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Abstract. Let G be a semisimple real algebraic group defined over Q, Ŵ be an arithmetic

subgroup of G, and T be a maximal R-split torus. A trajectory in G/Ŵ is divergent

if eventually it leaves every compact subset. In some cases there is a finite collection

of explicit algebraic data which accounts for the divergence. If this is the case, the

divergent trajectory is called obvious. Given a closed cone in T, we study the existence

of non-obvious divergent trajectories under its action in G/Ŵ. We get a sufficient condition

for the existence of a non-obvious divergence trajectory in the general case, and a full

classification under the assumption that rankQG = rankRG = 2.

Key words: group actions, homogeneous dynamics, arithmetic groups, Lie groups

representation

2020 Mathematics Subject Classification: 22E40 (Primary); 11J13 (Secondary)

1. Introduction
Let G be a semisimple real algebraic group defined over Q, Ŵ be an arithmetic subgroup

of G, and A ⊂ G be a semigroup. The action of A on G/Ŵ induces a flow on G/Ŵ. The

ergodic theory of these flows is extensively studied and so is the behavior of a generic

trajectory. Some sets of exceptional trajectories are related to classical problems in number

theory (see [KSS]). A special class of such exceptional trajectories are the divergent

trajectories. It was proved by Dani [D] that these trajectories are related to singular systems

of linear forms, which are studied in the theory of Diophantine approximation.

A trajectory Ax in G/Ŵ is called divergent if the map a 7→ ax, a ∈ A, is proper. In some

cases one can find a simple algebraic reason for the divergence. For example, consider

the space of unimodular lattices SLd(R)/SLd(Z) with the action of a one-parameter

diagonalizable subgroup {at : t ∈ R}. It follows from Mahler’s compactness criterion that

if one can find a non-zero vector v ∈ Zd such that

‖atx · v‖ −→
t→∞

0,
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then the trajectory {atx : t ≥ 0} is divergent. There are more complicated cases in which

one has a sequence of different non-zero vectors vt in Zd such that ‖atvt‖ → 0 as t → ∞.

Such trajectories are also divergent but the divergence is not due to one vector v.

Given A, some natural questions are: Are there divergent trajectories for the action of
A on G/Ŵ? Can one always find a simple reason for the divergence?

For the case discussed in the above example a classification was proved by Dani

[D]. He showed that if d = 2 all divergent trajectories are ‘degenerate’ and if d ≥ 3

then there exists a ‘non-degenerate’ divergent trajectory. What is the difference between

these two cases? It seems that the heart of the matter is the rational rank of G. In

[W1] it was conjectured by Weiss that if A is a diagonal subgroup, then the existence

of divergent trajectories and of ‘non-obvious’ divergent trajectories depends only on the

relation between the dimension of A and the rational rank of G. See Definitions 1.2

and 1.3 for the definitions of obvious and degenerate divergent trajectories, respectively,

and [TW, W1, W2] for results regarding the conjecture.

Assume that rankQG = rankRG = 2. Let A be a two-dimensional closed cone in G

(see Definition 1.4 below). Then there are obvious divergent trajectories under the action

of A. We will show that the existence of non-obvious divergent trajectories under the

action of A depends on its intersection with some chambers which are defined using the

Q-fundamental weights of G. See §1.1 for the definition of the Q-fundamental weights.

These results generalize Corollary 4.7 and Theorem 4.8 in [W1].

We now introduce the terminology and notation we need for stating our main results:

Theorem 1.6, which provides a criterion for non-existence of non-obvious divergent

trajectories, and Theorem 1.7, which provides a criterion for existence of non-obvious

divergent trajectories.

1.1. The main results. Let G be a semisimple real algebraic group defined over Q and Ŵ

be an arithmetic subgroup of G (with respect to the given Q-structure). Denote by π the

quotient map G → G/Ŵ, g 7→ gŴ.

Definition 1.1. Let x ∈ G/Ŵ and A ⊂ G. A trajectory Ax is divergent if for any compact

subset K ⊂ G/Ŵ there is a compact C ⊂ A such that

h ∈ A\C ⇒ hx /∈ K .

