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DIXMIER-DOUADY CLASSES OF DYNAMICAL SYSTEMS 
AND CROSSED PRODUCTS 

IAIN RAEBURN AND DANA P. WILLIAMS 

ABSTRACT. Continuous-trace C*-algebras A with spectrum T can be characterized 
as those algebras which are locally Monta equivalent to CQ(T). The Dixmier-Douady 
class 5(A) is an element of the Cech cohomology group H3(T, Z) and is the obstruc­
tion to building a global equivalence from the local equivalences. Here we shall be 
concerned with systems (A, G, a) which are locally Monta equivalent to their spectral 
system (CQ(T),G,T), in which G acts on the spectrum T of A via the action induced 
by a. Such systems include locally unitary actions as well as N-principal systems. Our 
new Dixmier-Douady class 5(A, G, a) will be the obstruction to piecing the local equiv­
alences together to form a Monta equivalence of (A, G, a) with its spectral system. Our 
first main theorem is that two systems (A, G, a) and (B, G, fi) are Monta equivalent if 
and only if <5(A, G, a) = 6(B, G,/3). In our second main theorem, we give a detailed 
formula for 8(A x« G) when (A, G, a) is TV-principal. 

1. Introduction. The Dixmier-Douady class of a continuous-trace C*-algebra A 
with spectrum T is a class 6(A) in the Cech cohomology group H3(T, Z), which for sepa­
rable algebras determines A up to spectrum-preserving stable isomorphism. Since every 
class arises, there is for each 6 G H3(T, Z) an essentially unique stable continuous-trace 
C*-algebra, and this realization of cohomology classes has found a variety of uses (e.g., 
[21, 22]). The class 6(A) also determines A up to spectrum-preserving Morita equiva­
lence; while this interpretation does not isolate a unique representative for each class, it 
does avoid the use of non-canonical stable isomorphisms, and hence gives a more natural 
theory. 

It is tempting to extend the Dixmier-Douady theory to cover dynamical systems 
(A, G, a) involving continuous-trace algebras, and indeed this has already been done in 
[9] for G — TjTL, and in [8] for G discrete. Here we want to discuss a cocycle-based 
theory which is particularly well-suited to the N-principal systems (Definition 4.4) stud­
ied in [13, §21 and [17], where the main examples involve locally compact groups rather 
than discrete ones; our invariant classifies a system up to the Morita equivalence of [3, 
2]. We shall then use it to describe the crossed product A x\a G of an Af-principal system 
(A, G, a), thus satisfactorily completing our analysis of these systems in [ 17]. 

The continuous-trace C*-algebras with spectrum T can be characterized as the al­
gebras which are locally Morita equivalent to the commutative algebra Co(T), and the 
Dixmier-Douady class is the obstruction to building a global equivalence with CQ(T) 
from the local equivalences. We shall be concerned with systems (A, G, a) which are 
locally Morita equivalent to their spectral system (CQ(T), G,T^, in which G acts on the 
spectrum T of A via the action induced by a: this means there are local equivalences 
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DIXMIER-DOUADY CLASSES 1033 

between A and CQ(T) carrying actions of G compatible with the actions on A and Co(T). 
These systems include most of the ones we have been studying over the past ten years. 
For example, if G acts trivially on 7, (A, G, a) is locally Morita equivalent to (Co(T)9 r) 
exactly when a is locally unitary as in [10, 15]; if T is a locally trivial principal bundle 
for some quotient G/N of G, then (A, G, a) is locally Morita equivalent to (CO(T),T) 

if and only if it is /V-principal as in [16, 17]. If (A, G, a) is locally Morita equivalent to 
(Co(7"),r), our new Dixmier-Douady class <5(A, G, a) will be the obstruction to piecing 
the local equivalences together to form a Morita equivalence of (A, G, a) with its spectral 
system (Co(r),r). 

The obstruction <5(A, G, a) necessarily involves a cocycle v representing the usual 
Dixmier-Douady class S (A), and data À codifying the action of G: we realize S (A) via a 
2-cocycle v with values in the sheaf S of circle-valued functions (using the isomorphism 
H2(T9 S) = H3(T, Z)), and think of the combination (À, v) as an element of an equivariant 
cohomology group HQ(T9 5). Our first main theorem identifies this equivariant cohomol-
ogy group with the Morita equivalence classes of systems locally Morita equivalent to 
(Co(r),r). We intend to discuss the topological properties of this group elsewhere, but 
include a few brief comments in our final section. For example, when G acts trivially on 
T, HQ(T9 S) is easy to compute directly, and our classification theorem quickly yields the 
results of [10] and [9]. 

If (A, G, a) is an Af-principal system with spectrum p:T —• T/G, the spectrum of 
A x a G is a principal N-bundle over T/G, which fits into a commutative diagram 

(AxaA0A 

ind y \ , Res 

(A x„ G)A T 

q \ ) / p 

T/G 

of principal bundles [13, Theorem 2.2]. In [17], we characterized the ^-bundles which 
could arise as q, and our constructions imposed restrictions on the possible values of 
S (A x a G); we were not, however, able to determine S (A x a G) itself. In our second main 
theorem, we shall give a detailed formula for a cocycle representing <5(A x a G). In fact, 
we shall do better: the dual system (A x a G, G, à) is N1-principal, and we have written 
down a cocycle representing 6(A xaG,G, à). 

We begin with a short section on preliminaries, in which we review the basic prop­
erties of imprimitivity bimodules and Morita equivalence. We then discuss the Morita 
equivalence approach to the Dixmier-Douady theory. Unfortunately, although this was 
worked out over ten years ago by several different mathematicians (e.g., [7, 1]), the de­
tails have never appeared. In Section 3, we have not repeated arguments which are later 
provided in the equivariant case, but have otherwise tried to be complete. 

Our main program starts in Section 4, where we investigate the local Morita equiva­
lence of systems. Things are not quite as straightforward as in Section 3: in particular, we 
need to know that two Morita equivalences of the same systems are locally isomorphic, 
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1034 IAIN RAEBURN AND DANA P. WILLIAMS 

and we have to do some work to show that this is always true for Af-principal systems. 
We tackle this by isolating a topological property of the transformation group (7, G) 
which implies the required local uniqueness, which will appear as a hypothesis in our 
classification theorem, and which is automatically satisfied if T —» T/G is a principal 
GI N-bundle. After these technicalities have been dealt with, and we have introduced 
our equivariant cohomology groups in Section 5, we discuss our Dixmier-Douady in­
variant in Section 6. Our procedure is similar to that of [4, Chapter 10], except that we 
use techniques for constructing imprimitivity bimodules developed in [ 11 ] in place of the 
C*-bundle constructions of [4], and use [14] to produce systems with arbitrary Dixmier-
Douady class. The main classification theorem is Theorem 6.3. 

Section 7 contains our results on TV-principal systems, and Theorem 7.3 our calcula­
tion of 5(A x a G). We verify that our formula is consistent with the restrictions imposed 
in [17], and that it gives the answer obtained in [12] for the special case in which A is 
Y/N for some principal G-bundle Y. 

ACKNOWLEDGMENT. This research was supported by the Australian Research 
Council. Part of the work was done while we were both visiting Denmark in 1990, and 
we thank all our colleagues there for their warm hospitality. 

2. Preliminaries. We begin by reviewing the basic properties of the imprimitivity 
bimodules of Rieffel [19, 20]. If A and B are C*-algebras, an A — B-imprimitivity bi-
module is an A — 5-bimodule X equipped with A- and ^-valued inner products, denoted 
A( •»*)»(•» ')B respectively, and if there is such an X we say A and B are Morita equivalent. 
Modulo a slight change of notation for the A-valued inner product, we use the list of 
axioms given in [ 11, pp. 184-185, Equations ( 1 )-(6)]. As in [ 11 ], we shall further assume 
that the seminorm ||JC|| = | |(X,X)B||1//2 = || A{X,X)\\XI2 is actually a norm, and that X is 
complete in this norm. 

There are two key examples which help to fix the ideas. First, a Hilbert space H is a 
"KJJi) — C-imprimitivity bimodule, with the natural left action of %^ = ^C(#), the usual 
C-valued inner product, and <̂ (/z, k) the rank-one operator h®~k. Second, a C*-algebra A 
is itself an A — A-imprimitivity bimodule, with A acting by left and right multiplication, 
and A{a,b) = ab*, (a,b)A = a*b. 

The actions of A, B on an A — B imprimitivity bimodule X extend to actions of the 
multiplier algebras M(A),M(B), characterized by 

m(a • x) = (ma) • x, and (x • b)n = x • (bn). 

The action of M(A) induces an isomorphism of M(A) onto the C*-algebra L(XB) of 
bounded ZMinear operators on 3E [6, Lemma 16]; if T G L(XB), the corresponding mul­
tiplier mj G M(A) is characterized by 

mT(A(x,y)) • z = T(x) • (y,z)# forx,}>,z G X. 

Of course, it is standard practice to confuse mj and T. We shall need to know later that the 
*-strong topology on L(XB) and the strict topology on M(A) agree on bounded subsets. 
The boundedness here is crucial: in general, strict convergence implies *-strong conver­
gence, but not vice-versa. To see this, suppose ma —> m strictly and J G X\ without loss 
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of generality, m = 0. As A(X,X) is positive in A, there exists a G A such that A(X,X) = aa*, 
and then 

H^aWll2 = \\ma(A(x,x))ml\\ = \\{maa){maay\\ = \\maa\\2 —> 0. 

Because ma —> m strictly exactly when m*a —> m* strictly, this proves that ma —> m *-
strongly. On the other hand, it is easy to see that if ma —> m *-strongly, then maa —> ma 
for all a which are linear combinations of elements of the form A(X, y). Such a are dense 
in A, but to make the necessary approximation argument work, we need to know that 
11 m^ 11 is bounded. 

We are interested in classifying algebras with given spectrum T, and actions on these 
algebras which induce a given action of G on T. Many of our arguments involve localiz­
ing, and for this to work, our imprimitivity bimodules must respect these identifications 
of spectra. The mechanism for this was worked out in [11], and goes roughly as follows. 

It was shown by Rieffel in [19] that an A — ^-imprimitivity bimodule X induces a 
homeomorphism h$ of A onto B. If A and B have both been identified with a fixed locally 
compact Hausdorff space T, and h$ is the identity, we shall call X anA—rB-imprimitivity 
bimodule', this is equivalent to saying that the left and right actions of Q,(7) on X obtained 
by embedding Cb(T) in M(A) andM(Z?) coincide [11, Proposition 1.11]. If there is such a 
bimodule 3E, we say A and B are Morita equivalent over T. We stress that this is stronger 
than ordinary Morita equivalence: for example, suppose h is an orientation-reversing 
homeomorphism of S3, such as a reflection of determinant — 1, and A is a continuous-trace 
algebra whose Dixmier-Douady class 6(A) generates H3(S3, Z) = Z. Then the pull-back 
/z*A satisfies 6(h*A) = /z*(<$(A)) = —6(A) [15, 1.4], and hence is not Morita equivalent 
to A over S3 (see Theorem 3.5 below). But the C*-algebras A and h*A are isomorphic: 
by definition, h*A is the balanced tensor product C(S3) ®C(S3) A, where the right action 
of C(S3) on itself is given byf-g = f(g o h), and h (g) i is an isomorphism of /z*A onto 
A = C(S3) ®C(s3) A (where C(S3) acts normally on itself). 

If X is an A — T #-imprimitivity bimodule, a closed subset F of T determines ideals 
Af, BF in A, B such that the spectra of the quotients AF = A/AF, BF = B/BF can be 
naturally identified with F. The subspace 

XF= {xe X : (x,x)B £BF} 

of the A —T ^-bimodule 3E is then an AF —T\F #/r-imprimitivity bimodule, and the quo­
tient dcF — X jXF is then naturally an AF —F 5F-imprimitivity bimodule [20, §3; 11, 
Proposition 1.7]. We use the obvious notation^ for the image of x in XF\ and similarly 
aF G AF, bF G BF\ thus, almost by definition, we have 

aF • XE = (a • x)F, ^Z,/) = (A{x,x))F, etc. 

IfteT, we write A(t), X(t), x(t) for A ^ , X^\ x^. We remark that it seems to be sub­
stantially more convenient to localize by passing to the quotients associated to compact 
neighborhoods in T rather than the ideals associated to open neighborhoods, even though 
for continuous-trace algebras the two approaches are technically equivalent. 

