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EXTREMAL POSITIVE SOLUTIONS OF
SEMILINEAR SCHRODINGER EQUATIONS

BY

C. A. SWANSON*

ABSTRACT. Necessary and sufficient conditions are proved for
the existence of maximal and minimal positive solutions of the
semilinear differential equation Au = —f(x, u) in exterior domains of
Euclidean n-space. The hypotheses are that f(x, u) is nonnegative
and Holder continuous in both variables, and bounded above and
below by ug(|x|, u), i=1,2, respectively, where each g(r,u) is
monotone in u for each r>0.

1. Introduction. The semilinear Schrédinger equation
(1) Lu=Au+f(x,u)=0, xeQ,

will be considered in exterior domains of R", n=2, of the type

(2) Q,={xeR":|x|=a}, a>0,

under the following hypotheses:

H1. For some §>0, f(x, u)=0 whenever x € Qg u=0;

H2. f belongs to the Holder space C*(M xJ) for some a in 0<a <1, fixed in
the sequel, for every bounded domain M cQ;, and for every bounded
positive interval J;

H3. f(x, u)<ug(|x|, u) for all x € Qy, u=0, where g e C*(IxJ) for all bounded
positive intervals I and J, and g(r, u) is monotone in u for each r>0
(either nondecreasing or nonincreasing).

H4. f(x, u)=ugy(x|, u) for all xeQ,, u=0, where go(r, u) is continuous and
nonnegative for 0 <r <o, 0 <u <o, and monotone in u for each r.

A solution of Lu=0 (Lu=0, Lu=0, respectively) is understood throughout
to be a function u € C2**(M) for every bounded subdomain M < Q,, with « as
in H2, such that (Lu)(x)=0 ((Lu)(x)=0, (Lu)(x)=0, respectively) for every
x€Q,.

In this note our purpose is to prove necessary and sufficient conditions for
the existence of maximal solutions u*(x) and minimal solutions us(x) of (1),

Received by the editors September 4, 1981 and, in revised form, January 8, 1982.

* Support from NSERC (Canada) under Grant A3105 is acknowledged with gratitude.
1980 Mathematics Subject Classifications: Primary: 35B0S Secondary: 35J60.

© 1983 Canadian Mathematical Society.

171

https://doi.org/10.4153/CMB-1983-028-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1983-028-3

172 C. A. SWANSON [June
defined below. Let ¢, and ¢, be the functions in (0, «) defined by

(3) by(r)=1; ¢n(r)=72_", n=3
Yy(r)=logr; (=1, n=3.

A minimal solution satisfies (A — €)@, (|x]) < ux(x) = A, (|x|), uniformly in some
exterior domain (), for some constants A and & 0<e<A. If a minimal
solution of (1) exists, the proof given in §3 shows that such a solution u4(x; €)
exists in some (Q,, for arbitrary & in (0, A). The definition of a maximal
solution is the same with s, replacing ¢,. The solution u$(x) are maximal in
the sense that no positive solution u(x) of (1) has a spherical mean

@ Ut = j u(x) do

o(S,)

growing more rapidly than a constant multiple of ¢,(r) as r— . Here o
denotes the measure on the unit sphere S; in R". In fact, U(r) satisfies the
ordinary differential inequality [6, p. 70] below because of H4:

d n_ld_[] - rn41

so in particular, if n =2, rU’(r) is nonincreasing. Since U(r) >0 for r = a, say, it
follows easily that U(r)=< A log r for some constant A, r=a. Similarly if n=3,
U(r)< A for some constant A.

A positive solution u(x) of (1) in Q, satisfies Au=<0 by H1, and conse-
quently the a priori lower bound [7, p.917]

n-2
(6) u(x)Z[l—z—l] |i‘nzf u(x), |x|=a
shows that u(x)= A¢,(|x|) for some constant A, |x|= a.

2. Statement of theorems

THEOREM 1. Equation (1) has a maximal solution in some exterior domain
Q,<R", n=2, if H1,H2 and H3 hold and

7 J’ rlogrg(r, clogr) dr <, n=2

(8) J rg(r,c)dr<o, n=3

for some positive constant c.

THEOREM 2. Equation (1) has a minimal positive solution in some exterior
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domain Q,<R" n=2, if H1,H2, and H3 hold and
9) J' rlogrg(r, ¢) dr<oo, n=2
(10) J rg(r, cr®™) dr <o, n=3

for some positive constant c.

THEOREM 3. Under hypotheses H1,H2, and H4, a necessary condition for
equation (1) to have a maximal solution in some exterior domain in R" is

i

(11) J rlogrgy(r, clogr) dr <o, n=2

12) ,[ rgo(r, ¢) dr <o, n=3

for some positive constant c.