The easily described divergent trajectories are defined as follows.

Definition 1.2. Let g ∈ G and let A ⊂ G be a semigroup. A trajectory Aπ(g) ⊂ G/Ŵ is

called an obvious divergent trajectory if for any unbounded sequence {ak} ⊂ A there are a

subsequence {a′
k} ⊂ {ak}, a Q-representation ̺ : G → GL(V ), and a non-zero v ∈ V (Q)

such that

̺(a′
kg)v −→

k→+∞
0.

A proof that an obvious divergent trajectory is indeed divergent can be found in [W1].

The notion of degenerate divergent trajectories was defined for one-parameter semi-

groups of G in [D]. It is similar to the definition of obvious divergent trajectories, but under
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the consideration of a more restricted class of representations. So, the set of degenerate

divergent trajectories is a priori smaller than the set of obvious divergent trajectories. The

following is a generalization of this definition for any semigroup of G.

Definition 1.3. Let g ∈ G and let A ⊂ G be a semigroup. A trajectory Aπ(g) ⊂ G/Ŵ is

called a degenerate divergent trajectory if for any unbounded sequence {ak} ⊂ A there are

a subsequence {a′
k} ⊂ {ak}, a Q-representation ̺ : G → GL(V ), and a non-zero v ∈ V (Q)

such that:

(1) ̺(a′
kg)v −→

k→+∞
0;

(2) G[v] = {g ∈ G : ̺(g)v is a scalar multiple of v} is a parabolic subgroup of G.

Let g be the Lie algebra of G. Equip g with a Q-structure which is Ad(Ŵ)-invariant. Fix

some rational basis for g and denote its Z-span by gZ. Let S be a maximal Q-split torus

and let T be a maximal R-split torus which contains S. Denote by t and s the Lie algebras

of T and S, respectively.

Definition 1.4. A semigroup A ⊂ T is called a closed cone if there are a connected sub-

group T0 ⊂ T , finitely many characters λ1, . . . , λk ∈ T ∗, and non-negative p1, . . . , pk

such that

A = {a ∈ T0 : ∀i = 1, . . . , k, λi(a) ≥ pi}.

It is shown in [W1] that obvious divergent trajectories for the action of closed cones are

determined by finitely many rational representations and finitely many rational vectors.

Denote by 8Q the set of Q-roots in s∗. Denote by W(8Q) the Weyl group associated

with 8Q, i.e. the group generated by the reflections ωλ, λ ∈ 8Q, defined by

ωλ(χ) = χ − 〈χ , λ〉λ (1.1)

for any characters χ in s∗ (〈·, ·〉 will be defined in §2.1).

There exists a subset 1Q ⊂ 8Q such that any λ ∈ 8Q can be expressed uniquely as a

linear combination

λ =
∑

α∈1Q

mα(λ)α (1.2)

in which each mα(λ) ∈ Z and either all mα(λ) ≥ 0 or all mα(λ) ≤ 0. The set 1Q is

called a Q-simple system and each α ∈ 1Q is called a Q-simple root. For λ1, λ2 ∈ s∗,

we write λ1 ≥ λ2 if λ1 − λ2 can be written as a linear combination of Q-simple roots with

non-negative coefficients, and λ1 > λ2 if λ1 ≥ λ2 and λ1 6= λ2.

Fix

1Q = {α1, . . . , αr }. (1.3)

Let χ1, . . . , χr ∈ s∗ be the Q-fundamental weights of g, i.e. for any 1 ≤ i, j ≤ r ,

〈χi , αj 〉 = δi,j (1.4)

(Kronecker delta).

For λ ∈ t∗, denote by λ|s the restriction of λ to s.
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FIGURE 1. Depiction of A+ (as defined in Theorem 1.6) and Aǫ (as defined in Theorem 1.7) for the

standard basis of g2

Remark 1.5. According to [Bor1, §8.5], there exists t0 such that t is a direct sum of t0

and s. Thus, for any character χ ∈ s∗, one can define χ̃ ∈ t∗ uniquely by χ̃ |s = χ and

χ̃ |t0
= 0.