Next, we recall some constructions involving imprimitivity bimodules. If 36 and?) are, 
respectively, A —F B- and B —F C-imprimitivity bimodules, then there are well-defined 
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pairings on the algebraic tensor product X 0 f) satisfying 

((x®y,x,®y,))c = ((x,x)By,y,)c 

A((x®y,x'®y'))=A(x,xf^y',y)), 

and completing gives an A —j C-imprimitivity bimodule X OB f) [11, 1.3]. The notation 
X OB$) (rather than X Of)) is chosen to remind us that completing X Of) involves modding 
out lots of vectors of length 0, and in particular those of the form x-bOy — xOb-y, 
so that we can think of X OB f] as a balanced tensor product. We stress that X OB f]ls 

not a Banach space tensor product in the usual sense, although it does follow from the 
Cauchy-Schwartz inequality [19, 2.9] that 

(2.D ll*<s>>1l < MlIMI. 
and we shall use this frequently. 

If X is an A —j 5-imprimitivity bimodule, the dual X of X is the set {x : x G X], 
made into a B —T A-imprimitivity bimodule as follows: 

b - x = (x • b*)~ x - a = (a* • x)~ 

E(x,y) = (x,y)B (X,9)A = A(x,y), 

for x,y G 3f, a G A, and b G B. The idea is that X is an inverse for X: formally, the map 

x O y —-> A(X, y) is an A — A imprimitivity bimodule isomorphism of X OB X onto A, and 

similarly X OA X = B. 
Finally, we shall need to use some basic sheaf cohomology ; we adopt the conventions 

of [23, §5.33], and view cohomology classes in terms of Cech cocycles. Throughout, S 
and ^ denote the sheaves of germs of continuous T- and Kl-valued functions, respec­
tively. Since the sheaf %, is fine, the short exact sequence 

0 — > Z — > ^ — > S — > 1 

of sheaves induces isomorphisms HP(T,S) = HP+{(T,Z), which we shall use without 
comment. Thus, for example, we view the Dixmier-Douady class 6(A) of a continuous-
trace algebra A as lying in H2(T,S) or H3(T, Z), according to convenience. In general, if 
a Roman letter, such as G, denotes a locally compact group, we use the corresponding 
script letter Q for the sheaf of germs of continuous G-valued functions. 

3. Morita equivalence of continuous-trace C*-algebras. A C*-algebra A with 
Hausdorff spectrum T is a continuous-trace algebra if for each to G T, there is a neigh­
borhood TV of to and an element a of A such that a(t) is a rank-one projection for all t G N 
[4, §4.5.4]. Equivalently: 

PROPOSITION 3.1. A C* -algebra with Hausdorff spectrum T has continuous trace if 
and only if A is locally Morita equivalent to CQÇT), in the sense that each point t G T has 
a closed neighborhood F such that AF is Morita equivalent to Co(F) over F. 

LEMMA 3.2. Suppose X is an A—jCo(T) imprimitivity bimodule, and x G X satisfies 
(x,x)c0(T)(t) = 1 for all t in a closed set K. Then A(X,X)(Î) is a rank-one projection for 
all t G K. 

PROOF. Note first that if we localize to the set {t}, then the m a p / —+f(t) induces an 
isomorphism of Co(T)(t) onto C, and the quotient X (t) is a Hilbert space; the action of A(t) 
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on X(t) identifies A(Y) with the algebra %\X(t)\ and provides a concrete representation 
realizing the class t G A. But since x(t) is a unit vector in the Hilbert space X(t) for all 
t G K, A(t)(x(t),x(t)) = (^(x,x))(0 is a rank-one projection for t G K. m 

PROOF OF PROPOSITION 3.1. Since any A —T C0(7>imprimitivity bimodule is a 
fortiori a Co(7>module, it is easy to construct elements x such that (x,x)c0(T) = 1 
throughout any given compact set, and hence the lemma gives one direction. Conversely, 
suppose that A has continuous trace, and fix to G T. Choose a compact neighborhood F 
of to and/? G A such that/?(0 is a rank-one projection for all t G F. Then//7 is a projection 
in AF, and AFpF is an AF — /?FAF/?F-imprimitivity bimodule with what we claim are the 
obvious module actions and 

AaV, bFpF) = aFpF{bFf, (aFpF, ^ / ) p W = pF{aFYbFpF. 

Note that the map/ —> fpF is an isomorphism of C(F) intopFAFpF. On the other hand, 
if a G A and t G F, then p(t) is a rank-one projection in the algebra A(t) of compact 
operators, and (pap)(t) = p(t)a(t)p(t) must be a scalar multiple^(0/?(0 of p(t). We claim 
that fa is continuous, so that/ -^ fpF is an isomorphism of C(F) ontopFAFpF. Well, for 
t,s E Fwc have 

l/À(0-/«W| = |(/à(0-/fl(j))pW| = \\{pap-fa(s)p)(t)\\. 

Since A is Hausdorff, for fixed s the right-hand side is a continuous function of t which 
vanishes at s, and hence the left-hand side goes to 0 as t —» s—in other words, fa is 
continuous, as claimed, and AFpF is an AF — C(F)-imprimitivity bimodule. Because the 
actions of C(F) on the left and right of AFpF clearly coincide, it is actually an AF — FC(F)-

imprimitivity bimodule. • 
Proposition 3.1 both identifies the continuous-trace C*-algebras as those locally 

Morita equivalent to commutative algebras, and raises the key structural question for 
these algebras: when is a continuous-trace algebra A with spectrum T globally Morita 
equivalent to Co{T)l The Dixmier-Douady invariant 6(A) G H2(T,S) completely solves 
this problem: 8(A) = 0 exactly when A is Morita equivalent to Co(T). We shall now out­
line how this works, omitting detailed proofs of those parts which are special cases of 
results in Section 4. 

Although we shall use imprimitivity bimodules rather than the continuous fields of 
C*-algebras which are fundamental in Dixmier's treatment [4, Chapter 10], we should 
point out that the two approaches are equivalent. For if 9f is a continuous field of Hilbert 
spaces over T, the space T^(9i) of sections implements a Morita equivalence between 
C0(T) and the C*-algebra A = T0(A(!H)) defined by H [11, 1.1]; further, every A -T 

Co(I)-imprimitivity bimodule X gives rise to a continuous field Of with fibres Of(t) = 
X(t) and X = To(Of), and hence they all arise this way. While we feel the algebraic 
approach is more elegant, and potentially more powerful, than the original, we do find 
it helpful to think in terms of bundles; thus, for example, one can profitably think of the 
quotient map X —> XF as restriction of sections to the subset F of T. 

The key observations for the construction of the Dixmier-Douady class are that the 
bimodules implementing the local Morita equivalences are locally isomorphic, and that 
these local isomorphisms are unique up to multiplication by functions in C(T, I) . 
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LEMMA3.3 (cf. [4, 10.7.10]). Suppose X andf) areA—T Co(T)-imprimitivitybimod-
ules. Then each to G T has a a closed neighborhood F such that there is an isomorphism 
g: XF —> f)F ofAF —f Co(F)-imprimitivity bimodules. 

PROOF. We begin by choosing a compact neighborhood K of to and x G X such that 
(x,x)cQ(T)(t) = 1 for t G K. Then by Lemma 3.2, A(x,x)(t) is a rank-one projection for 
all t G K. We consider the action of A(x,x) on f). As in the proof of Lemma 3.2, for 
each t G K, the action of A on f)(t) identifies A(t) with ^C(j?)(0)> anc* g*ves a concrete 
realization of the representation t, thus we can find y G f) such that 

(A(x,x) • y)(to) = (A(x,x)(t0j) • y(to) ^ 0. 

Since A(*,*)(0 is a projection, we have 

A(x, x) (t)( A(x, x) • y)(t) = ( A(x, X) • >')(0 for r G AT, 

and we can therefore multiply A(x, x) -yhy an appropriate continuous function to find 
an element z of $) satisfying ||z(0|| = 1 and (A(x,x) • z)(t) = z(t) for r in a neighborhood 
F of to. The last condition implies that z(t) is a unit vector in the range of the rank-one 
projection (̂JC, JC) (0; hence A(x, x) (t) and A(z, z)(t) are equal, being orthogonal projections 
with the same range. Thus we have Af{xF,xF) = AF{ZF, zF). For notational convenience, 
we selectively drop the superscript F. 

We claim that we can define g: XF —• f)F by g(a • x) = a • z for a G AF. Since every 
w G XF can be written AF(W,X) • x, to see that g is well-defined it is enough to show 
\\a • x\\ = \\a • z\\. But this is easy: for a G AF we have 

||a-z||2 = | | > - z , a - z ) | | = \\aA,{z,z)a*\\ = \\aAF{x,x)a*\\ = ||a-*||2. 

Exactly the same calculation shows that g preserves the inner products, and since g is 
clearly a bimodule homomorphism, g is the required isomorphism of imprimitivity bi­
modules. • 

LEMMA 3.4. Suppose X is an A —j Co(T)-imprimitivity bimodule, and g: X —> X is 
an imprimitivity bimodule isomorphism. Then there is a function (j) G C(T,J) such that 
g(x) — x • (f) — (j) - x. (For the last equality, we view (j) as a multiplier of A.) 

PROOF. We fix to G 7\ x G X such that (x,x)c0(T)(to) i1 0, and define <j>x(t) for t near 
'oby 

<j>x(t)(x,x)co(J)(t) = (x,g(x))Co(T)(t). 

In fact <j>x is independent of the choice of x: if y also satisfies (y\y)c0(T)(to) ^ 0, then 

(x,g(x))cQ(T){g(yly)c0(T) = (x,g(x) • (g(y),y)c0(T))Co(T) 

= (x,A(8(x\g(y)).y)CQiT) 

= (x,A(x,y)-y)Co(T) 

= (x,x}Co(T)(y,y)c0(T), 
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which implies both that \cj)x\ = 1 for / near to (take y = x), and that (f)x(t) = (j)y{t) 
whenever both are defined. Thus the (j>x combine to give a continuous function <j>:T—*J 
such that 

(x,x • (/))c0(T)(0 = (j)(t)(x,x)cQ(T)(t) = (x,g(x))Co(T)(t) for all t, 

and the polarisation identity implies that g{x) = x • <j> for all x e X. m 
Now to define the Dixmier-Douady class of a continuous-trace algebra A, we use 

Proposition 3.1 to find a cover {Ni} of T such that, for Ft = Nt, there are AFi
 ~F; CO(F,-)-

imprimitivity bimodules Xt. Using Lemma 3.3 and some standard trickery, we can re­
fine the cover to ensure that on each intersection F y = F, n Fj, there is an isomor­
phism^: X.lJ —> Xt'

J of AF'J —Fij Co(Fy)-imprimitivity bimodules {cf. [4, 10.7.11] and 
Lemma 6.1 below). On a triple intersection Ftjk we have two isomorphisms g/* og-/* and 
#;/* of rk

uh = {X[Jk)F<* onto 1] uk, and Lemma 3.4 says there is a continuous function 
Vijk'- Ftjk -^ "D" such that 

8? ° ̂ W = 4*W • "P for* e ^ -
The functions {z/^} form a 2-cocycle with values in the sheaf 5 of germs of continuous 
T-valued functions on T, and the class of {v^} is independent of any of the choices we 
have made {cf. [4, 10.7.12] and Lemma 6.2 below). This class is the Dixmier-Douady 
class of A, and is denoted 6 {A). In this setting, the Dixmier-Douady classification theorem 
of [5] becomes: 

THEOREM 3.5. Let A and B be continuous-trace C*-algebras with spectrum T. Then 
A is Morita equivalent to B over T if and only ifS{A) = 8{B) in H2{T, S). Every class in 
H2{T,S) is the Dixmier-Douady class of some continuous-trace algebra with spectrum 
T. 

This is the special case of Theorem 6.3 in which the group G is trivial. However, we 
point out that the necessity of S {A) = 5{B) is quite easy, and that the remaining parts 
are essentially in the literature already: for the sufficiency, one just borrows from [11, 
§2] the construction of imprimitivity bimodules from local data, and the last part is done 
explicitly in [14]. We stress that this result is well-known to the experts {cf., e.g., [1, 
§2.7]). 

4. Morita equivalence of systems. We recall from [2] that two dynamical systems 
(A, G, ex) and (5, G, /?) are Morita equivalent if there is an A — Z?-imprimitivity bimodule 
X and an action u of G on X by linear transformations, which is strongly continuous {i.e., 
s i—> us{x) is norm-continuous for all x) and satisfies 

(4.1) ocs{A{x,y)) =A(us{x),us{y)) 

Ps((x,y)B) = (us{x),us{y))B. 

