' - N(K')) ^ ^ ( X - N(K)) ^ Z. 

Since X' is a cyclic branched covering space, 

Hx{X') © Z ^ ffx(Z' - N(K')) ÊË Z. 

(See, for instance Example 3 of [11]), and so H\(X') = 0. Since X' is a 
cyclic branched covering of X', the covering translations are periodic and 
fix the covering knot pointwise. Thus: 
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THEOREM 1.1. / / a knot K in a homology %-sphere, X, is fixed setwise by 
a free transformation of X of period p, then there exists a knot, K', in a 
homology 3-sphere X' such that X — K is homeomorphic to X' — K', and 
K' is the set of fixed points of some periodic transformation of X' of period p. 

In fact, X' is the p-îo\à branched covering space of a homology 
3-sphere, X', branched over a knot, K', and Kr is the knot covering K'. 

Thus, if / is some knot invariant of a knot, K, in a homology 3-sphere, 
X, which depends only on the knot complement, then any condition on 
/ necessary for K to be the fixed point set of a periodic transformation of 
X of period p is also a necessary condition for K to be fixed setwise by a 
free transformation of period p. Such invariants include (among many 
others) the Alexander polynomial and the homology groups of the 
cyclic branched coverings, both of which depend only on the knot group. 

Now, the class of Alexander polynomials of knots in the 3-sphere is 
the same as the class of Alexander polynomials of knots in homology 
3-spheres. (See [1].) Thus, we may adapt (with very slight modifications) 
the results of Kinoshita [12] and we have 

THEOREM 1.2. If K is a knot in a homology sphere, X, and K is fixed 
{setwise) by a free periodic transformation of X of period p, then 

(1.3) AK(tP) = Tlfifr), 

where £ is a primitive pth root of unity and f is a knot polynomial. 

One can always test this condition for given A^ and p by factoring 
AK(IP)

 o v er the integers. It must have a factor of degree equal to the 
degree of A^, namely / . 

As pointed out by Fox [6], this condition has certain consequences: 

(1.4) AK(t) and f(t) have the same degree. 
(1.5) The leading coefficient of AK(t) is a pth power. 
(1.6) The roots of A^ are the pth powers of the roots of/. 

Condition (1.5) rules out many knot types for any value of p. Fox drew 
several results from these conditions. His condition that A^ can not be a 
reducible quadratic can be greatly strengthened as follows: 

PROPOSITION 1.7. If a knot K has a quadratic Alexander polynomial, 
other than 1 — t + t2, then it does not have any free period. 

Proof. We show first that no cyclic covering space of any knot with 
a quadratic Alexander polynomial other than 1 — t + t2 can be a homol
ogy sphere. Since the order of the cyclic covering homology groups 
depend only on the Alexander polynomial, we may assume that K is a 

genus one knot in the 3-sphere with Seifert matrix V = I ., I 
\7 - 1 7/ 
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havingpolynomial/(0 = 7 + ( l - 2 7 ) ^ + ^ 2 w i t h 7 ^ 0 , l . I f / = l_1 À 

and r = VJ, then Fq = Tq - (T - I)q is a relation matrix for Hi(Mq), 
where ikfff is the g-fold branched covering. It is enough to show that 
\Hi(Mq)\ 9e 1 for g a prime, since if q divides h, then \Hi(Mq)\ divides 
\Hi(Mh)\. Now certainly i?i(ikf2) can not be trivial, so we assume that q 
is an odd prime. 

Plans [18] showed that for odd q, Fq is then of the form 

lnq 0\ 
\0 nj 

where nq = (pq — 2ypq_ï) and pQ is defined recursively by 

po = 0, pi = 1, ^5+i = pq — pq-iy-

One easily sees that WÇ(T) is then a polynomial in y of the form 1 + 
#iY + a2y

2 + . . . + any
n where n = (q — l ) /2 . Now expanding Ta — 

(T — i")ff, one sees that Fq = I (modulo q). Thus, for all y, nq(y) = 1 
(modulo q). In particular, for 7 = 1, 2, . . . , n, we have 

ai + «27 + • • • + cinln~~l = 0 in Zq. 