Let ‖ · ‖ be a norm on t.

Our main result provides a necessary condition for the existence of non-obvious

divergence trajectories under the action of closed cones in T on G/Ŵ.

THEOREM 1.6. Assume that rankQG = rankRG = 2. Let

a+ = {t ∈ t : χ1(t) ≥ 0, ωα1
(χ1)(t) ≥ 0},

A+ = exp(a+).

Then, for any closed cone A ⊃ A+, there are only degenerate divergent trajectories for the
action of A on G/Ŵ.

Our second result provides a sufficient condition for the existence of a non-obvious

divergence trajectory under the action of closed cones in T on G/Ŵ. In particular, it shows

that when rankQG = rankRG = 2, any closed cone which does not satisfy the assumption

of Theorem 1.6 does not satisfy its conclusion as well. See Figure 1.

THEOREM 1.7. Assume that rankQG ≥ 2. Let ǫ > 0 and let

aǫ = {t ∈ t : χ̃1(t) ≥ ǫ‖t‖, χ̃2(t) ≥ ǫ‖t‖},
Aǫ = exp(aǫ).

Then, for any unbounded closed cone A ⊂ Aǫ , there exists a non-obvious divergent
trajectory for the action of A on G/Ŵ.

Remark 1.8. A different choice of a simple system or a different indexing of it in (1.3)

will result in a different closed cone in Theorem 1.6. In particular, when rankQG = 2,

the two indexing options of the standard basis will result in two different closed cones
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FIGURE 2. Depiction of A+ (as defined in Theorem 1.6) for the two indexing options of the standard basis of g2

which are not images of each other by the action of the Weyl group. The Weyl group acts

simply transitively on simple systems. Thus, up to the action of the Weyl group, these two

examples give all the closed cones which may appear in Theorem 1.6. See Figure 2.

Remark 1.9. It follows from [BT, §2.15] that G is an almost direct product of its Q-almost

simple Q-factors. By [BT, §5.11], the relative root system of each Q-almost simple

Q-factor is irreducible. Hence, if 8Q is a reducible root system of rational rank two, then

up to a finite index G is an almost direct product of Q-subgroups of G, each of rational

rank one. In that case, Theorem 1.6 follows from [D, Theorem 6.1]. Hence, in the proof of

Theorem 1.6 we may assume that 8Q is irreducible.

1.2. Structure. Theorem 1.6 is proved in §5. We start by looking at a divergent trajectory

under the action of a closed cone. In §4 a compactness criterion that can be deduced from

[TW, §3] is stated. Using the compactness criterion we can attach to each element in the

cone its ‘reason for divergence’. The rank assumption in the theorem implies that there

are essentially two such reasons. We denote elements in the corresponding sets by d1, d2.

Then, up to a compact set, d1 and d2 form a cover of Lie(A). We then use a topological

property of d1 in order to prove the existence of an unbounded connected component in

d2. This topological property is stated in Theorem 4.9. As an important step in the proof

of Theorem 4.9, in §3 we prove Theorem 3.1 regarding the norm of the image of a highest

weight vector. In the proof of Theorem 4.9, we also use properties of real representations

which are proved in §2.2 as well as corollaries of the compactness criterion. Once we know

that there exist unbounded connected components in d1, d2, we use Proposition 4.8 to find

a ‘nice’ vector in each unbounded component. By using similar arguments if necessary,

we then show that there is a finite set of representations and vectors (which were chosen to

satisfy the second condition of Definition 1.3) which ‘cause’ the divergence, proving that

the trajectory is a degenerate divergent trajectory.

Theorem 1.7 is proved in §6. This proof can be read independently of previous sections

(apart from notation which appears in §2 and §4).
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2. Preliminary results
2.1. Real representations. Denote by 8R the set of R-roots. For λ ∈ 8R, denote by gλ

the R-root space for λ.