If in addition X is an A — j Z?-imprimitivity bimodule, we say {X, u) implements a Morita 
equivalence of (A, G, a) and {B, G,f3) over T, or that {X, u) is an (A, a) —T {B, fi)-im­
primitivity bimodule. (As in [3], it follows from Equation (4.1) that each us is isometric 
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and that us(a • x) = as(a) • us(x), etc. Although checking the strong continuity of u is a 
nuisance, it is necessary: if we multiply s —> us(x) by a discontinuous character of G, we 
destroy the continuity of the action but Equation (4.1) is unaffected.) 

If (A, G, a) is a system and A has Hausdorff spectrum T, we denote by r the action of G 
on CQ(T) induced by the action of G on 7, and refer to (Co(r), G, T) as the spectral system 
of (A, G, a). Our Dixmier-Douady class will be the obstruction to piecing together local 
Morita equivalences of systems with the same spectral system to form a global Morita 
equivalence. As in Section 3, we first have to know how to localize: again, we prefer to 
localize to closed subsets F of 7, but now they have to be G-invariant to ensure that there 
are local systems (AF, G, ocF). 

LEMMA 4.1. Suppose that F is a closed G-invariant subset of T, and that (A, a) 
is Morita equivalent to (CQ(T),T) over T via («Ï, u). There is an action uF of G on £F 

characterized by wfiV7) = us(x)F, and then (AF, aF) is Morita equivalent to (Co(F)>T) 
over F via (3£F, uF). 

PROOF. Since us(x • </>) = us(x) • TS(<J>) for all x E 3E and </> G Co(T), it is immediate 
that us(Xf) Ç 3Ef. Hence uF(xF) = us(x)F uniquely defines uF. The remainder of the 
lemma follows from [20; Corollaries 3.1 and 3.2] as in [11; §11. • 

DEFINITION 4.2. Suppose that A is a C*-algebra with Hausdorff spectrum T, and 
that (A, G, a) is a dynamical system with spectral system (Co(T),r). We say that (A, a) 
is locally Morita equivalent to (CO(JT),T) if each point in T has a closed G-invariant 
neighborhood F such that (AF, aF) is Morita equivalent to (Co(F), T) over F. 

Before we begin our study of systems which are locally Morita equivalent to their 
spectral systems, we point out that, for particular transformation groups (7, G), these 
systems turn out to be precisely the ones considered in [10, 13, 17]: 

PROPOSITION 4.3. Let A be a continuous-trace C*-algebra with spectrum T, and 
suppose that G acts trivially on T. Then a system (A, G, a) is locally Morita equivalent 
to (CO(T),T) = (CQ(T), id) if and only if a is locally unitary in the sense of[\0]. 

PROOF. Since the problem is local, we can suppose that there is an (A, a) —T 

(Co(T), id)-imprimitivity bimodule (3c, u), and prove that a is unitary. For each s G G, us 

is Co(7>linear, and therefore belong s to the algebra L(XCo(T)) of adjointable Co(7>linear 
operators on 3E; hence there is a multiplier vv G M(A) characterized by 

(4. 2) (ysA(x,y)) • z = us(x) • (y, z)cQ(T). 

The condition 

(us-x,us -y)c0(T) = ids((x,y)Co(T)) = (x,y)c0(T) 

gives u*us = 1, which, since us has u-s as an inverse in L(X), implies that both us and v.s 

are unitary. Because the group homomorphism u is strongly continuous, and u-s — u*, it 
is *-strongly continuous; since it is also bounded, we deduce that v is a strictly continuous 
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homomorphism of G into UM(A). Finally, 

(as(a)vs) • (A(x,y) • z) = as(a)(vsA(x,y)) • z 

= as(a)us(x)- (y,z)c0(T) 

= us(a-x)'(y,z)co(T) 

= (vsA(a-x,y))-z 

= vsa-(A(x,y) -z), 

so that as(a)vs = vsa, and v implements a. m 
Since it is convenient to have a name for the type of systems studied in [16, 17], we 

recall the following definition. 

DEFINITION 4.4. Suppose A is a continuous-trace algebra with spectrum T, and TV is 
a closed subgroup of a locally compact abelian group G. We say that a dynamical system 
(A, G, a) is N-principal if all the isotropy groups for the induced action of G on T are 
equal to TV, the quotient map T —-> T/G is a principal G/N-bundle, and a|/y is locally 
unitary. 

COROLLARY 4.5. L̂ ^ A be a continuous-trace algebra with spectrum T, and N be 
a closed subgroup of a locally compact abelian group G. Suppose that p: T —> Z is a 
locally trivial principal G/N-bundle, and view T as a G-space. Then a system (A, G, a) 
is locally Morita equivalent to \C$(T), G,rj if and only if {A, G, a) is N-principal. In­
deed, (/"(3E, u) implements a Morita equivalence of(AF, aF) and (CO(P},T\ then identi­
fying L(Xc0(F)) with M(AF) allows us to view U\M as a strictly continuous homomorphism 
u:N —> UM(AF) satisfying 

(1) an(a)F = Advn(a
F) for a G A, n G N, and 

(2) as(vn) = vn in UM(AF)fors G G, n G N; 
in other words, v is a local Green twist for a over N in the sense of [16, 17]. 

PROOF. Since we already know that T —> T j G is a principal G/N-bundle, a is N-
principal if and only if a\N is locally unitary. Thus the first assertion follows immediately 
from the proposition. In the proof, we showed that V.N—+ UM(A) was a strictly contin­
uous homomorphism satisfying (1), and hence it remains to verify (2): as above, we may 
well suppose F = T. Using the characterization (4.2) of vn, and the commutativity of G, 
we have 

as(vn)(A(x,y)) • z = as(vnaJl(A(x,y)j) • us(u~l(z)) 

= us[(vnA(u~l(x),u~l(y))) • u~l(z)J 

= us(un(u~\x)) • {u~l(y)9uj\z))c0(T)) 

= * W t o • Ts((uJl(y),uj\z))c0(T)) 

= un(x)'(y,z)c0(T) 
= (vnA(x,y)) -z, 

which implies (2). • 
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We saw in the previous section that A —T Co(7>imprimitivity bimodules are locally 
unique, and this uniqueness was crucial for the development of the Dixmier-Douady 
theory. For systems, the obvious analogue is false: two (A, a) — (Co(r) , r ) Morita equiv­
alences (X,u), 0 , v) need not be equivariantly isomorphic, even locally. In fact, there 
are two levels at which this can fail. First of all, we can only localize the systems to 
G-saturated subsets of 7, and, while the bimodules X and f) are necessarily locally iso­
morphic by Lemma 3.3, they need not be isomorphic over G-invariant neighborhoods. 
And second, even if each point of T has a closed G-invariant neighborhood F such that 
3cF = f)F, there is an algebraic obstruction to finding an equivariant isomorphism (see 
Lemma 4.13 below), and this obstruction is a fundamental ingredient in our Dixmier-
Douady class of (A, a). Whether or not the first of these problems can be solved turns 
out to be a property of the topological transformation group (7, G), which fortunately 
holds automatically in the cases of interest to us. 

DEFINITION 4.6. Let (7, G) be a locally compact transformation group. We shall say 
that equivariant line bundles over (7, G) are locally trivial over T j G if, whenever IT: L —> 
T is a Hermitian complex line bundle with a unitary action of G satisfying TT(S • /) = s • 7r(/), 
each point of T has a G-invariant neighborhood F such that L is trivial over F. (We do 
not insist that the trivialisation is equivariant.) 

Before discussing this property, we want to show that it does imply the local unique­
ness of imprimitivity bimodules, as claimed above. 

LEMMA 4.7. Suppose that (X,u), ($),v) implement Morita equivalences between 

(A, a) and (CQ(T),T), and that equivariant line bundles over (T, G) are locally trivial 

over T/G. Then each point ofT has a G-invariant neighborhood F such that XF andsT)F 

are isomorphic as AF —f Co(F)-imprimitivity bimodules. 

PROOF. We begin by reducing to the case where (A, a) = (Co(7), T) by considering 

the CQ(T) — Co(7>imprimitivity bimodule J?) ®A X. From the calculation 

cQ(TAvs(y\)~ ® us(x\),vs(y2)~ ® us(x2))) = (vsCyi)~, v5(y2)~ ' A(US(X2),US(X\)))CQ{T) 

= (vs(y\),vs(A(xx,x2) • yi)}c0(T) 

= rs(Co(T)((y\ ® * i , ; y 2 ® * 2 » ) , 

we deduce that ws(y <g>x) = vs(y)~ 0 us(x) defines an action w of G on f) 0A X such that 
($) 0 A X, w) is a (Co(r) , r ) — T (Co(T), r)-imprimitivity bimodule (the strong continuity 
follows from Equation (2.1)). 

By [11, Proposition A l ] , there is a Hermitian line bundle L over T such that f) 0A X 
is isomorphic to I~o(L). We claim that the action w of G on To(L) induces an action of G 
on L. To see this, we deduce from the condition ws(f • <j>) = ws(f) • rs(<j)) t h a t / ( 0 = 0 
implies ws(f)(s • 0 = 0, and hence there is a well-defined pairing: G x L—+ L given by 

(4.3) s.(f(tj) = w5(f)(s't). 

It follows quite easily from the algebraic properties of the bimodule To(L), and the con­
tinuity of w, that this pairing is a jointly continuous action of G on L which is unitary on 
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the fibres. Since Equation (4.3) implies immediately that the bundle projection is equiv­
ariant, each point of 7 has a G-saturated neighborhood F such that L is trivial over F—or, 
equivalently, that there is a section o.F —* L satisfying \a(t)\ — 1 for t G F. 

We now claim that XF = f)F. First, observe that the section a induces an isomorphism 
/ —>/ • o of CQ(F) —f Co(F)-imPrirnitivity bimodules. Next, recall that there are natural 
imprimitivity bimodule isomorphisms of (?) <8>A &)F onto (f)FT ®AF XF [U, 1.10] and 
?)F ®c0(F) <$)F)~ onto A77 [19, 6.22]. Then we have 

= f]F tow ( ® T ®AF xF) = AF ®AF xF - xF, 
as claimed. • 

REMARK 4.8. We have shown that if equivariant line bundles over (T,G) are lo­
cally trivial over T/G, then local Morita equivalences are unique in the sense we want. 
The proof shows that this condition on (7, G) is also necessary: if (# , u) is an (A, a) — 
(Co(r),r)-imprimitivity bimodule, and (L,G) is an equivariant Hermitian line bundle, 

then the imprimitivity bimodules (3£ ^CoCn To(X)) and To(L)F are isomorphic only if 

L\f is trivial (to get a trivialisation, just tensor the isomorphism with «Ï). 
We now want to discuss transformation groups (7, G) where equivariant line bundles 

are always locally trivial over T/G. First of all, since there exist nontrivial line bun­
dles over Z only if //2(Z, Z) ^ 0, it is easy to find spaces (7, G) with this property. 
For example, it holds whenever/?: T —> T/G is a locally trivial fibre bundle over a lo­
cally contractible space and the fibre F has H2(F, Z) = 0. But, more surprisingly, when 
p.T —> T/G is a locally trivial principal bundle, it doesn't matter what H2(F, Z) is: we 
can trivialise the line bundle L over the image c(W) of a local section c\ W —> 7, and 
use the action of G on L to extend the trivialisation to G • W. This applies in particular to 
the spectra of TV-principal systems (Proposition 4.9 below). While not all transformation 
groups have the property (see Example 4.12), it does seem likely that equivariant line 
bundles over (7, G) will be locally trivial over 7 / G whenever T/G is reasonable. As 
evidence, we prove this is the case for any action of a compact group. 

PROPOSITION 4.9. Suppose G is a locally compact abelian group, and N is a closed 
subgroup such that G —> N has local sections. Ifp: 7 —> Z is a locally trivial principal 
GI' N-bundle, then G-equivariant line bundles over (7, G) are locally trivial over T/G — 
T/(G/N). 

PROOF. We begin with the special case in which TV = {e}. Since 7 —» T/G is locally 
trivial, and this is a local problem, we may as well suppose that 7 = Z x G, and fix a 
point t = (zo,s). The bundle L\Zx^ is locally trivial, so we can find a neighborhood V 
of zo and a section a: V x {s} —• L such that |cr(z,,s)| = 1 for z G V. We now define 
a(z, r) = rs~l • a(z,s)\ this is easily seen to be continuous, and it is a section of L over 
F = V x G because 

7r(cr(z, r)) = ^(r^-"1 • CT(Z,S)) = rs~l • 7r(cr(z, s)) = rs~l • (z,s) = (z,r). 