This gives a set of equations 

written symbolically, Aa = 0. Since 

det 4 = I l U ~ i) ?* 0 i n z «. 

the only solution is at = 0 in Zq. Therefore, 

nq(y) = 1 + gy.W + a*y + • • • + ^ V - 1 ) . 

However, looking more closely at the form of the polynomial r (7) = aï + 
CLi'y + . . . + CLn

fyn~l, we see that aï = —1 and an' = ± 1 . Furthermore, 
it is an alternating polynomial (that is, the signs of the a/ alternate). In 
order for nq(y) to equal ± 1 , 7 = 0 or 7 must be a root of r. However, the 
only possible integer root is 7 = 1. Thus Fq can not be a relation matrix 
for the trivial group unless 7 = 1 or 7 = 0 and then either f(t) = 1 — 
t + t2 or f(t) = 1. Now if/(*) = 1 - t + t2 then from the periodicity of 
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Hi(Mt) (see [9]), |Jf1(ikfs)| = 1 if and only if q = ± 1 (modulo 6). Then 
one verifies that 

A»(/«) = n/(***) = i - ^ + ^ 2 s 

(see also (4.4)). This completes the proof. 

2. The homology group of the 2-fold covering space. We consider 
now the consequences for the structure of the homology group of the 
2-fold covering space of a knot in a homology 3-sphere of the assumption 
that K has a free period (or equally well, of the assumption that K is the 
fixed point set of a periodic transformation). 

LEMMA 2.1. If Hi(Mi) represents the homology group of the i-fold 
cyclic covering space of a knot in a homology 3-sphere, there is a homo-
morphism of H\(M2n) onto Hi(M2) with kernel a direct double. 

Proof. A. Plans [18] considered the structure of the homology groups 
of covering spaces of knots in the 3-sphere. For a good summary of his 
results, see the review by Fox [5], or [7]. Plans used a relation matrix for 
these homology groups derived from a Seifert matrix of the knot. The 
results hold equally well for the homology groups of covering spaces of 
knots in a homology sphere. In fact, one can adapt the appropriate 
proofs on page 127 and pages 201-215 of [20] to obtain the connexion 
between the Seifert matrix and the covering space homology. Then, 
Plans's arguments apply unchanged. 

In particular, Plans proved that F2g = F2.W where Ft represents a 
certain 2n X 2n relation matrix for Hi (Mt) and 

Here, n is the genus of the knot. Denoting by W: A2n —> B2n and 
F2:B2n —> C2n the homomorphisms represented by W and F2 respectively 
(here, A2n, B2n and C2n are free abelian groups of rank 2n), we have 

C2n/lm(F2') ^ (C2Jlm(F2
f.W'))/(\m(F2')/\m(F2

f.W')). 

However, 

C2„/Im(/Y) ^ m(M2) and C2n/Im(F2'.W) ^ H,(M2g). 

Further, F2 has rank 2n (since H\(M2) is finite), so 

Im(F2')/lm(F2'.W') Ç± B2n/Im(Wf), 

which is a direct double because of the form of W. 

THEOREM 2.2. Let K be a knot in a homology sphere, X, and T a trans
formation of period p which either fixes K pointwise, or else which is free 
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and fixes K setwise. Then there exists some knot polynomial, f, such that 

and there is a homomorphism of H\(M2) onto some group, E, of order 
| / (—1) | and the kernel is a direct double. Hence, ifi(M2) is not cyclic unless 
for some suchf, | / ( —1)'| = |A(—1)|. In particular, if p = 2, then Hi(M2) 
is always a direct double. 

Proof. We consider the case where K is fixed pointwise. The other case 
is then covered by Theorem 1.1. The 2-fold cyclic branched covering, 
Af2, of X branched along K is a 2£>-fold branched covering of the orbit 
space, X, branched along the factor knot, K. Then, / is the knot poly
nomial of K in the homology sphere, X. We put E = i?i(M2), where M2 

is the 2-fold covering space of X branched over K. Then | / (—1) | = |£ | 
and | A ( - 1 ) | = \Hi(M2)\. If p = 2, thenM 2 = X, and so | / ( - l ) | = 1. 
The theorem now follows from Lemma 2.1. 