Let κ be the Killing form on g and θ be the Cartan involution associated with κ . For

λ ∈ t∗, let tλ ∈ t be determined by λ(t) = κ(tλ, t) for all t ∈ t. For λ1, λ2 ∈ t∗, let

(λ1, λ2) = κ(tλ1
, tλ2

).

Let ρ : g → gl(V ) be an R-representation of g. For λ ∈ t∗, denote

Vρ,λ = {v ∈ V : ∀t ∈ t, ρ(t)v = λ(t)v}.

If Vρ,λ 6= {0}, then λ is called an R-weight for ρ. Denote by 8ρ the set of R-weights for ρ.

For any λ ∈ 8ρ , Vρ,λ is called the R-weight vector space for λ, and members of Vρ,λ are

called R-weight vectors for λ.

Roots and weights are related by

ρ(gλ)Vρ,χ ⊂ Vρ,λ+χ , λ ∈ 8R, χ ∈ 8ρ . (2.1)

For any λ, µ ∈ t∗, denote

〈λ, µ〉 = 2
(λ, µ)

(λ, λ)
. (2.2)

By [BT, §5], for any λ ∈ 8R, real representation ρ, and µ ∈ 8ρ ,

〈λ, µ〉 is an integer. (2.3)

The Lie algebra sl(2, R) has a basis H , X, Y which satisfies

ad(H)X = 2X, ad(H)Y = −2Y , ad(X)Y = −H . (2.4)

LEMMA 2.1. [Bou2, §VIII.1.2] Let (V , ρ) be an irreducible real representation of
sl(2, R) with dimension k. Assume that V is generated by an element v ∈ V such that
ρ(Y )v = 0 and ρ(H)v = λv for some λ 6= 0. Then −λ = k − 1.

The following lemma follows from the proof of Proposition 6.52 in [Kn].

LEMMA 2.2. Let λ ∈ 8R and E ∈ gλ be non-zero. For some c > 0. the elements X = cE,
Y = θX, and H = (2/(λ, λ))tλ satisfy (2.4). In particular, v = RH ⊕ RX ⊕ RY is a Lie
subalgebra of g isomorphic to sl(2, R).

LEMMA 2.3. Let (ρ, V ) be a finite-dimensional real representation of g, λ ∈ 8R, µ ∈ 8ρ ,
E ∈ gλ, and v ∈ Vρ,µ. Assume that λ − µ /∈ 8ρ . Then 〈λ, µ〉 ≤ 0 and, if

ρ(E)lv = 0 (2.5)

for some non-negative l ≤ −〈λ, µ〉, then E = 0 or v = 0.

Proof. According to [Ha, Lemma 10.3], λ − µ /∈ 8ρ implies that 〈λ, µ〉 ≤ 0.

Assume by contradiction that there exists l ≤ 〈λ, µ〉 such that (2.5) is satisfied. Let

X, Y , H , v be defined as in Lemma 2.2 for E.
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Denote

W = spanR{v, ρ(X)v, . . . , ρ(X)l−1v}.

It follows from (2.1) and λ − µ /∈ 8ρ that ρ(Y )v = 0. Thus, W is invariant under the

action of v. Therefore, (ρ, W) is an irreducible real representation of v with dimension l.

In addition, we have ρ(H)v = µ(H)v and

µ(H) = κ(tµ, H) = κ(tµ,
2

(λ, λ)
tλ) = 2

(µ, λ)

(λ, λ)
= 〈λ, µ〉.

Hence, by Lemma 2.1, we get −〈λ, µ〉 = l − 1, which is a contradiction.

LEMMA 2.4. Let λ, µ ∈ 8R, Xλ ∈ gλ, X2λ ∈ g2λ, and Xµ ∈ gµ. Assume that λ − µ /∈
8R ∪ {0}. Then l = −〈λ, µ〉 ≥ 0 and

∑

k≤[ l
2 ]

1

k!
·

1

(l − 2k)!
· ad(X2λ)

kad(Xλ)
l−2kXµ = 0, (2.6)

implies that Xλ = X2λ = 0 or Xµ = 0.