Since the action preserves the Hermitian metric, we have \a(z, s)\ = 1 for all (z, s), so the 
bundle is trivial over V x G. 
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For the general case, the idea is to modify the action of G on L to give an action 
of G/N. If n ÇiV, the equivariance condition ix(n • /) = n • ir(l) = TT(1) implies that the 
transformation / —> n-l preserves fibres, and hence there is a continuous map \: LxN —+ 
T such that n-l — A(/, n)l. Since the map / —> n • / is unitary, À is constant on G-orbits, 
and there is a continuous map 6: T/G —> N such that X(t,n) = S(G • t)(n). Because 
G —> N is locally trivial and our problem is local in T/G, we may as well assume there 
is a continuous map c:T/G—* G such that \(t, •) = e(G • t) on N. We can now define a 
continuous action of G/N on L by (sN) • / = e(7r(/))(.s)_1(s • /), which covers the original 
action of G/N on T. Hence we can apply the special case to deduce that L is locally 
trivial over G-invariant neighborhoods. • 

LEMMA 4.10. Suppose (T,G) is a transformation group with G compact abelian 
and T paracompact. Then every equivariant line bundle over (7, G) is locally trivial 
over T/G. 

PROOF. Let ir\ L —-> T be an equivariant line bundle, and fix t G T. Since G is 
compact, the map s —* s • t is a homeomorphism of G/Gt onto the orbit G • t, and the 
argument of the previous proposition says that L is trivial over G • t. If A/,-: My —» T are 
transition functions for L, then the class of cocycle {A//} is trivial in HX{T,S) exactly 
when L is. Thus the result follows from the next lemma. • 

LEMMA 4.11. Suppose that G is compact and that T is a paracompact locally com­
pact G-space. If A G Hl(T,S) is such that X\ct — 0 in HX{G • t,S), then there is a 
G-invariant neighborhoodN of t such that \\N = 0 in H{(N, 5). 

PROOF. Let {M[}ie^ be a locally finite cover of T such that there is a cocycle { Ay } G 
Zl({M-}, S) which represents A. Also let {Mi}i£A be an open cover of T such that M, Ç 
M \ for each /. We may assume that there are functions ^ M j f l G ' M T such that 
(3/i% = Ay|c.f for all i andy. 

Let M be a compact neighborhood of G • t. Since {M,-} is locally finite, B = {/ : 
Mf

t H M 7̂  0} is finite. Furthermore, if / G B, then we claim there is a neighborhood 
V| of G • r with Vi Ç M and a function /i,: M, n Vt —* T so that /x/(v) = /x-(v) for all 
y G M/ H G • r. In fact the Tietze theorem implies that there is a function /2;: T —> C which 
extends /x-: M; n G • JC —-* T C C. Then we can put 

Vi = {y:\fii(y)\>±}UT\Mh 

and define ^ii(y) = |/2/(y)| ̂ M/OO (y G M/ D V/); this establishes the claim. 
Let V — f]ieB Vt. Then V is a neighborhood of G • t and we may view p — {/i/} as a 

cochain in C°({M; D V},5) such that {Ay • (3^)^} is a cocycle which is identically one 
on G • t. Since G • tis compact, there is a neighborhood V of G • t such that for all / and 
j and all y e V D Mi}, 

\\ij{y)@tâjx(y)-l\<>/2. 

(There are only finitely many / and y to consider.) Thus log(A(3/i)_1) is a cocycle in 
Zl ({MpiV'},$0 and must be equal to di/ for some cochain?/ = {z//} G (^({M/HV'}, ^ ) . 
Thus, \\Vi = dp- exp(dv) = 3(/i • expv). 
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The result follows as V' must contain a G-invariant neighborhood TV of the compact 
set G • t. m 

EXAMPLE 4.12. Let T = T2, viewed as (R/Z) x T, and let R act by the flow at 
an irrational angle, which is the quotient of the action o n R x T given by r • (t, z) — 
(t + r, e2m9rz). Let L be the Hermitian line bundle over T obtained by taking the quotient 
of R x I x C by the equivalence relation in which 

(4.4) (f ,z ,A)~(f-l ,z ,zA). 

This bundle is nontrivial: if it were trivial, it would have a non vanishing section, given by 
a function/: [0,1] x I -> C\{0} satisfying/(l,z) = z/(0,z), and then h, =f(t,-)f(0,-)~l 

would be a homotopy joining 1 to the identity function z —> z. The action of R on T lifts 
to one on L via the formula 

r- (t,z, A) = (t + r,e2nierz,\e~27riB{rt+,2/2)); 

the r2 /2 term is there to ensure this defines an action of R on R x T x C, and then one can 
easily verify that it respects the equivalence relation Equation (4.4), and hence induces 
a continuous action of R on L. But since the action of R on T2 is minimal, the only 
nonempty IR-invariant open set is the whole of T2, so L is not trivial over any [R-invariant 
neighborhoods. • 

So far we have shown that, for the systems (T, G) of interest to us, the bimodules «Ï 
involved in Morita equivalences (3f,w) of systems are locally unique over equivariant 
neighborhoods. We now want to look at the obstruction to extending this uniqueness to 
cover the action u. 

LEMMA 4.13. Suppose (3E, u) and ($), v) are (A, a) —j (Co(T),r)-imprimitivity bi­
modules, and g: f) —> X is an isomorphism of A —j Cç)(T)-imprimitivity bimodules. Then 
there is a continuous map A: T x G —> T such that 

(1) us(g(yj)=g(vs(yj).\(;S), 

(2) \(t, rs) = X(t, r)\(r~l • Us) for te T,r,s G G. 

PROOF. If we set ws — v~x o ^ 1 o us o g, then w is a strongly continuous map of G 
into the group of isometries of f). Because the actions u, v are both compatible with the 
actions a, r of A, Co(T), ws is an A — Co(7>bimodule isomorphism for each s, and hence 
by Lemma 3.4 there is a continuous function p(-,s) G C(T, T) such that 

ws(y) = y - p(-,s) for y £ ?)>s £ G. 

This equation is equivalent to 

Us(g(y)) = g(vs(y p(;s))j = g(vs(y)) -Ts(p(-9sj), 

and thus if we define \(t,s) — p(s~l • t,s), we have (1). To see that p and A are contin­
uous on T x G, just note that both (y,y)c0(T) and the map (t,s) i—> (y, ws(y))c0(T)(t) are 
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continuous. Finally, we calculate 

g(vrs(y))M;rs) = urs(g(yj) = ur(us(g(y)) 

= uryg(vs(y))M',s)j 

= Ur{g(vs(y)))rr(X('jS)) 

= g(vr(v,(y)))A(.,r)rr(A(.,5)), 

and this implies (2). • 

COROLLARY 4.14. If G is abelian and N is a subgroup of G which acts trivially on 
T, then 

(1) t —• A(f, •) is a continuous map ofT into N; 
(2) for each n G N, A(-, n) is constant on orbits. 

PROOF. The cocycle identity Lemma 4.13(2) immediately implies that X(t, •) is a 
homomorphism on N. A standard compactness argument shows that if tt —• tin T, then 
\(ti, •) —> X(t, •) uniformly on compact subsets of N, and hence (1) follows. Since G is 
abelian, we have A(f, sn) = X(t, ns), and two applications of Lemma 4.13(2) give 

X(t,s)X(s x -t,n) = X(t,n)X(t,s), 

which implies (2). 

5. The equivariant cohomology group HQ(T, 5). Suppose that T is a G-space with 
orbit map p:T —> T/G. (Although, in this article, we will only be interested in the case 
where T is a principal G/N-bundle, for the following discussion T may be any G-space.) 
Let 51 = {Ni}t£i be a cover of T/Gby open sets. We define Z2(/?-1(5l),S) to be the col­
lection of pairs (A, v) where A = {A//} is a 1-cochain consisting of continuous functions 
Xij\p~x(Nij) x G —» I, and z/ = {z/p} is a 2-cocycle consisting of continuous functions 
vijk>P~X{Nijk) —> T such that 

(5.1) A//(r, sr) = Xij(t, s)Xij(s~l • u r\ 

while 

(5.2) \ij(t, s)Xjk(t, s)vijk{t) = Xik(t, s)iyijk(s-1 • t). 

Of course, Z2(/7_1(5ï), S) becomes an abelian group when equipped with the usual point-
wise multiplication of cocycles. 

We define B2(p-lC&),S) to be the sub group of pairs (A, v) inZ2(p l(ll),S) for which 
there exist continuous functions (fiij:p~l(Nij) —-» T and <7;:/?_1(A^) x G - ^ ï , such that 

(5.3) (Ji(t, rs) = o&u r)(Ji(rx • t, s) 

(5.4) Xij(t, s) = ^(tî^ijis'1 • t))(Ji(t, s)<jj(t,s), and 

(5.5) vijk(t) = (t>ij(t)(j>jk(t)(j)ik(t). 
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It may be comforting to notice that if ({A//}, {i/yk}) are defined by continuous functions 
as in Equations (5.3), (5.4), and (5.5), then ({A/,}, {i/ijk}) belongs to Z2

G(p-\K),S). 

We define H2
G(p^^RlS) tobe the quotient of Z ^ p " 1 (51),5) by B2

G(p-](!l),S). 
Now suppose that K = {Na}aeA is a refinement of 51 by open sets. Let r. A —> / 

be a refinement map: i.e., any map such that Na Ç ^ a ) for all a G A. Then given 
(A,i/) G Z^p-^ Î I ) , J ) , we obtain an element r(A,z/) = (r(A),r(z/)) in Z2

G{p~\^),S) 
in the expected way: 

r(X)af3(t,s) = AKaM/3)(r,^), and 

Kz/)a/37(0 — Z/K«)r(/3)K7)(0-

In this way, we obtain a homomorphism r.ZG[p~l^&),S) —> ZG(p~l0b),S) which 

takes BG[p~x{H),S) into 2?c(/?_1(3S),5). Therefore we obtain a homomorphism r*: 

HG(p~l(ll),S) —> H2
G(p~x0î>),S). We claim that r* is independent of our choice of 

refining map. If s is another such map, then let (A,z7) = (r(A),r(ï/))(5"(A), £(*/)) = 

(r(X)s(X),r(v)s{v)). Then standard arguments such as in [23; §5.33] imply that v G 

£2(/?-1(23),J>) and hence that there are continuous functions <\>a^P~X(^a^) —> T such 

that Pa^{t) — 4>ap(t)(j)^(t)(t)ai(t). In fact, it follows from Equation (10) of [23; §5.33] 

that we may take 

Furthermore, we may define 

Ga(Ug) = K(a)r(a)(t,g). 

Then aa satisfies Equation (5.3), and one can compute that 

K(3(U g)0a(t, g)(Tp(t, g) = \s(a)ri<x)(t9 g )A r ( a )^ ) ( r , g)\s(a)s((])(t, g)Xs(P)r((3)(U g), 

which using (5.2) is 

= ^s(a)r{[3)(t> g)P'1y(o')r(c»')r(/3)(0Zy's{a)r{cc 

• K(a)ri0)(t,g)l/S(a)s((3)r{i3)(t)^s(a)s(l3)r{(3)(g~l ' 0 

= <t>a&{t)<t>ap(g~l • 0 . 

In other words, (A, v) G BG(p~l(*Ë),S) as required. Therefore we may regard 

where 51 is allowed to run over all open coverings of T/ G, as a system of abelian groups 
directed by refinement. Thus, we can define 

H2
G(T,S)= \jmH2

G(p-\K\S). 

Elsewhere [18], we will present a more general treatment in which we define a family 
of groups HG{T, S) which will fit into a generalized Gysin sequence (See also [17; §5a]). 
Here we have restricted our discussion to the case n = 2 as that is all we require for the 
sequel. 
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6. The Dixmier-Douady class of a system. We are now ready to construct the 
Dixmier-Douady class of a system (A, G, a). Throughout, A will be a continuous-trace 
C*-algebra with spectrum T. For technical reasons, we shall assume that T is paracom-
pact and T/G Hausdorff; in our main application, T —^ T/G will actually be a locally 
trivial G//V-bundle for some quotient G/N of G. We think of the Dixmier-Douady class 
of the system as the obstruction to piecing together local Morita equivalences with the 
spectral system to form a global Morita equivalence with the spectral system. In order 
to produce a scalar-valued cocycle from these local equivalences, we need to do some 
standard shuffling with open covers, and we obtain the necessary lemmas by modifying 
[4, 10.7.11 and 10.7.12]. 

LEMMA 6.1. Suppose that A has paracompact spectrum T, that (A, G, a) is locally 

Morita equivalent to (CQ(T), T), that T/Gis Hausdorff, and that equivariant line bundles 

over (T, G) are locally trivial over T/G. Then there is an open cover % = {iV,}/e/ of T/G 

such that, writing F( = p~~*(N(), there is an (AF',aFl) —f. (CQ(FI),T)-imprimitivity bi-

module (Xj, ul) for each i G /, and there is an isomorphism gf. X.lJ —> Xt " for each 

ij G /. 