THEOREM 4. Under hypotheses H1, H2, and H4, a necessary condition for (1)
to have a minimal positive solution in some exterior domain in R" is

2

Il

13) j rlog rgy(r, ¢) dr<oo, n

(14) j rgo(r, cr*™) dr <oo, n=3

for some positive constant c.

It is clear from Theorems 1-4 that conditions (7)-(10) are both necessary
and sufficient for the existence of extremal positive solutions of (1) provided g
and g, satisfy the growth conditions below:

gnclogn _

HS. I
. TSP e, c log )
H6. tim sup £ < o
> gO(ra C)
gr,cr’™)

H7. lim sup n=3

= gO(r, Cr2~n) ’
for every positive constant c.

CoroLLarY 1. If H1-H4 and H5 [respectively, H6] hold, then (7)
[respectively, (8)] is a necessary and sufficient condition for (1) to have a maximal
positive solution in some exterior domain R? [respectively, R", n=3].
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CoroLLARY 2. If H1-H4 and H6 [respectively, H7] are satisfied, then (9)
[respectively, (10)] is necessary and sufficient for (1) to have a minimal positive
solution in some exterior domain in R* [respectively R", n=3].

For example, if (1) is the Emden-Fowler equation
1) Au+p(x)|ul’ sgnu=0, xeQ,

where vy is a positive constant, then appropriate functions g and g, in H3 and
H4 are given by

g(r,u)= [Il'ilii)r( p(x)]u“"1 = P(r)uv—l

go(r, u)= [lmliﬁ p(JC)]u”1 = Po(r)u*"!
and each of HS, H6, and H7 reduces to
lim sup P(r)/Py(r) <.

In this case, the necessary and sufficient conditions (7)-(10) reduce to, respec-

tively,
) J. r(log r)YP(r) dr <oo, n=2,vy>0
(8" J rP(r) dr <o, n=3,y>0
(9 I rlog r P(r) dr <o, n=2,vy>0
(10 J‘ r°P(r) dr <o, n=3,vy>0
where

o=n—-1-vy(n-2).

One-dimensional versions of Theorems 1-4 are contained in works by
Belohorec [1, Theorem 3], Coffman and Wong [2, Theorems 1 and 2],
Izyumova [3, Theorem 1.1], Nehari [5, Theorems I and II] and others,
concerning the ordinary differential equation

2

(15) %g-kyg(t, y)=0, 0<t<oo,

THeEOREM 5 [1, 2,3, 5]. Let f(t, y) = yg(t, y) be continuous and nonnegative for
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0<t<o, 0<y<w, and suppose that g(t,y) is either nondecreasing or nonin-
creasing in y for each t. Then equation (15) has a bounded positive solution in
some interval (ty, ), t,>0, if and only if

(16) Jmtg(t, c)dt<w

for some positive constant ¢; and moreover, if (16) holds, this solution is
asymptotic to a positive constant as t— . Furthermore, (15) has a solution y
such that y(t) ~ At as t — », for some A >0, if and only if

(17) Jwtg(t, ct) di <o

for some positive constant c.

The following theorem [8, p. 125] will be needed in the proofs of Theorems
1 and 2.

THeEOREM 6. If H1 and H2 hold, and if there exist positive solutions v, w of
Lv=0, Lw=0, respectively, in Q,, a=§, such that w(x)=<v(x) for all |x|=a,
then equation (1) has at least one solution u(x) satisfying w(x) < u(x)<uv(x) for
all |x|=a.

Subsolutions w(x) for Theorem 6 are readily available in the form
(18) {w(x)=Alogr+B, n=2

w(x)= Ar* " +B, - n=3

where A, B are constants and r=|x|, since

d dw
— pl—n n—1 —
Lw=Aw=r ——r[r r]—O.

Supersolutions v(x) of (1) will be constructed in §3 in the form ov(x)={(r),

r=|x|= a, where ¢ is a positive solution, in the space C***[a, b] for all b> a,
of the ordinary differential equation

19) L (1) gt 200 0.

3. Proofs

Proof of Theorem 1. If n=2, the change of variables r= e’ y(s)= {(r)
transforms (19) into

(20) y"(s)+e*y(s)g(e’, y(s)) = 0.