Proof. It again follows from [Ha, Lemma 10.3] and λ − µ /∈ 8ρ that 〈λ, µ〉 ≤ 0.

Note that if 2λ /∈ 8R, we can deduce the conclusion of the lemma from Lemma 2.3.

Hence, we may assume that 2λ ∈ 8R. According to (2.3), 〈2λ, µ〉 is an integer. By the

linearity of (·, ·) and (2.2), we have 〈λ, µ〉 = 2〈2λ, µ〉. Thus, l is even. If l = 0, then (2.6)

implies that Xµ = 0. Thus, we may assume that l > 0. Then, according to [Bou1, §VI.1.3],

l ∈ {2, 4}.
First we will prove that for any Xλ ∈ gλ, X2λ ∈ g2λ, and Xµ ∈ gµ,

ad(X2λ)Xµ + ad(Xλ)
2Xµ = 0 implies that Xλ = X2λ = 0 or Xµ = 0. (2.7)

Assume by contradiction that there exist 0 6= Xλ ∈ gλ, and X2λ ∈ g2λ, Xµ ∈ gµ not both

zero, such that ad(X2λ)Xµ + ad(Xλ)
2Xµ = 0. Then

ad(θXµ)(ad(X2λ)Xµ + ad(Xλ)
2Xµ) = 0. (2.8)

By the assumption, λ − µ /∈ 8R, which implies that 2λ − µ /∈ 8R. Hence, ad(θXµ)

commutes with ad(Xλ) and ad(X2λ). Therefore, (2.8) implies that

ad(X2λ)ad(θXµ)Xµ + ad(Xλ)
2ad(θXµ)Xµ = 0.

By Lemma 2.2, the definition of tµ, and the anti-symmetry of the Lie brackets, we arrive at

0 = ad(X2λ)tµ + ad(Xλ)
2tµ

= λ(tµ)(2X2λ + ad(Xλ)Xλ)

= 2(λ, µ)X2λ.

Thus, X2λ = 0. Now, according to Lemma 2.3, either Xλ = 0 or Xµ = 0, which is a

contradiction.
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Assume that Xλ ∈ gλ, X2λ ∈ g2λ, and Xµ ∈ gµ satisfy (2.6). If l = 2, then (2.6) implies

that

ad(X2λ)Xµ + 1
2
ad(Xλ)

2Xµ = 0. (2.9)

By replacing Xλ with 1√
2
Xλ, the conclusion of the lemma follows from (2.7).

If l = 4, then (2.6) implies that

1
2

· ad(X2λ)
2Xµ + 1

2
· ad(X2λ)ad(Xλ)

2Xµ + 1
4!

· ad(Xλ)
4Xµ = 0. (2.10)

One can find c1, c2 > 0 such that the left-hand side of (2.10) is equal to

1
2
(ad(X2λ) + c1ad(Xλ)

2)(ad(X2λ)Xµ + c2ad(Xλ)
2Xµ).

Thus, by replacing Xλ with
√

c1Xλ or
√

c2Xλ, the conclusion of the lemma follows

from (2.7).

2.2. The fundamental weights. Recall that 1Q is a Q-simple system and χ1, . . . , χr are

the corresponding Q-fundamental weights (defined in §1.1).

As in the previous section, 8R is the set of R-roots. According to [Bor1, §21.8], there

exists an R-simple system 1R ⊂ 8R such that the order on 8R defined using this simple

system satisfies

α > β ⇒ α|s ≥ β|s. (2.11)

Denote by 8+
R

the set of positive R-roots, i.e. the roots λ ∈ 8R such that λ > 0.

If the only multiples of a Q-root λ in 8Q are ±λ, then λ is called reduced. If all λ ∈ 8Q

are reduced, then 8Q is called reduced.