PROOF. By assumption there are closed G-invariant sets {E^}ier, whose interiors 
U1 cover T, and (AE\aEl)—E, (Co(£^),r)-imprimitivity bimodules (3c7, u

1). Since T/G 
is paracompact, and in view of Lemma 4.1, we may suppose that {U1}1£Y is locally 
finite. Therefore we can assume that there are closed G-invariant sets C^ C p~x{U^), 
whose interiors V1 cover T. 

For the moment, fix 7 G T and t E V1. Using local finiteness, there is a neighborhood 

W of t such that r = {/3 G T : WH C3 ^ 0} is finite. We claim that for each 0 G T there 

exist closed G-invariant neighborhoods WQ of t such that WQ Ç W and such that there 

exists an imprimitivity bimodule isomorphism of X Q
j j onto X1

 j j. For if t G CQ, 

then t G /?_1(L^) np~l(Up), and the claim follows by Lemma 4.7; if t fi CQ, then we 

can simply choose Wp so that WQ D Cp = 0. Either way, W v = C\aer WQ is a closed 

G-invariant neighborhood of t with the property that there is an imprimitivity bimodule 

isomorphism of x & onto x1 

Finally, we let / - {(7,0 G TxT : t G C ^ . F o r i = (7 ,0 , weputF, = WhXi = 3ff, 
and ul = (iP)Wi, and the existence of the gtj follows from the previous paragraph. • 

LEMMA 6.2. We maintain the assumptions and notations of Lemma 6.1. 

(1) For each ij G /, there is a continuous function Xf. Fy x G —> T such that, for 

all x G X.lJ and s G G, 

(6. 1) Wsf
u{gij(xj) = \ij(',s) • ( g , ( K ) ^ W ) ) . 

(2) For each ij,k G /, there is a continuous function i/^: F^ —> J such that, for 

eachxe XF,Jk, 

(6.2) 4 * ( ^ W ) = ^ - ^ W -

(3) The pair (\,v) — ({Ay},{i/p}) is a cocycle mZg(p _ l (5 I ) , 5 ) . 
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(4) The class S(A, a) of(X, v) in H2
G(T, S) depends only on (A, G, a), and not on any 

of the choices we have made. 

PROOF. After localizing the Morita equivalences to F y using Lemma 4.1, we apply 
Lemma 3.3 to the isomorphisms gy. this gives us the continuous functions Xy satisfy­
ing Equations (6.1) and (5.1). Similarly, applying Lemma 3.3 to the imprimitivity bi-
module automorphisms (g^jk)~l ° gt/

jk ° g-//k of Xk
ijk gives the function v^ satisfying 

Equation (6.2). We can verify that i/^ is a cocycle by comparing the two sides of 

exactly as in [4, p. 235]. To complete the proof of (3), we verify (5.2): 

Ws)
Fm ° 8%* = Wsf* ° Wk • 8? ° 8jf) 

= TsOT^Xiji^Xj^s^ijk - g^k o (uk
sf*. 

Finally, suppose that K = {F 7 } 7 G A , (X1,u
1), and g1p have been chosen as in 

Lemma 6.1, and let (A', v') be the associated 2-cocycle. As in the proof of Lemma 6.1, 
we may replace 11 and 25 by refinements so that there are imprimitivity bimodule iso­
morphisms g ft-. X^n —-> 3E/.

 l\ Let A = / U A . Then the family {Fa}a(zA, (Xa, ua), and gab 
satisfy conditions (1), (2), and (3) of Lemma 6.1. Let (A", v") be the corresponding co-
cycle. Since {Fa}aeA refined by both 21 and 23, the classes of (A, v) and (A', v') coincide 
with the class of (A", v") in HG(T, J>). This concludes the proof. • 

Of course, we call S(A, a) the Dixmier-Douady class of the system (A, G, a ) . Our 
main theorem says that, under mild hypotheses on A/G, this is a complete invariant for 
systems which are locally Morita equivalent to their spectral system. We stress that the 
hypotheses on (T, G) are automatically satisfied when T —-> T/G is a principal bundle 
for some quotient of G (Proposition 4.9). 

THEOREM 6.3. Let (7, G) be a locally compact transformation group such that T is 

paracompact, T/G is Hausdorjf, and equivariant line bundles over (T,G) are locally 

trivial over T/G. Suppose (A, G, a) and (B, G,/3) are both locally Morita equivalent to 

(CO(T),T). Then (A, a) and (B, j3) are Morita equivalent over T if and only ifS(A, a) — 

6(B,f3) in H2
G(T,S). Further, every class in HG(T, S) is the Dixmier-Douady class of some 

system (A, G, a) which is locally Morita equivalent to \CO(T),TJ. 

Since the proof of this result is quite complicated—even without the group action (cf. 
[4, §10.7-9])—we shall break it up into 3 propositions. 

PROPOSITION 6.4. Suppose that A and B are C* -algebras with paracompact spec­
trum T, that (A, G, a) and (B, G, (3) are both locally Morita equivalent to \CQ(T),T\ that 
T/G is Hausdorjf, and that equivariant line bundles over (7, G) are locally trivial over 
T/G. Then if (A, a) is Morita equivalent to (B, (3) over T, we have S(A, a) = Ô(B, (3) in 
H2

G(T,S). 

PROOF. Let 3c be an A — T Z?-imprimitivity bimodule and let u be an action of G on 
X such that (A, a) ^XM (B, f3). Apply Lemma 6.1 to (B, (3) to produce closed G-invariant 
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sets {Fi}iei, equivalences $)/, w;), and imprimitivity bimodule isomorphisms {hy}. Let 
(A, v) be the associated 2-cocycle. For each /, 3E; = 3EF/ ®BF1 f)i is an AFi — F. Co(F,-)-im-
primitivity bimodule, and, as in the proof of Lemma 4.7, ul

s = us®wl
s defines an action of 

G on Xi, giving us (AFi, aFi) —F. (CO(F,-),T) imprimitivity bimodules (3E/, M'). Moreover, 
on Fij we have 

((x ® fcyOO,*' (g) /i^^koCF,) - <(*',*)^ • WA>-( / ) ) C o ( F i ) 

= <M(^^-y),A.;(/))Co(F|.) 

= ((x,,x)BFry,y')Co(Fj) 

= ((x®y,x!®y'))c0(Fj), 

and similarly for the A-valued inner products; thus there are isomorphisms gy- — 1 ® /zy 

of£.*'onto £,*. But one can immediately verify the formulas 

(ulf^gij(x)) = A,(-,5) • gij((u!s)
F*(x))9 

on elementary tensors, and hence it follows that (A, v) also represents 5(A, a), m 

PROPOSITION 6.5. Suppose (A, G, a) and (#, G, /3) are dynamical systems which are 
locally uniquely Morita equivalent to (CQ(T),T), that T is paracompact, that T/G is 
Hausdorff, and that equivariant line bundles over (F, G) are locally trivial over T/G. If 
8(A, a) = 6(B, /J) in HQ(T, S), then (A, a) and (B, f3) are Morita equivalent over T. 

PROOF. Using Lemma 6.1, we can find closed G-invariant sets {F,-} whose interiors 
form a cover 5Ï of T and such that: for each i G /, there are (AF', aFi) —F. (Co(F/),r)-
and {BF\ (5Fl) — F, (CO(F/),T)-imprimitivity bimodules ((!;, ul) and (2),-, v'); and for each 
ij e /, isomorphisms gy ^lJ —> Clf'7 and hy. T)jlJ —> î)f'\ Let (A,*/) and (A7,*/) be 
the associated cocycles in Z^(îl,5). By assumption, these cocycles represent the same 
class in//^(F, 5). Thus, refining 51 if necessary, we may assume that there are continuous 
functions fay Fy- —» T, cr,: F,- x G —* T satisfying 

<7/(r, sr) = CT/(/, 5,)a/(5"1 • /, r) 

A,y(f,s) = fafi)faj(s~] • 0^(M)a;(M)Ay(M), and 

M f ) = faj(t)fak(t)(j)ik(tyijk{t). 

Consequently we may replace v̂  by o~i(-, s) • v̂ , htj by </>y • /iy, and assume from here on 
that (A,i/) = (A7,!/). 

As in the proof of Lemma 4.7, J7), = (1/ <8)c0(F,-) ^ is an AFi —F. #F(-imprimitivity 

bimodule, and there are isomorphisms ky f):lJ —^ f}{
 lJ such that 

kij(e®d) = gij(e)®hijid)~ 
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(recall that^'7 ^ &JlJ ®c0(Fy) ^ by [11; Lemma 1.10]). Since we have arranged that 
(A, v) — (A', z/), we have ktj o kjk = kik. Now we follow the construction in [11; Propo­
sition 2.3]. Let f)' be the collection of (yf) G Uisityi with the property that 

hffi^y? 
for all ij G I. Then for (*,-), (yd G $', and t G Fij9 

= AFAxj>yj)(t). 

A similar formula holds for (-, -)BFi. Thus if x — (JC/) and y = (y/) are elements of f)', and 
t £ F(, we can define 

^(x,y)(0 = ^(.x;,y;)(0, and (x,y)B(t) = (*/,;y,V/(0> 

and the left-hand sides depend only on x, y, and r. Just as in [11], we see that when 
restricted to 

f) = {y G $ ' : t H-+ || A(y,y)(t)\\ vanishes at oo}, 

A( •, • ) and (•,•}# define A- and 5-valued inner products making f) into an A —T 5-imprim-
itivity bimodule. Next, we deduce from the usual calculations that u\ <g> vl

s induces an an 
action wl of G on f)i such that (AF/, aFi) ^ . y (BFi,f3Fi). Then for e (g) J G £)/, we have 

^ ( e ® d)) = ^(4W) ® (A«y(vi(d)))̂  

= (\ij(;s) • «i(^-W)) 0 (AI7(., J) • v j ( / ^ ) ) ) ~ , 

which is equal to wl
s[kij{e (g) d)j in G. 'y ®Co(/̂ ) ®/ '7"»in other words, 

This last equation means there is an action w of G on f)' such that ws(y) = (w^(y/)); 
because ||a(0|| = ||^(^)(^ • Oil» J £ !<9 implies w (̂y) G ̂ ), and w is also an action of G 
on f). Routine calculations show that 

A(ws(y), ws(y')) = as(A(y,y')) and (ws(y), ws(y'))B = &((?,/)*), 

so CD, u) implements the required equivalence between (A, a) and (B, (5). m 

PROPOSITION 6.6. If(T, G) is a locally compact transformation group with T para-
compact, and (A, v) G ZQ(T, S), there is a system (A, G, a) which is locally Morita equiv­
alent to (Co(7"), r) and has <5(A, a) = [A, i/]. 

PROOF. AS in [17, Proposition 3.6], we use the construction of [14]. First, we set 
Fi = p~l(Ni), refine the cover {Ni} to ensure it is locally finite, and shrink the sets Ni 
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a little to ensure that A,y, v^k are defined on F,y, Fp . Next, we adjust by a coboundary to 
make {v^} alternating [17, Corollary 3.5]. Then we let 

A = I Z ^jk '• <£;* £ C0(r), (j>jk = 0 outside F^ 1, 

where e^e^ — ~v~fke^k. (See [14, Theorem 1] for a more precise definition; the idea is that 
A is a continuous-trace algebra with spectrum T, and Dixmier-Douady class 8(A) = [i/].) 
We define an action a of G on A by 

as[J2(t>jkejk) = J^^jk(',syrs(<l)jk)ejk, 

where A7*(-, s)rs((j)jk) is by definition 0 off Fjk. To see that A is locally Morita equivalent 
to C0(F), we let 

Xt = (Z</>^ • h e Co(Fi)9<l>k = 0 off Fk\, 

and define 

\ / C()(r,-) 

A'/ ( Z heb E V>*e* ) = E Vijk<t>j$kejk 

(EVw) •/ = Z/Vw. 