By Theorem 5, equation (20) has a solution y(s)~ As as s — o, for some
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positive constant A, if and only if
J se**g(e*, cs) ds <o

for some positive constant ¢, which is equivalent to (7). Furthermore, ye
C?**[s,, s] for some s, and for all s> s, by standard regularity theory, see e.g.
[4], since ge C* by H3. Then, if (7) holds, equation (19) has a solution
e C***[a, b] for all b>a=exps, such that {(r)=y(s)~Alogr as r— .
This implies that there exist positive numbers Ay, €, and a; such that 0 <g <
A;<A and (A,—¢)logr={(r)=<A,logr for all r=a,, and clearly a=a,
without loss of generality. In view of (1) and H3, the function v defined by
v(x)={(r), r=|x|, in Q, < R? satisfies the inequality

d{ d d( d
o= <rd—§>+ rf(x, v)=— (rd_f>+ rf(r)g(r, £(r))

and hence Lv=0 for all xe, by (19). As noted in (18), w(x)=(A;—¢)logr
satisfies Lw=0 for an arbitrary positive constant e. Since w(x)=<wv(x) for
|x|= a, Theorem 6 establishes the existence of a solution u(x) of (1) satisfying

wx)=(A;—¢elogr=u(x)=v(x)=¢(r)=A;,logr

for r=|x|=a. This proves that equation (1) has a maximal positive solution
u(x) in Q,.
If n=3, the change of variables

un—y

r=p(s)=Ws)",  yls)=s{(B(s), v=

transforms (19) into

@1) v+ s BTy B, 1) =0.

By Theorem 5, (21) has a solution y(s)~ As as s— o, for some positive
constant A, if and only if

J s[B(s)PP"?g(B(s), ¢) ds <

for some positive constant ¢, which is equivalent to (8). The remainder of the
proof is virtually the same as the proof for n =2 and is deleted.

Proof of Theorem 2. We shall outline the proof for n=3 only since the
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proof for n =2 is similar (using (20) instead of (21)). By Theorem 5, (21) has a
solution y(s) with A — e =<y(s)=< A in some interval [s,, ), where A and ¢ are
constants, 0 <g <A, if and only if

s tssrmg ps), ) as <

for some ¢ >0, which is equivalent to condition (10). Then, if (10) holds, (19)
has a solution € C***[a, b] for all b>a =exp s, such that

€

(A—¢g)pr*m =1—4—:——S {(r)=2%25?= Apr*

for r=a. Exactly as in Theorem 1, the function v defined in Q, by v(x) = {(r),
r=|x| satisfies Lv=<0 in €,, and by (18), w(x)=(A —¢&)vr* " satisfies Lw =0
for arbitrary ¢ >0. Theorem 6 then shows that (1) has a solution u(x) satisfying

A-evrr"=u@)=vx)=¢F)=Avr*™
for all |x|= a, from which u(x) is the required minimal solution of (1).

Proof of Theorem 3. If (1) has a positive solution u(x)~ A log |x| as |x| —
uniformly in Q, < R? where A is a positive constant, there exist positive
constants k, and k, such that

(22) kilogr=u(x)=<k,logr for r=|x|=a.

Then (4), (5), (22) and H4 yield the inequality

(23) _4 [ri— =k,rl (r,clogr) =
2 |7 g |=Firlog rgo(r ¢ logr), r=a,

where ¢ = k, in the case that gq(r, u) is nondecreasing in u, and ¢ = k, if go(r, u)
is nonincreasing in u. Integration of (23) over (a, r) gives

24) —rU'(r)+aU'(a)= klj tlogt gy(t, clogt) dt.

a

Since rU’(r) is nonincreasing by (23) and U(r) is positive, it is easily seen that
U'(r)>0 for all r>a. Then (24) implies the conclusion (11) of Theorem 3.

If (1) has a solution u(x)~ A as |x| — % uniformly in Q, < R", n=3, where
A is a positive constant, then (23) is replaced by

dl _,d _
3 [r" l‘d—rU“]kafn lgo(r, c)

for some positive constant ¢. The substitution

r=B(s)=(vs)", h(s) =sU(B(s)), v=
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transforms this into

(25) —h"(s) = ks [B(s)P" ?go(B(s), ©),
and integration over (b, s) gives

—h'(s)+h'(b) = klr sB(s)F"%go(B(s), ¢) ds

b

= kle’ rgo(r, ¢) dr

a

(26)

where a=8(b) and r=B(s)=a. Since h'(s) is nonincreasing by (25) and
h(s)>0 for s> b, it follows routinely that h'(s)>0 for all s > b. The conclusion
(12) of Theorem 3 is then a consequence of (26).

Proof of Theorem 4. If (1) has a minimal positive solution in Q, = R?, (23)
is replaced by

dfl d
21 D=k, r=a

for some ¢ >0, and (13) follows by the same proof as in Theorem 3. Similarly
for n=3 (25) is replaced by

—h"(s)= ks 3[B(s)I"go(B(s), cB(s)*™),

which leads to (14) after multiplication by s.
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