For any α ∈ 1Q, let

8α = {β ∈ 8R : 8Q is reduced and β|s ≥ α, or 8Q is non-reduced and β|s ≥ 2α}
(2.12)

and

χα =
∑

β∈8α

β. (2.13)

LEMMA 2.5. For any α ∈ 1Q, β ∈ 8+
R

,

〈χα , β〉
{

≥ 0 if β|s ≥ α,

= 0 otherwise.

Proof. Let β ∈ 8+
R

be such that β|s � α. Then, equation (1.1) implies that for any λ ∈ 8α

we have ωβ(λ) ∈ 8α . Hence, ωβ leaves 8α invariant. Thus, (2.13) implies that ωβ(χα) =
χα . If follows from (1.1) that 〈χα , β〉 = 0, proving the second part of the lemma.

Let β|s ≥ α. Then, for any λ ∈ 8α , either ωβ(λ) ∈ 8α or ωβ(λ) < λ. Therefore,

ωβ(χα) ≤ χα . (2.14)

The first part of the lemma now follows from (1.1).
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Remark 2.6. In a similar way to Remark 1.5, one can deduce from Lemma 2.5 that for any

1 ≤ i ≤ r , χαi
is a scalar multiple of χ̃i .

LEMMA 2.7. Assume that rankQG = 2, and 8Q is irreducible. For any ω ∈ W(8Q), there
exist a, b, not both positive, such that ω(χ1) = aχ1 + bωα1

(χ1).

Proof. Let ω ∈ W(8Q). Since the statement is satisfied for the identity element in W(8Q)

and for ωα1
, we may assume that ω is neither of them.

We say that a weight is dominant if it is a non-negative linear combination of the

Q-fundamental weights.

It is known (see [Hu, §13.2]) that any rational weight is conjugated under the Weyl

group to exactly one dominant weight. Since χ1 is a dominant weight, there exist a1, b1,

not both positive, such that

ω(χ1) = a1χ1 + b1χ2. (2.15)

Note that {ωα1
(χ1), χ2} are the fundamental weights with respect to the simple system

ωα1
(1). Thus, in a similar way to (2.15), one can get that there exist a2, b2, not both

positive, such that

ω(χ1) = a2ωα1
(χ1) + b2χ2. (2.16)

Using (1.4), it can be checked that for some c > 0,

χ2 = c(ωα1
(χ1) + χ1). (2.17)

It follows from (1.4), (2.15), and (2.16) that

a1 = 〈ω(χ1), α1〉
= −〈ω(χ1), −α1〉
= −〈ω(χ1), ωα1

(α1)〉
= −a2.

Hence, b1, b2 are not both positive. Without loss of generality, assume that b1 ≤ 0. Then,

by (2.15) and (2.17), we arrive at

ω(χ1) = (a1 + cb1)χ1 + cb1ωα1
(χ1)

with cb1 ≤ 0.

2.3. Strongly rational representations. Let ̺ : G → GL(V ) be an R-representation and

ρ : g → gl(V ) be its derivative. It will be convenient notationally to refer to 8ρ as 8̺

and for any λ ∈ 8ρ to Vρ,λ as V̺,λ (in the notation of §2.1). Moreover, elements of 8̺ are

called R-weights for ̺, for any λ ∈ 8̺, V̺,λ is called the R-weight vector space for λ, and

members of V̺,λ are called R-weight vectors for λ.

An R-weight χ for ̺ is called an R-highest weight for ̺ if any λ ∈ 8̺ satisfies λ ≤ χ .

Definition 2.8. A finite-dimensional R-representation ̺ : G → GL(V ) is called strongly
rational over R if there is an R-highest weight for ̺ and the R-weight vector space for the
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R-highest weight is of dimension one. It is called strongly rational over Q if it is strongly

rational over R, defined over Q, and the R-weight vector space for the R-highest weight is

also defined over Q.