3. Examples of freely periodic knots. We begin by considering 
torus knots. 

THEOREM 3.1. The torus knot of type (r, s) has free period p if and only 
if p is coprime with rs. 

Proof. Fox's Corollary 1 in [6] along with our Theorem 1.1 show this 
condition to be necessary. Fox apparently also observed that this was 
sufficient [8]. To prove it, consider the 3-sphere as a Seifert fibre space 
over the 2-sphere with two exceptional fibres of types (r, s) and (s, r). A 
non-exceptional fibre is a torus knot of type (r, s) which is fixed setwise 
by the periodic transformation, T, of period p which moves each point 
on an exceptional fibre along that fibre a distance \/p times its length. 
(This mapping may be extended continuously to the exceptional fibres.) 
Now Tl; i = 1, . . . , p fixes no point on any non-exceptional fibre, and 
the condition that p and rs are coprime ensures that there is no fixed 
point on either exceptional fibre. (This sort of transformation is described 
in [21], Section 14.) 

Thus there exist fibred knots with infinitely many free periods in 
contrast to the situation with cyclic periods where a fibred knot has only 
finitely many cyclic periods [15]. However, it seems likely that torus 
knots are the only knots with this property. 

In fact, if a knot has infinitely many free periods then it results from 
(1.6) that the roots of its Alexander polynomial must all be roots of unity. 
This was pointed out to me by J. A. Hillman, and it will become clear in 
the next section. 
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Fox asked (question 7 of [8]) which knots may be fixed by periodic 
transformations of all periods. Here is a partial answer. If a knot has 
infinitely many prime periods, then it must have either infinitely many 
prime cyclic periods (in which case by Corollary 4 of [15], A^ = 1) or 
infinitely many prime free periods or it is the fixed point set of periodic 
transformations of arbitrarily large period (in both of which latter cases, 
the roots of its Alexander polynomial are roots of unity). 

Regarding cable knots, Fox showed in [6] (given our Theorem 1.1) 
that a 2 strand cable knot can not have free period 2. In fact, this can be 
improved using Theorem 3.1 of [10] to the following statement: If & is a 
(p, q) cable knot with carrier K, then k has free period 2 if and only if K 
has free period 2 and pq is odd. 

We now construct further examples of freely periodic knots and for 
this we need a generalisation of Conway's definition of a tangle [4]. An 
n-tangle is a portion of a knot diagram enclosed in a square with n strings 
emerging from the left edge and n strings emerging from the right edge 
of the square. Two tangles may be multiplied by placing them side by 
side and joining up the adjacent strings. (This is called addition by 
Conway.) Given a tangle, t, the tangle obtained by flipping it over top to 
bottom is called th (see Conway). The n-braids are a special sort of n-
tangle and the multiplication of tangles corresponds to the usual braid 
multiplication. We will therefore use the usual braid notation. In par
ticular, ci, <r2, • • • , ov-i are n-tangles which generate the braid group, 
and the centre of the w-braid group is generated by an element, A2, 
where 

A = Sis2 . . . V-i and s{ = <7io-2 . . . <rn-i ([16]). 

Let a tangle, /, be called symmetric if it is identical with th (not just iso-
topic to th). As with braids, one obtains a link from an n-tangle by joining 
the right hand strings to the left hand strings with n disjoint arcs. The 
resultant link will be called the closure of the n-tangle. Claude Bourrain 
has studied n-tangles in some detail. Their relevance here is in the follow
ing result. 

PROPOSITION 3.2. If / is any n-tangle and m = 2n, then the closure of 
Amtp is a link with free period p if (n, p) = 1. 

If t is any symmetric n-tangle and m is any integer, then the closure of 
Amtp has free period p if (2m, p) = 1. 

