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BEURLING'S ORDINARY VALUE

SHINJI YAMASHITA

let n(w, f) be the number of w-points of f meromorphic in
D= {|z|] <1} . Beurling defined the quantity n(w, f) and
called w an ordinary value of f if Z(w, f) <o . We shall
consider the intermediate quantity n(w, f) in the sense that
n(w, f) < n(w, f) <n(w, f) , and construct two bounded holo-

morphic functions fi and fé of finite Dirichlet integrals in
D for which

o =nfo, £} <nfo, 5} <nlo, £} <=
and

o =nfo, f,) <nf0, f,) <nfo, £,) ==

1. Introduction

Let W be the Riemann sphere of radius % touching the complex plane
€C at 0 . The sphere W is endowed with the chordal distance X(+, °)
and with the element of the spherical area dw(w) at w € W , being

expressed as dw(w) = (1+|w|2)_2dxdy , if w # o is identified with its
projection x + iy € € . Then the area of the Riemannian image of

D= {|z] <1} by f meromorphic in D over the spherical cap
Cla, r) = {w € W; X(w, a) <r} (a €W, 0 < r<1)

is
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Ala, r, f) = ” n(w, fldo(w) ,

Cla,r)

where n(w, f) is the number of the zeros of f -w in D , the order

being counted. We then set, for a € W ,

nla, f) = lim sup (ﬂrz)_lA(a, r, ),
0

lim inf (mﬂz)'lA(a, r, f) ;
0

nla, f)

here

e = ” dw(w)
Cla,r)

It follows from the lower semicontinuity of n(w, f) that
n(a, f) < nla, f) <nla, f)

at each a €W . If nla, f) <o [Q(a, f) <>, respectively), then a
is called an ordinary value (a lower ordinary value, respectively) of il
the definition of ordinary value is due to Beurling [7, p. 11]. Further-

more, if
(1.1) ”D (r(2) |/ (141 £(2)|2))Pdndy = a0, 1, ) <= ,

where 2 = x + iy , then
n(a, f) = nla, f) =nla, f) <=

for dw-almost every a € W ; see [2, Theorem 6.3 on p. 118, and the
inequality at line 11 from below on p. 149].

Now, if n(a, f) = ©» , then, apparently,
n(a, f) =n(a, f) ==
without the assumption (1.1). Does the equaltiy
nla, f) = n(a, f) (possibly equal to « )
hold if n(a, f) <> for f satisfying (1.1)?

We shall construct two examples which answer this question in the

negative.
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REMARK. An obvious example erases the doubt that n(a, f) <« for
each a € W if (1.1) is satisfied.

THEOREM 1. There exists a bounded univalent holomorphic function f
in D, satisfying ((1.1) and)

(1.2) 0 =n(0, f) <n(0, f) <n(0, f) <= .

We note that if f is bounded in D , then (1.1) is equivalent to
” (=) |Pdedy < = (2 = whiy) .
D

The proof of Theorem 1 is rather easy in contrast with that of

THEOREM 2. There exists a bounded holomorphic function f in D,
satisfying (1.1) and
(1.3) 0 = n(0, f) < n(0, f) <n(0, f) = .

We note that 0 1is a lower ordinary value yet not an ordinary value

of f in Theorem 2.

2. Proof of Theorem 1

First of all, argw of w € W ~ {0, »} means that of the projection

of w into € . Letting a = 2_k , k=1,2, ... , we consider the

simply connected domain S over W defined by
S = {w € cf{o, ag]; -T/2 < arg w < 0}

o
v U {wecfo, a,)-Clo
n=1

R a2n+1)" 0 <argw < w/2} .
Let f be a one-to-one conformal mapping from D onto S , which may be

considered as a bounded holomorphic function satisfying (1.1).

—t -
= < < <
Let r» =2 , 2n =t < 2n+l , so that Aope1 ST =4y,

(n =1, 2, ...) . Then

o 2 2 2
A(O, », F) = mr° + In + %ﬂ[r -a2n+1] s

where
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oo
2 2 T 1
I = 3 %n[a -a } ==
n o 2k~ 2k+1 5 16"
Theréfore
2y-1 oyt
(2.1) (mr°) " 40, », ) = % - T ol
16
and
2y-1
3/10 < (mr°)774(0, r, f) < 9/20
Let r=2_t, on+l <t < 2n+2 , so that a <r<=<a

2n+2 on+l
(n=1, 2, ...) . Then

A(0, r, f) = %nre + In ,

so that

—
=

2y-1 1 .
(2-2) (Tl’r) A(O, r, f) il ]4_ '5— 16n+l >

together with

3/10 = {mr?) 40, », £) < 9/20 .