For α ∈ 1Q, let uα =
⊕

λ∈8α
gλ, dα = dim uα , and ̺α : G → GL

(
∧dα g

)

be the dαth

exterior power of the adjoint representation (see §2.2 for the definition of 8α and [Sp, Yo,

HK] for the definition and properties of the exterior power). For any α ∈ 1Q, ̺α is strongly

rational over Q with R-highest weight χ̃α and V̺α ,χ̃α
is the set of all non-zero vectors of

the form

X1 ∧ · · · ∧ Xdα , where for all 1 ≤ j ≤ dα , there exists β ∈ 8α such that Xj ∈ gβ

(2.18)

(see (2.13) and Remark 2.6). We denote by ρα the derivative of ̺α .

LEMMA 2.9. [Kn, Proposition 2.62] For any reduced root λ ∈ 8R, there exists ω ∈
W(8R) such that λ ∈ ω(1R).

LEMMA 2.10. Let α ∈ 1Q, ω ∈ W(8R), λ ∈ 8R, Xλ ∈ gλ, X2λ ∈ g2λ, and v ∈ V̺α ,ω(χ̃α).
Assume that ω(χ̃α) + λ ∈ 8̺α . Then l = −〈ω(χ̃α), λ〉 ≥ 1 and

∑

k≤[ l
2 ]

1

k!
·

1

(l − 2k)!
· ρα(X2λ)

kρα(Xλ)
l−2kv = 0 (2.19)

implies that Xλ = X2λ = 0 or v = 0.

Proof. First note that by Lemma 2.9 we may assume that ω is the identity.

Since χ̃α is the highest weight, we may deduce that −λ ∈ 8+
R

and so

χ̃α − λ /∈ 8̺α . (2.20)

By [Ha, Lemma 10.3], we have 〈χ̃α + λ, λ〉 ≤ 2, which, using (1.1) and (2.2), implies that

〈χ̃α , λ〉 ≤ −1. By Lemma 2.5, we then get

− λ|s ≥ 2α. (2.21)

Assume by contradiction that there exist Xλ ∈ gλ, X2λ ∈ g2λ, not both zero, and a

non-zero v ∈ Vχ̃α
such that (2.19) is satisfied.

If X2λ = 0, then by Lemma 2.3, (2.19), and (2.20), we get a contradiction. Thus, we

may assume that X2λ 6= 0 (and then 8Q is non-reduced).

It follows from (2.18) that for some Y1, . . . , Ydα ∈ g,

v = Y1 ∧ · · · ∧ Ydα .

Moreover, for any 1 ≤ i ≤ dα , there exist βi ∈ 8α such that Yi ∈ gβi
(there might be

βi = βj for i 6= j ).
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For 1 ≤ i ≤ dα , denote li = 〈βi , λ〉. Then l =
∑dβ

i=1 li implies that

∑

k≤[l/2]

1

k!
·

1

(l − 2k)!
· ρα(X2λ)

kρα(Xλ)
l−2kv

=
dα
∧

i=1

∑

k≤[li/2]

1

k!
·

1

(li − 2k)!
· ρα(X2λ)

kρα(Xλ)
li−2kYi .

(2.22)

According to Corollary 4 in [Sp, §7], v1, . . . , vn satisfy v1 ∧ · · · ∧ vn = 0 if and only if

they are linearly dependent. Therefore, (2.20), (2.22), and the linear independence of the

weight spaces imply that there exist 1 ≤ i ≤ dα and a non-zero Y ∈ gβi
such that

∑

k≤[li/2]

1

k!
·

1

(li − 2k)!
· ρα(X2λ)

kρα(Xλ)
li−2kY = 0. (2.23)

Since 8Q is non-reduced, (2.12) implies that βi |s ≥ α. Since 3α /∈ 8Q (a basic property

of a root system), using (2.21) we may deduce that βi − λ /∈ 8R. Thus, (2.23) is a

contradiction to Lemma 2.4.

3. Highest weight representations
We preserve the notation of §2.

Let ̺ : G → GL(V ) be an irreducible finite-dimensional R-representation of G.

There is a direct sum decomposition

V =
⊕

λ∈8̺,R

V̺,λ. (3.1)

For any λ ∈ 8̺,R, let ϕλ : V → V̺,λ be the projection associated with (3.1).