Proof. One way to visualise this is to draw the tangle tv on a strip 
of paper and then to join the two ends of the strip together with m half 
twists to form a twisted annulus or Mobius band, A. The resulting link 
is the closure of Amtp. The 3-sphere may be Seifert fibred in such a way 
that A is a union of fibres and the centre line of A is an exceptional fibre 
of type (2, m) if m is odd and of type (1, n) if m = 2n is even. Then the 
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transformation previously described taking each fibre l/pth of a revolu
tion along its length takes the link onto itself and is free under the stated 
conditions. 

Since any tame periodic transformation of 53 with fixed point set an 
unknotted circle is a revolution [14] it is easy to see that a knot with 
cyclic period, p, must be the closure of some n-tangle tv. Any sort of 
similar statement about knots with free periods must presumably wait 
until free periodic transformations have been classified entirely. 

Now the knot IO155 is the closed 3-braid AVr3(72(7rV2 and IO157 is the 
closure of A^o-i - 1^)4 . So IO155 has period 2 and IO157 has periods 2 and 4. 
Furthermore, Conway's notation for knots 948 and IO75 is 21, 21, 21 — 
and 21, 21, 21+ respectively. In our notation this is tzùrl and /3A where 
/ represents the tangle 210 which has a symmetric form (see diagram). 
So 94s and IO75 both have period 3. 

£-i 
210 

Conway points out that any rational tangle, /, is equal to th. Pre
sumably, more is true, namely that any rational tangle has a symmetric 
form. This would allow us to write down in Conway's notation any 
number of periodic knots. For instance a, a, . . . , a + and a, a, . . . , a — 
(p a's) have free period p where a is any rational tangle, and p is odd. 

4. Free periods of knots with ten crossings or less. We now set 
about finding the various possible free periods of the tabled knots to 10 
crossings. First of all we obtain a bound for the possible periods of a 
knot. For a polynomial / , define 

max mod ( / ) = max (|r*|) 

as ri runs over all roots of/. I must thank J. A. Hillman for pointing out 
the following useful lemma. 

LEMMA 4.1. For each n there exists a number A (n) such that if f is an 
integral monic polynomial of degree n, then either all roots of f are roots of 
unity, or max mod ( / ) ^ A (n). 
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The proof of this is a minor adapta t ion of the proof of Lemma 11.5 of 
[19]. Now let A'(n) = min / € S (max m o d ( / )) where 5 is the set of all 
knot polynomials of degree n which have constant term ± 1 , and whose 
roots are not all roots of unity. The constant term of a knot of period p 
must be a pth power. This provides a bound for the possible periods if this 
constant term is not ± 1 . Otherwise, we can obtain a bound as follows. 

COROLLARY TO LEMMA 4.1. Let AK be a knot polynomial of degree n and 

with constant term ± 1 , and suppose AK has a root which is not a root of 
unity. If a is the largest integer such that A' (ri)a ^ max mod (A^), then K 
has no free period greater than a. 

Proof. If K has free period b > a, then the co r re spond ing / in (1.3) 
has roots which are bth roots of those of A^. Hence 

max mod ( / ) = max mod (A^)176 < A'{n). 

Thus , all roots of/ are roots of unity, and so are the roots of A^. 

Thus , to find a bound for the periods of the knots in the tables to 10 
crossings, one must find the values of A'(n) for n — 4, 6 and 8. For 
given A and n, the proof of Lemma 4.1 places bounds on the coefficients 
of monic polynomials, / , of degree n satisfying max m o d ( / ) < A. T h u s 
a computer search for A' (ri) is possible. I t was necessary to take advan
tage of the properties of knot polynomials in order to refine these bounds 
for the computat ion to be feasible. The following values were found: 

A'(4) = 1 • 618033989, A1 (6) = 1 • 321663152, 
4 ' ( 8 ) = 1 • 169283030. 

Now, using the corollary to Lemma 4.1 it was found tha t no knot of ten 
crossings or less has period greater than 5, unless all of the roots of its 
Alexander polynomial are roots of unity. Given this, it is a simple task to 
find those polynomials, àK, which satisfy the polynomial condition. The 
formulae of Kinoshita ([12], pp. 49, 50) were useful here. T h e following 
knots have possible free periods: For p = 2: IO123, IO155, IO157; p = 3: 
94s, IO75; p = 4: IO157. Apar t from these, the following knots satisfied 
the polynomial condition, bu t were eliminated on the grounds of 
Theorem 2.2: p = 2: 89, IO137; p = 3: 927, IO143. This list does not include 
those knots the roots of whose polynomials are roots of unity. These we 
t reat next. 