A lot of boring calculations confirm that the completion of X/ is an Af ' — Co(F;)-imprim-
itivity bimodule: the cocycle identity for {i/p} is required to prove both that a(x,y) = 
{a • x,y), and that (ab) • x — a • (b • x), but the rest seems to be routine. We define an 
action ul of G on Xt by 

and verify equally tediously that (3f/, w') is an (AF/, aF() — (Co(F/),r)-imprimitivity bi­

module, so that (A, a) is locally Morita equivalent to (Co(F), r) . 
Before computing the Dixmier-Douady class of (A, a), we note that restricting the 

coefficients <j>k to F/y induces an isomorphism of l i
 ij onto 

*ij = ( E 0*** : <t>k e C0(F/7), </>, = 0 off Fk} ; 

to see the surjectivity, note that if <j>k G Co(Fy) vanishes off F^, setting </>*. = 0 in F/\(FyU 
Fjt) gives a continuous function on the closure of ( Fi\(FjU Fk))U Fjjk, which by Urysohn's 
Lemma extends to a continuous function on F, which vanishes off Fk. We can now define 
isomorphisms gtj of X(j = 3£. " onto #// = .Ï. 'y by 

^ ( Z ^ * * * ) = Z*/i/*<£*é?*> 

and verify that Equations (6.1) and (6.2) both hold, so that (A, v) represents <5(A, a), as 
claimed. • 

This proposition completes the proof of Theorem 6.3. 
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7. The Dixmier-Douady classes of TV-principal systems. If (A,G,a) is an 
TV-principal system (so that G is abelian), then the dual system (A xa G, G, à) is an 
^ - p r i n c i p a l system [13, §2]. In this section we shall show how to compute the Dixmier-
Douady class S(A xa G, G, a) G # | ( ( A x a G)A,J>) from <5(A, G, a ) , and, in particular, 
how to determine the spectrum (A x a G)A and the Dixmier-Douady class 6(A x« G). We 
saw in [17] that the principal bundles p:A—>Â/G and q: (A x a G)A —> A / G determine 
<5(A x a G) modulo classes pulled back along g from //2(A, J>). After deriving our for­
mula, we shall show that it is consistent with the restrictions imposed by [17], and that it 
generalizes the one obtained in [12, 3.5] for the special case in which A = Y/N for some 
principal G-bundle Y. 

Just to be sure of our conventions, we recall how H1 (Z, Ç) is identified with the 
collection of isomorphism classes of G-bundles. Given {s^} in Zl(ll, Ç), representing 
LU G H1 (Z, Ç), we define a corresponding G-bundle by forming the quotient space 

(7.1) Fu = UUiXG~, 

in which (/, z, r) is identified with (j, z, rsy(z)), and G acts via s • (/, z, r) — (/, z, sr). 

LEMMA 7.1. Let G be an abelian group, let T be a locally compact paracompact 

space which is a G jN-bundle over Z, and let 11 = {TV/}/e/ be an open cover of Z. If 

(A, v) is in Z^[p~l(ll), S), then for n G N, A//(-, n) is constant on G-orbits, and there is a 

cocycle {7^} in Z1 (51, 9{) such than)-(p(xj) = A,y(jc, n). The map (A, v) —> [7#] induces 

a homomorphism b: HQ(X, S) —> H1 (Z, 0\[). 

PROOF. Because N acts trivially on T, and G is abelian, the cocycle identity Equa­
tion (5.1) implies that A//(-, n) is constant on orbits (cf. Corollary 4.12). The last assertion 
follows similarly from Equations (5.3) and (5.4). • 

LEMMA 7.2. Suppose that G —> N has local sections, p:T —> G is a principal 

G/N-bundle, and (A, G, a) is locally Morita equivalent to \CQ(T), G,T\ Then (A, G, a) 

is an N-principal system, and the quasi-orbit map q: (A X a G)A —> T/G is a principal 

N-bundle satisfying [q] = b(ô(A, G, a ) ) . 

PROOF. Corollary 4.5 says that (A,G,a) is N-principal, and hence it follows from 
[13, Theorem 2.2] that the quasi-orbit map q is a principal TV-bundle. To compute transi­
tion functions for q, we use [17, Proposition 2.6], and resume the notation of Lemmas 6.1 
and 6.2. Let vl:N -^ UM(AFi) be the local Green twisting maps obtained from ul by iden­
tifying L^ldc^Fi)) with M(AF>)- Then for x,y,z G 3cJ\ Equations (4.2) and (6.1) imply 

WnAro(X>y)) ' Sijiz) = (vlnAru(gij(x)>8ij(y)}) ' 8ij(z) 

= Un{8ij(X))(gij(y)> Sij^CoiFy) 

= \ij(; n) • gij(lin(x) C0(F(y)(y, z)) 

= lij(-)(n)gij(v
j
nAFlJ(x,y)-z) 

= lij(')(n)(\JnAFlJ(x,y))-gij(z). 
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Thus vl
n — lij{')(n)^n, and [17, Proposition 2.6] implies that {7,7} is a cocycle in 

Zl({Ni},S) representing [q]. 
• 

THEOREM 7.3. Let (A,G,a) be a dynamical system, in which A has continuous 

trace, G is abelian, and the spectrum p: T —> T/G is a paracompact principal G/N-

bundle. Suppose that (A, a) is locally Morita equivalent to (Co(r) , r ) , and that both 

G —> GIN and G —> N have local sections. Then the quasi-orbit map q:(A X a G)A —> 

T/G is a principal AJ-bundle, and ((A X a G)A ,G, on is locally Morita equivalent to 

( Co ((A x a G)AJ,f J. Let 21 = {M}/e/ be any open cover of T/G which is fine enough 

to ensure there are equivariant projections Wi'.p~l(Ni) —> G/N, there are continu­

ous functions Sij'.Nij —> G such that Sy(z)N = Wi(z)~lWj(z), and there is a represen­

tative (A,i/) G Z^(p~\ll),S) for 6(A,G, a). Then there are equivariant projections 

Gi:q~x(Ni) —> N such that l^{q(Tï)) = 0-j(7r)_10y(7r), and 6(A Xa G, G, &) = [A,//] 

where (\,û) G Z2
ô(q-l(ïl),S) is defined by 

(7.2) Ay(7T,x) = x(sij(z)), and 

(7.3) i>ijkW = \'k(d(z), Sij(z))vijk(ci(z))okW(nijk(z)), 

where we have written z ~ q(n), n^iz) = sij(z)Sjk(z)siii(z) \ and Q(Z) is defined by 

wl(cl(z))=N. 

PROOF. Lemma 7.2 implies that q is a principal N-bundle with [q] = b(ë(A, G, a)) 

= [7A]. Therefore open covers IV = {N[}ieI of T/G satisfying the requirements of 
the proposition do exist. Since the class of (A, v) is invariant under refinement, we may 
assume that IV is locally finite and that there is an open cover ÎI = {M}/e/ such that 
Ni Ç N'j. Refining 11 as necessary, we may assume that there exist {F/}, (X(,ul), and 
gij, as in Lemma 6.1. We also define local trivializations for/7 by /i/(jc) = (p(x), w,(x)). 

Similarly, we put Qt = q~](Ni) and </>/(7r) = (q(jt), 07(71")). 

We begin by building the appropriate local modules. For each / we need an AF> x a 

G —Q. Co(Qi) imprimitivity bimodule (J;, but we shall actually construct a Cc(G,Ah) — 
Cc(Ni x AO pre-imprimitivity bimodule G? and complete. We view Cc(Ni x Â ) as a dense 
subalgebra of CQ(QI) using the Fourier transform: if b G Cc(Ni x AO, then b represents 
the function b G Co(Qi) defined by 

K ^ r l f c 7 ) ) = fNb(z,n)l{n) dn. 

Recall from [2; §6] that $? = CC(G, X() is a pre-AF< xaG~ C0(F/) XT G-imprimitivity 
bimodule. To ease the notation, we shall write Bt for AFi x a G and A for Co(F/) x r G. 
Then the inner products are given by the formulas 

(7.4) Bi(t,r))(r) = j G ^(mAivir-'styds 

(Z,ri)Di(r)(hT\z,tN)) = [G(as\ri(sr))Q)iFl){hi\z,stN))ds. 
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The left action of Bj on f)i is the integrated form of the covariant pair (V, A//) where 

Vtt(s) = u\(^rls))9 and Mi(a)t(s) = a • £(s), 

for s,t e G, ( ef)®, and a G AFi. The right action of D; is determined by 

r}-<l>(r) = JGri(S).<j>(s-lr,s-l.(.j)ds, 

for 77 G $? and <̂  G CC(G x F,-). 
Next we observe that $} = CC(N; x G) is a pre-D,— Co(iV,; x AO-imprimitivity bimodule 

with inner products 

(7.5) Di(f,g)(r)(hrl(z,sN)) = jNf(z,sn-x)g{z,r~'sn^)dn 

(Ag)c0«2,)fc>0 = JGf(z,s-l)g(z,s~ln)ds, 

and actions given by 

(7.6) <j> .f(z,s) = J 4>(r,hr\z,sN))f(z,r-ls)dr 

(7.7) f-b(z,s)= [ f(z,sn-l)b(z,n)dn. 

Note that the completion 3/ of $? is isomorphic to the imprimitivity bimodule tensor 
product Co(Nj) (g> 2B,- where 333/ denotes the usual C0(G/N) x r G - C*(AO-imprimitivity 
bimodule [19; §7] and Q(M) is viewed as a Co(Nt) — Co(M)-imprimitivity bimodule in 
the standard way. 

Our modules will be given by the module tensor product (£/ = f)i (g)£>. &. Notice that 
on elementary tensors, 

(7.8) 

((Ç®/,î7®^))c0(a-)fci) 

= ((*7»0A •/^>c0(G,-)fe«X 

which by Equation (7.5) is 

= J^^'OA- -/fo^Ogfo^1")^, 

which by Equation (7.6) is 

which by Equation (7.4) is 

= /G/G/G M')« «»-)>co(F,-)(Ar,(z. * - ' * ) ) • 
• /(z, r~] .y~' )g(z, 5~ ' «) ^ dr ds 

- JGJJG(&r)> '?«)c„(F,)(V'fc to-'AO)-

• /(z, r~l s~l )g(z, s~l n) dt dr ds 

= JJJG(f(z9r
ls-l)^tr)9g(z9s-ln)^^ 

• (hJ~l(z,ts~lN))dtdrds 
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The module (1/ is the completion of the algebraic tensor product C?f° = CC(G, Xi) 0 
Cc(Ni x G) with respect to ((•, -))co«2()-

 W e c a n v i e w ^?° a s a subspace of (19 = CC(G x 
N/ x G, 3E,-), and using Equation (7.8), we may extend ((•, '])c0(Qi) to a pre-inner product 
on 6?: if £,77 G CI?, then 
(7.9) 

Notice that if £ G CC(G x N, x G, 3£ ,-) then there are compact sets K Ç G and A7 Ç ty such 
that e G A', A' = K~\ and supp ÇÇKxK' xK. Then supp((£, £)>c0<&) QKf xK4HN, 
and 

l«^Oc„(&>(*,n)| < IÎ IIL 4 jjp _£ ^ r < f e < I k l l L ^ 3 ) 3 -

It follows that convergence in the inductive limit topology in (I? = CC(G x Nt x G, Xt) 
implies convergence in the (semi-) norm on 69 induced by ((•, •))cb(&)> and we can there­
fore view ($t as the completion of (1° with respect to the inner product determined by 
Equation (7.9). 

Similarly, the Br inner product extends to all of (S? = CC(G x Nt x G, Xi), and satisfies 
(7.10) 
B&t,ri))(r)(hr\z,vNJ) = JJJN AFl(as,z,s-\n-llul^(r{Uz,rlvn^))) dtdsdn. 

There is a subtlety in this calculation: #,((£, 77 ))(r) is an element of AF(, which is deter­
mined by its images in the primitive quotients AF,(t) for t = h^\z, vN). To avoid the 
question of defining elements of Xt by their images in the corresponding quotients, we 
observe that if x,y G Xt and/ G CQ(FI), then 

AFi(x>yf)(t)= A^y){t)f{ty 

Using this trick, we can compute the left-hand side of Equation (7.10) for £, r/ of the form 
x <8)/, .y ® g, much as before. (One might be surprised to notice that the right-hand side 
of Equation (7.10) depends on the functions 

(z,vN)y-> ji{s,z,s~xvN)ds\ 

this arises because vectors of the form r\ • </> 0 / — r\Ç§ <j> -f have length zero with respect 
to £(((-, •)), and hence are modded out when completing CI?.) 

For Ç e C? = CC{G x Nij x G, XF
}% we define /^(O G 6jj by 

KijiO(r9z,s) = Xij(hr\z,rsNlrs)glj^(r,z,sslJ(z))). 