It now follows from (2.1) and (2.2) that

3/10 = n(0, f) < n(0, f) = 9/20 ,

whence follows (1.2).

3. Proof of Theorem 2

We shall make use of the following

LEMMA. Given 4 >0, B >0, and s > 0 , there exist a natural

number N and a positive number A < s such that

ww[a%-(a-0)%) =B .

The proof is elementary and is omitted.

o

To prove Theorem 2 we choose a pair {pm};=l and {qm}m=1 of

sequences of natural numbers inductively as follows. First, let p, = 2.
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-P
. -% m
> > <
Then, given p,_ (m= 1) we select 49, > P, such that q_ 2 . We
~-p L
ml -3
> <
choose then p 1 qm such that 2 9, -
P ~%
We set a =2 and bm=qm (m=1, 2, ...) , so that
= > > > > > > > ... 4
1/k 4 bl 25 ot ) bm am+l ©

It then follows from the lemma that there exist a natural number \)m and a

‘s < g -
positive number € < a bm such that
2 2l _ -2 _
nvam-[am-em]] =p, - (m=1,2,...) .

We notice that \);Ilp;zz is the area of the spherical ring
Rla ) = clo, a) - cfo, am-em) (m=1,2, ...) . It also follows from the
lemma that there exist a natural number um and a positive number

< -
6m bm am+l such that

-q
ﬂum[b;-[bm-ém]e:[ =2 ™ (m= 1,2, ...) .

Im

In the present case, u;’lz

R} =co, b)) - Clo, b6 ) (m=1,2,...)

is the area of the spherical ring

Let Sl be the Riemann surface over W , in the form of a ribbon,
which winds its way just Vo times over R(am) , and just W times over
R[b”r] (m=1,2, ...) , and which tends to the origin; see Figure 1 where
the case v_=yp =1 (m=1,2, ...) 1is expressed. More precisely, Sl

covers

¢, a)) - El [Ra) v &b )]

once by the parts which we shall call bridges, while Sl covers R(am}
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FIGURE 1
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(R(bm) respectively) Just Vi (um respectively) times except for a cross
cut of Rf{a)) (R(p,) respectively) which S, covers just v -1

(um -1 respectively] times (m=1, 2, ...)
let 32 be a one-sheeted ribbon over (0, 1/3) such that 32 ends

at 0 in the form

S, n ¢(o, ro) = {w € ¢(o, ro); larg w| < w/2}

for a certain r_ > 0 ; see Figure 2. We then paste Sl and S, along

0 2
the circular arc AB to obtain the resulting simply connected Riemann
surface S over W . Let f be a one-to-one conformal mapping from D

onto S , which we may consider as a bounded holomorphic function in D .

We first consider the sequence am + 0 . Then
-2
A(O, a,, f] > the area of Sl over R(am] =P,
so that
-1 2p
2 -1 m -2
[wam] A(o, a., flza"2 g N

whence n{(0, f) = » .
We next observe that, for each sequence Pn +0 (rn=21) , the
following holds for r, < ro H

A(O, ros f] = the area of. the part of Sz_over C[O, rn)

%’"ri ’
so that n(0, f) = % .

To prove n(0, f) < @ we consider the sequence bm + 0. Then

(3.1) A(O, bm’ f] = the area of the bridges over C(O, bm] + the area of

b

the part of 32 over C(O, bm) + k_z P+ T 2 k
=m+l k=m

so that
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FIGURE 2
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the third term + the fourth term of (3.1)

<] [=+] oo l—q
= ¥ k2 4 Y 2_k5 Y [—l———%(-]+2 m

=, £ _ k-1
k_pm+1 k-qm k—pm+1
1-q
- 1 T+ s M
Prny1~

Since the first term of (3.1) is less than ﬂbrzn , it follows that

-1 1-q
2 -1 -1 m
3
(nb] A(O,b,f)51+2+'n + T g2

Y

for bm < ro s because of q_ = pm+l—l . Letting m + ® one observes that
-1
n(o, f) s 3/2+m" .
Since
Zp;n2+22m$ Y k2,4 % 2_k$—1_1+2 1,
m=1 m=1 k=pl k=ql Py

it is easy to observe that f satisfies (1.1).
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