If the roots of a polynomial are roots of unity, then it is a product of 
cyclotomic polynomials. Denote the dth cyclotomic polynomial by <£>d 

and its degree by <t>d. The reader is invited to verify the following proper
ties. 

(4.2) 3>d(l) = d=l unless d is a prime power, q01, in which case, 
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(4.3) $d( —1) = ± 1 unless d = 2qa where g is a prime, in which case, 

(4.4) Up
i==1 $ d ( r 0 = ($n(/p))m where £ is a primitive £ th root of unity, 

n = d/(£, d) and m — <t>(d)/<t>(n). 

PROPOSITION 4.5. Consider a knot polynomial àK = <£ai
mi . . . $a r

mr . By 
(4.2), at can not be a prime power. If the knot has free period p, then for each 
i = 1, . . . , r there are integers bt and pt such that bipi = p, where 
(au Pi) — 1 and bi divides at. 

This is equivalent to the condition of Fox [6], and is the best one can 
do with the polynomial condition, for this condition is satisfied by the 
polynomial 

/(«) = ri*j(T* 
i=l 

HowTever, a better result can be expected using Theorem 2.2. If we 
compare A( — 1) with / ( —1) as just defined, then | / ( —1)| < |A(— 1)| 
unless for alH, |<i>a-( —1)| = 1, or bt = 1. In view of (4.3) we are led to 
the additional condition: 

PROPOSITION 4.6. If, further to the conditions of Proposition 4.5, 
Hi(M2) is cyclic, then bt = 1 for all i such that at = 2.qa. That is, 
(p, at) = 1. 

The above considerations do not suffice to prove this proposition, since 
the / mentioned above may not be the only / satisfying the condition 
(1.3). What is true, however, is that any such / must be a product of 
cyclotomic polynomials. So, suppose that a* is of the form 2.qa where q is 
a prime other than 2. There must exist d such that (4.4) is satisfied with 
n = cii = 2qa and m ^ mt. NowT, n divides d, so it follows that <i>d(-—1) fg 
3>n( —1) = q. Thus, | / ( —1)| < |A( —1)| unless m = 1. However, in that 
case, 4>(d) = 4>{n) = qa~1(q — 1), and so d = 2.qa = n. Finally, (p, at) = 
(p,n) = (p,d) = 1. 

We now give a complete list of possible free periods of the knots to 
10 crossings. The following knots definitely have the given periods. Those 
with an infinite number of periods are torus knots. 

3 t (P, 6) = ] L 948 p = 3 
5i (P, 10) = 1 L 1075 p = 3 
7 i (P, 14) = 1 L 10ii4 (P, 15) = 1 
8 l9 (p, 12) = ] L 101SB P = 2 
9 i (p, 18) = ] L 10167 p = 2, p = 4 
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The following knots may have the given periods on the evidence of our 
theorems. 

810 (p,6) = 1 10123£ = 2 
820 (p, 6) = 1 IO182 (P, 10) = 1 

1062 (p, 30) = 1 IO140 (P, 6) = 1 
IO99 p = a.r where IO143 (p, 6) = 1 

(r, 6) = 1 and a = 1, 2 or 4 

Observe that Kinoshita [12] made a slight error in stating his Theorems 
4 and 6. On the evidence of the polynomial condition the following knots 
with up to 9 crossings may be the fixed point set of a periodic trans
formation of period three: 5i, 7i, 810, 927, 948- He mixed up the knots 948 
and 947 (no doubt because their Alexander polynomials are interchanged 
in the Reidemeister table) and omitted the knot 927. 

Although the Smith conjecture has apparently been proved by 
Thurston, Meeks, Yau and others, it is perhaps of some slight interest 
to remark on purely algebraic grounds that the knots listed above are 
the only ones of ten crossings or less which may be the fixed point set of 
a periodic transformation of S3. 
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