We wish to show that K^ induces an imprimitivity bimodule isomorphism K/y of (!. '7 onto 

(|.y. We claim that to do this, it is enough to check the following: 

(1) Kij(Mj(a) • C) = Mi(a) • ^ ( 0 , 

(2) «y-(^(o) = v;'(/^(0), 
(3) ((«,y(0» «iy(^)»c0(a)fe ") = a^.(z)(((^ ^»c0(Q7))fc n), and 
(4) fiijiZ • « = ^-(O • &^{z)(b\ 

https://doi.org/10.4153/CJM-1993-057-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-057-8


DIXMIER-DOUADY CLASSES 1057 

where a G AFv, ^ , Î ] G XJ\ b G CC(À^ x N), and a>y(b)(z9ri) = ï(n)b(z,n). 
To verify the claim, we first observe that property (3) will imply that /^ preserves the 

Co (#_1(Niy)) -inner products: 

= JNU,l))c0{^)(z9n)7ij(zXnmn)dn 

It follows that «y extends to an inner product preserving map /€# from G. 'y onto Ĝ  '7. 
On the other hand, (4) implies that K^ is Co(#-1 Wy))-linear, and therefore that «^ is an 
isomorphism of Hilbert Co (q~] (My))-modules. Since (1) and (2) imply that Ky is A^ x a 

G-linear, it must also preserve the left inner product, and is actually an isomorphism of 
imprimitivity bimodules. 

Fortunately, (1) follows readily from the fact that gy{a • x) = a - gij(x) for a G AFiJ and 

x G X? 
Next, consider ((/S*y(V (̂£))> ̂ ))c0(ô/)fe #)• Writing Q(Z) for fy *(z, AO and w*' for (w7)^, 

this expands to 

• /«(/('M?(ç(f- ,ï/-,z,'-1j-1^(z)))],»;(/,z,j- ,n)\ (ts-l-*(z))dtdrds, 

which, using Lemma 6.2(1), the identity (f • x,y)(t) — f(t){x,y)(t) forf G Co(Fi),x,y € 
3Ê,-, and the cocycle identity Equation (5.1), is equal to 

' Co(^) 

which equals {( V̂  (/€(/(£)) > ^Cbc&ofo ")• ^ follows that (2) holds. 
Recall that A#(f, M ) = 7,y(z)(w)Ay(f, s). Thus, if £, 77 G G?, then 

g,y f r/(r,z, j_1AWi/(z))J ) (ta-1 • c/(z)) dtdrds 

= ^(n)JJJG(t(tr,z,r->s^,j(z)), 

T](t,z,s~lnSij(z)))Co(F)(ts-1 • Q(Z)) dtdrds, 

which, replacing s by sy(z)s and using s,j(z) • cj(z) = ci(z), equals 

1ij(zKn)J J J(Ç(tr,z,rls-1),Ti(t,z,s-ln))cBiFj){ts-1 • Cj(zj) dtdrds 

= ^ij(z)(n)U,ri))c0(QJ)(z,n) 

= â^(zM(^v))c0(Q,))(z,n). 
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This verifies (3). 
Now suppose that b G CC(N,- x AT) and £ € G?.. Then by Equation (7.7), 

/?!/(£ • £)(r,z,s) = Xij(rs • q(z),rs)gy(^ • Z?(r,z,^7(z))j 

= / w A , ( r 5 . c , ( Z ) , ^ ^ ( , ^ s , ( ^ - ' ) ) ^ n ) ^ 

which, using \tj(t,sn) = lij(z)(n)\ij(t,s), is 

= j ^ «//(Ofa Z» ̂ _ 1 )«Vz)(£)fc ") ^ 

This verifies (4), and proves the assertions about /%. 
Next we define an action vl of G on G,-: for £ G G?, let vl

x(0(r, z, s) — x(™)£(r, z, 5). 
It is easy to verify that 

4^:(0,v^(ry)))(r) = W) B^^r) = dxU«£, r/)))(r), 

= ^(«C^»ê0(G l))(^r1fel)) . and 

It follows that v' extends to an action on all of (5/. (Note that x '—> vl
x is continuous in 

the inductive limit topology, and therefore strongly continuous.) 
The Af1-principal system (A xaG, G, a) is locally Morita equivalent to the system 

CQ((A x a G)A,f) by Corollary 4.5, and at this point we have explicitly found a cover 
91, modules G,-, actions v', and isomorphisms «# as in Lemma 6.1. The last equation 
above shows that the invariant À associated to this data as in Lemma 6.2 is given by 
Equation (7.2). 

Before we verify Equation (7.3), we need an observation. Suppose that <j> G CQ(FIJ) 

and that £ G G?-. Define £1, £2 G G? by the formulas 

£i(r,z,s) = c/> • £(r,z,s), and 

£2(r,z,s) = <j>(hYx(z,rsN))£(r,z,s). 

It is immediate from Equation (7.9) that ((£1, T/))C0(Q,-) = ((£2* rç))c0(&) f° r ail *7 m /̂j> a nd 

therefore that [^1 - [£2] in Of*. 
The second component of our invariant is the function p^: Ftjk —> T defined by 

which we can compute from the relationship 
(7.11) 

<(^?(<*(#>Q(G)far'(z.T0) = ^(^r,fc7))((€,K^(»7)))^(e,(^r1(z.'»)-
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If 77 e G^., then 

^ * ( ^ ( r / ) ) ( r » ^ ' s ) = XiArs ' ci(z),rs)gij^jk(r]){r,z,ssij(z)) 

= \ij(rs • Q(Z), rs)\jk(rssij(z) • Cj(z), rssij(zj) 

' 8ij I gjk y](r, z, Sij(z)sjk(z)) 

= Xij[rs • Q(Z),rs)\jk(rs • Q(Z),rs)\jk(ci(z),Sij(zj) 

• vijk • gik(jl(r,z,ssik(z)nijk(z))}, 

which is equivalent in G^ to 

Xij(rs • Ci(z),rs)\jk(rs • Ci(z),rs)\jk(ci(z),Sij(zj) • Vijk(rs • Ci(z))gik[ri(r,z,ssik(z)nijk(z))\ 

which by Equation (5.2) equals 

^jk(ci(z),Sij(z))vijk(ci{z))\ik(rs • a(z), rs)gik(ri(r,z,ssik{z)nijk{z)) 

= Xjk(ci(z)9 Sij(z))vijk(ci{z))lik (nijk(z))iïik(r))(r, z, snijk{z)). 

Next, notice that functions of z pull right through the formula Equation (7.9) for the inner 
product, and that, if 77 G C?, m G N, and rjm is defined by r/m(r, z, 5) = 17(r, z, s/w), then 

({^'r»U)(^rlfc7)) = 7ô^((e^>a<e,)(^'fc^))-
Combining these two observations with Equations (7.11) and (7.12), we obtain 

(7.13) pljk{(j)i \z,l)) = A^(Q(z),^(z))z/^(Q(z))7^(^(z))7(^fe)). 

Since p^(^" 1 fe / ») = Pijk{<t>k
l {z^ll ik{z))y this gives Equation (7.3). 

That the class of (A, p) in Zl((A Xa G)A,J>) is independent of our choices follows 
from part (4) of Lemma 6.2 (z.e., [A, p] = <5(A x a G, G, d)). This completes the proof of 
Theorem 7.3. • 

Our next task is to check that Theorem 7.3 is consistent with [17, §4]: since the dual 
system (A x\a G, G, a) is A^-principal, and (A x a G) xâ G is isomorphic as a G-bundle 
top: T —-> T/G, [17, Theorem 4.2] says that (̂A x a G) should belong to the coset 6^([p]) 
intf2((A x a G)A,S)/q*(H2(T/G,S)). Thus we need: 

PROPOSITION 7.4. 77z£ cocycle {v^} constructed in Theorem 7.3 represents a class 
in dq([p]). 

We retain the notation of Theorem 7.3, and in addition set \ijk — ^ipjk%k • Then, 
following [17, Equations (4.1)-(4.4)], we choose a cochain p^'-N^ —> T such that 
(d^)ijki(z) = Xjki(z)(sij(zj), and dq(\p\) is represented by the cocycle 

(7. 14) pljk(7T) = ak(7T)^nijk(q(n))pjk(q(7T)) ( ^ ( ^ ( T T ) ) ) ^ ^ ^ ) ) . 

While this looks very like the formula for v with vtjk replaced by pijk, there is a subtlety: 
although ljk{p(t)) is by definition an extension of Xjk(t, -)U

 t 0 ^ A^Cs) need not be 
constant on G/7V-orbits, and therefore may not equal 7,*. If we want to replace A/7 by 7^, 
we have to multiply (A, v) by a coboundary to compensate: 
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LEMMA 7.5. Suppose p:T —> T/G is a principal G/N-bundle, (A,//) G 
Z^f/?-1(9I),,5), and continue to use the same notation. Then 

(7.15) fait) = Ay(r, s)lij(p(t))(s) where sN = wt(t) 

gives a well-defined continuous function <j>ij:p~l(Nij) —> T such that 

(7.16) Xijfrsïïiïïïfrjis-1 -1) = 7y(p(0)W. 

If we then set pijk = (l/jjk^ij^jk^) ° c*> ̂  ^flVé? 

(7.17) 0 / i W z ) = %wfe)(^(z)). 

PROOF. If we replace 5 by sw, the right-hand side of Equation (7.15) becomes 

Xij(Usn)îij{p(t))(sn) = Ay(^n)Ay(^s)7y(p(0)(*)7(/(p(0)(w). 

But on N we have 7//(p(0) = %y(p(0) = Ay(r, •), and hence the right-hand side of 
Equation (7.15) is well-defined onp_l(A^) x G/N. To verify Equation (7.16), note that 
rN — W[{f) implies s~~xrN — wi(s~{ • 0» so the right-hand side of Equation (7.16) is 

Xijit^iX^rjXijis^ • r,5-1r)7,y(M0)(r)%7(p(0)(^1r), 

which reduces to 7//(p(0)(s) because 7//(p(0)(0 is a homomorphism. 

To verify Equation (7.17), we set p ^ = Vijk^ij^jk^Tk1' anc* observe that {ptjk} is a 
cocycle. Thus (suppressing the variables) 

@{PW ° Q})I/*Z = (P;*/ ° CiY\pjki ° 9) 

= [Oy*/ ° CiTx{yjki ° (sjj1 • Ci))}[((j>jk o aY\<i>jk ° 9)] 

' K<t>kl ° Ci)~\(j>ki O C/)] [(<£,-/ O C/X^V O C/)_ 1] 

Now using Equation (5.2) and the observation that S(j(z)N = vv/(c/(z)), we have 

(d{pijk o c/})^/ = [ A ^ Q ^ A ^ Q ^ A ^ 

• [A*/(c/, %)_17it/fe)A^/(9, sjk)lkl(sjky
{][Xji{ci, Sij)y(sijyl] 

= ^ki(sikSJkl)^jk(sij)1ji(sijylXkl(ci,Sij)Xu(s^{ • Ci,sjk)Xkl(ci,siky
] 

= 7ki(sijn^yjk(sijyji(sijylxkl(ci, ^ ^ ) A ^ ( Q , %)_1 

= ^ki{nijky
XXjki(sij)Xki{Ci, nijk)Xkl(ci, sik)\kt(ch sik)~

l 

since 7*/ = lki — Xki on N. • 

PROOF OF PROPOSITION 7.4. We first replace (A, v) by the cocycle (A', i/), where 

A»(r,5) = A y - a s ) ^ ) ^ ^ - 1 • 0 = 7y(/?(r))W 

*4*(0 = Vijk{t)(t>ij(t)<j)jk{t)(j)ik{t). 
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Since (A,z/) and (A',z/) have the same class in H2
G(T,S), we have [û^] = [#'#]• (One 

could presumably see this directly by writing down a coboundary, but it also follows from 
our earlier results: the dynamical systems (A, G, a), (A', G, a') corresponding to (A, i/), 
(A', v') are Morita equivalent by Proposition 6.5, so that AxaG = A' xa> G by [2, 3], 
and [û] — 5(A x\a G) is the same as [v'] — h(A! xa> G) by Theorem 7.3.) Equation (7.17) 
says we can take / i ^ = v\-k o a when computing ^([p]), and now formula (7.14) for a 
cocycle representing dq([p]) is precisely the formula (7.3) describing v'. m 

EXAMPLE 7.6. We now want to work through our constructions in the situation of 
[12], where we discussed a family of TV-principal systems (A,G,a) for which all the 
associated topological invariants could be simultaneously non-trivial. The algebras A are 
constructed from a system (D, N, 9) which is locally Morita equivalent to (Co(T), id), first 
by inducing, and then taking a quotient. The formula for 6(A) given in [12,3.2] was shown 
in [17, §5(c)] to be consistent with the results of [17]. However, it was also shown in [12, 
3.5] that b(A x a G) = q*(6(DJ), and we should check that this is consistent with our 
Theorem 7.3. The calculation is itself rather interesting: it shows that the complicated-
looking invariant we have introduced is actually computable. We assume as usual that 
G —-> G/N and G —> N have local sections. 

As in [12, §3], we start with a principal G-bundle r.Y —> Z and a locally unitary 
action of the subgroup N on a continuous-trace algebra D with spectrum Z—that is, with 
a system (D,N, 9) which is locally Morita equivalent to (Q(Z), id). The algebra A is the 
quotient of the induced algebra 

Ind0 = Ind£(D,W,0) 

= {ge Co(Y,D) : g(ny) = 0n(g(y)) forn G N, y G Y,Ny^\\g(y)\\ G C0(Y/N)} 

by the ideal 
1(0) = {g G IndO : g(y)(r(y)) = 0 for all y G F}; 

here we have lapsed into bundle notation, so d(z) makes sense for d G D and z £ Z — D. 
The action of G by left translation on Ind 9 leaves 1(9) invariant, and hence descends to 
an action a of G on A = Ind 9/1(9). For y G Y, the formula M (y) (g) — g(y)(r(y)) defines 
an irreducible representation of Ind# which vanishes on 1(9), and the map M induces a 
homeomorphism of T = Y/N onto A [12, 3.1]. We need to compute a representative 
(A, v) for <5(A, G, a), and for this we make some careful choices. First of all, we choose a 
cover {N(} of Z = Y/G by closed sets, such that {IntNj} is also a cover, and: 

( 1 ) r. Y —• Z is trivial over Af/, so that there are G-equivariant surjections qi of r~J (Nj) 
onto G; 

(2) there are D^' — #. Co(M)-imprimitivity bimodules F,, and imprimitivity bimodule 
isomorphisms hyi FjlJ —> /y7 , so that we can define nijk: Nijk —> T by htj

lJkoh'Jk — 

VLijk - h%Jk, and have (5(D) - [/x^] G ^2(Z, 5); 
(3) there are strictly continuous homomorphisms wl: N —-> UM(DN) such that 0 '̂ = 

A d < . 
We then define 7/,: My -^ V̂ by 

ItfOX/OK)"* = « ) ^ , 
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and [7y] represents Res: D XQ N —> Z [10, p. 224]. Since G —+ N has local sections, we 
may further suppose that there exist 7//*. Ny —> G satisfying 7//(z) = 7//(Z)|N-

For future reference, we let /?: y /N -^ Z be the quotient map for the G/N-action on 
Y/N, and define G/Af-equivariant projections Wi'.p~l(Ni) —> G/Nby Wi(N-y) = qi(y)N. 
Note that if we define s if Ny —» G by #,-Sy = g;-, then {5//} is actually a cocycle, and hence 
the cocycle {«//*} appearing in Theorem 7.3 is trivial. 

Now the notation has been set up, we let 

Vi^lgeCb^iNiXFi) 
g(ny) = wl

n(g(y)) for y G Y,n G N, and 

Ny '—* 11 #0011 vanishes at 00 on r~l(Ni)/N 

With the natural pointwise actions, and the inner products defined pointwise by 
(g,h)(y) = (g(yU(y)),$)i is an Ind(^) -p-*mxNi C0(p'{ (NdXoiN^-impnmiiiwi-
ty bimodule (the argument of [15, 3.2(2)] carries over). Further, vl

s(g)(y) = g(s~] • y) 
defines an action of G on f)t, which is compatible with the actions of G on Ind(^) and 
Cç)(p~x{Ni), Co(M)), and leaves the submodule 

Ji = {g£ $)i - g(y){r(y)) = 0 for all y} 

invariant. If 

Kt ={fe C0(r-l(Ni), Com) : / G 0 ( K ) 0 ) = 0 for all y], 

then Jt is an I(0Ni) — ̂ -imprimitivity bimodule, and the quotient #,• = f)i/Ji implements 

a Morita equivalence between Â 7 ' W ) ^ \nd(6N')/I(6N0 and C0(p~\Ni), C0(M))/^/ = 

Co(p~l(Ni)y This bimodule respects the left and right actions of Co(/?_1(N/)), and the 

action of G o n l , induced by vl gives us an (Ap 1(iY,), ap {{Ni)) —p-\^i) ( Co(/?-1(M)) 

imprimitivity bimodule (3E/, ul). 
Before defining our local isomorphisms, we note that if M C Nt, then 

C{p-\m,Cm))P~im*U = C(p-l(M),CoM), 

and that we can similarly identify ffl with 

{g: r-\M)-^Ff : g(ny) = (w'n)
M (g(y)), etc.}. 

Now for g e f)- ", we set 

vij(g)(y) = 7,;(Ky)) (*(>')) ~lhu(g(y)), 

and calculate 

VyfeXny) = 7v{r<yj)(nr%(iiy))(qj(yj)~l (/><,-(< • *(y)) 

= 7«,(r(y))(/0- VB • (^(rCy))(%(v))"'/!,ï(g(y)) 

= K • Vij(g)(y); 
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thus Vf. $).lJ —> f)t
 lJ'. We verify routinely that Vy is an isomorphism of imprimitivity bi-

modules, which is compatible with the actions G by left translation, and maps 
the submodule K.l] onto Kt

iJ; we let gif%;ij —> 3£t
 ij be the isomorphisms of 

(AP~]WJ\ o ^ ' W ) -p-i(Nu) ( Co(/?~1(Ar//)),TJ-bimodules induced by vtj. 

To find X(j, we first calculate on ̂  (or rather, on fj- ,J)\ 

vl
s o Vij(g)(y) = 1ij(r(y))(s-1 • y)-lhij(g(s-1 • yj) 

= 1ij(r(y))(s)(vijOvJ
s(g)(y)). 

Since 7// is constant on G-orbits, this formula passes through the quotient map, giving 

(7.18) \ij(t,s) = 1ij(p(tj)(s) for tep-\Nd C Y/N. 

(Note that Lemma 7.2 says that (A x a G)A has transition functions z —> Îij(z)/N = 7//(z), 
which is consistent with the statement in [12, 3.5] identifying (A x a G)A with(D xd N)A, 
and with the description of (Z) x# 7V)A in [10, p. 224].]) To compute {i///*}, we again start 
ongfc: 

v«y o v^te)(y) = 7//(r(y))(^Cy))7^(rCy))(^(y))^ o /^(sO?)) 

= %y(Ky))(?*(y^ • hik(g(y))} 

= 1tJ(r(y)) (sjk(r(y)))X(/*(r(y))(qk(y))lik(r(y))(qk(yj) {^ijk • hlk(g(y))} 

When we pass to the quotient 3c"ijk = ( $ * M ) % = g ^ V ^ * ' t h e pointwise action 
of / i^ G C(Nyk, T) on the /y7*-valued functions in $)k

ijk becomes multiplication by the 
function ji^ o r. Since \ijk E ^V1, we have 

x«/*(Ky))(<fcO0) = x«y*(Ky))K(iV-y)), 

and hence on 3£ k we have gy o gJk = i/ijk • g/jb where 

(7.19) vijk(t) = %(M0)(^W)W^ 
(If /Xŷ . = 1, this formula for a cocycle representing 6(A) is the one appearing in [17, 
p. 31, line 6] as a representative for dp([q\). Thus adding [/z^] = 6(D) to the proof of 
[17, 5.2] shows that 6(A) = [i/ijk] is given by the formula 6(D) + (p*([q])9 r), as in [12, 
3.5].]) 

At last we are ready to check that the cocycle in Equation (7.3) also represents the 
class q*(6(D)^j = [fiiJk o q\. If we retain the notation of Theorem 7.3, plug (7.18) and 
(7.19) into (7.3), and suppress the variable z = q(n), then 

*ijkW = A^^C,-(^(7T)), JIy(^(7r))jl/ |^^CI-(^(7T) 

= ^jk(sij)lij(sjk)Xijk (wk(ci))iiijk 

^jk(sij)iij(sjk)(iijijkiik
x){w • cky)iiijk. 
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Since by definition wk(ck(z)) = N, we have wk(sik • Q ) = sik, and 

= 7jk (sjk)7 ij (sij ) ^ ik (sik)^ijk • 

Thus {i>ijk\ differs from {^ijk o q} by a coboundary, and we have verified the formula 
8(A Xa G) - q*(6(DJ) of [12, 3.5]. 

8. Concluding remarks. 
8.1. When G acts trivially on T, Equations (5.1) and (5.2) reduce to the assertion that 
11—> \y(t, •) is a cocycle with values in G, and we have a natural isomorphism 

(8.1) [\9i/]eÈ2
G(T,S)—>(M,[A]) eH2(T,S)®H\T,G). 

If v1: G —-> UM(ANi) implement a over Nt, and 7//.* My —> G satisfy v7 = 7//w', then 
Equation (6.1) implies that A*/(f, •) = 7//. (Since v̂  G UM(ANi), the isomorphisms gy 
in Equation (6.1) commute with left multiplication by v .̂) Thus the isomorphism Equa­
tion (8.1) takes 6(A, G, a) to the pair (<5(A), ( ( a ) - l ), where ((a) is the obstruction of [10]. 
The surjectivity in (8.1) is a reformulation of [10, Theorem 3.8], and our Theorem 6.3 
says that the pair (8(A), ((a)) determines (A, G, a) up to Morita equivalence. 

8.2. Suppose G = Z/2Z acts trivially on T, so that by Equation (8.1), 

(8.2) Hl2(T, S) ^ H2(T, S) @ Hx(T, Z2). 

In this case every system (A, Z2, a) in which A is a continuous-trace algebra with spec­
trum T is locally Morita equivalent to (Co(T),r). (To see this, note that the non-trivial 
automorphism a\ is locally inner, hence locally has the form Adw. Since Adu2 = 1, 
u2 — f\ for some complex function/, and we can locally replace u by / _ 1 / 2 M to see that 
(A, Z2, oc) is locally unitary—or, in view of Proposition 4.3, locally Morita equivalent to 
(CO(T),T).) Since actions of Z/2 amount to gradings of A, Theorem 6.3 classifies graded 
continuous-trace algebras with spectrum T, and from the isomorphism Equation (8.2), 
we recover the main results of [9]. 

8.3. We have called HG(T,S) an equivariant cohomology group because it is a modi­
fication of the ordinary cohomology group H2(T,S) designed to accommodate an ac­
tion of G. We have not, however, shown that it is part of a larger cohomology theory 
in which there is an algebraic apparatus to help us compute. As we have hinted earlier, 
there are similar groups in all positive dimensions, and a long exact sequence associated 
to a principal G/N-bundle/r. T —> Z, which reduces to the Gysin sequence of a principal 
circle bundle in the case G = R, N = Z. This sequence will resolve some of the obvi­
ous questions about HG—for example, it will identify the range of the homomorphism 

b: HQ —-* HX(Z, 9\£) of Lemma 7.1 as the kernel of the homomorphism [q] 1—>([/?], [q])c 
of [17]—and will also provide non-trivial information about dynamical systems. For, 
example, by taking N = {e}, so that G acts freely, we shall obtain an isomorphism 

H2
G(T,S)^p*H2(T/G,S) 
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This implies that every system (A, G, a) with spectral system (Co(T), r) is Morita equiv­
alent to the pull-back of a system (#, G, id) with spectrum T/G, and we recover [13, 
Theorem 1.1]. 

There are other questions about HG(-,S) which the Gysin sequence will not resolve. 
For example, what can we say about the homomorphism [A, v\ i—• [v] of HG(T,S) into 
H2(T9S)7 This is certainly a question of some interest: a class 6 is in the range exactly 
when there is an algebra A with 6(A) = 6 carrying an action of G which is locally Morita 
equivalent to (Co(r),r). In [18], we shall prove that, when G = R, N = Z and T is a 
principal T = IR/Z-bundle, this map is surjective, and indeed is an isomorphism. More 
generally, we show that when G = Rk, N = Zk and T is a principal T^-bundle, the 
range consists precisely of the classes in H2(T,S) which can be realized by cocycles 
defined on covers by invariant sets. We shall also consider in detail the case G = T, 
TV = {e27"*/m}, where the map [X,u] \—> [i/] is neither surjective or injective. We hope 
that our presentation of these results in [18] will inspire topologists to bombard us with 
useful information about HG. 

8.4. In Theorem 7.3, we have shown how to compute the Dixmier-Douady class of the 
system dual to an Af-principal system (A, G, a) in terms of a cocycle (A, v) represent­
ing S (A y\aG,G, a). It is tempting to ask whether this construction is a special case of 
some duality for equivariant cohomomology, which maps HG into / /? . However, while 

Lemma 7.1 shows how (A, v) G ZG(T,S) determines a cocycle in Z1 (T/G, fAÔ,we would 
have to choose a principal TV-bundle q: Y —> T/G realizing this cocycle before we could 
talk about a dual cohomology group H2AY,S). When we start with a system (A, G, a), 
the spectrum q:(A x a G)A —+ T/G provides a canonical choice, but we have not been 
able to find a purely topological analogue of this construction which would allow us to 
discuss duality without reference to C*-algebras. 
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