The goal of this section is to prove that the norm of the image of a highest weight vector

can be estimated by looking at a small subset of its coefficients.

THEOREM 3.1. Let ̺ : G → GL(V ) be a strongly rational over R representation with an
R-highest weight χ , and ‖ · ‖ be a norm on V . Assume that either 8R is reduced or ̺ = ̺β

for some β ∈ 1Q (see §2.3). Then there exists c = c(̺, ‖·‖) > 0 such that any g ∈ G and
v ∈ V̺,χ satisfy

‖̺(g)v‖ ≤ c · max
ω∈W(8R)

‖ϕω(χ)(̺(g)v)‖.

For the rest of this section assume that ̺ is strongly rational over R and either 8R is

reduced or ̺ = ̺β for some β ∈ 1R.

Denote by χ the highest R-weight for ̺. Let ρ : g → gl(V ) be the derivative of ̺.

Let ‖·‖ be a norm on V .

PROPOSITION 3.2. [Bor1, §14.4] Assume that 9 = {λ1, . . . , λd} ⊂ 8+
R

is closed under

addition, i.e., if λ, µ ∈ 9 and λ + µ ∈ 8R, then λ + µ ∈ 9. Denote n9 =
⊕d

i=1 gλi
,

N9 = exp n9 and, for 1 ≤ i ≤ d , denote Ni = exp gλi
(note that N9 does not depend
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on how the elements of 9 are ordered). Then

N9 = N1 · N2 · · · Nd = {n1 · n2 · · · nd : ni ∈ Ni}.

Let n =
⊕

λ∈8+
R
gλ, N = exp(n), and B = NG(N). Then B is an R-Borel subgroup.

LEMMA 3.3. Let ω ∈ W(8R), n ∈ N , ξ = ω(χ), α ∈ 1R, and v ∈ V̺,ξ be non-zero.
Assume that ϕωα(ξ)(̺(n)v) = 0 (see (1.1) for the definition of ωα). Then, for any
k ∈ N,

ϕξ+kα(̺(n)v) = 0. (3.2)

Proof. Assume that 8+
R

= {λ1, . . . , λd}. Since 8+
R

is closed under addition, we may use

Proposition 3.2 to write

n = exp(X1) exp(X2) · · · exp(Xd), Xi ∈ gλi
.

By the definition of the exponential map, for any X ∈ g we have

̺(exp(X)) =
∞
∑

k=0

1

k!
ρ(X)k . (3.3)

It follows from (2.1) that for any k1, . . . , kd ∈ N, ρ(X1)
k1 · · · ρ(Xd)kd v is an R-weight

vector for ξ + k1λ1 + · · · + kdλd . Hence, for any µ ∈ 8̺,

ϕµ(̺(n)v) =
∑

µ = ξ + k1λ1 + · · · + kdλd
k1, . . . , kd ∈ N

1

k1! · · · kd !
ρ(X1)

k1 · · · ρ(Xd)kd v. (3.4)

Assume that α = λi , 2α = λj and, without loss of generality, assume that j < i. Since α

is an R-simple root, (3.4) implies that for any l ∈ N,

ϕξ+lα(̺(n)v) =
∑

k≤[l/2]

1

k!

1

(l − 2k)!
ρ(Xj )

kρ(Xi)
l−2kv (3.5)

(if 2α /∈ 8R, then Xj = 0).

If ξ + α /∈ 8̺, then ρ(Xi)v = 0, and (3.2) can be deduced from (3.5). Assume

otherwise.

If 8Q is non-reduced, then equation (3.5) and Lemma 2.10 imply that Xi = Xj = 0.

Assume that 8Q is reduced. Then Xj = 0. The maximality of χ , the assumption ξ +
α ∈ 8̺, and Lemma 2.9 imply that ξ − α /∈ 8̺. Then, according to Lemma 2.3, Xi = 0.

In both cases Xi = Xj = 0 and so (3.2) can be deduced from (3.5).

According to [Bor1, §11.19], the Weyl group satisfies W(8R) = NG(T )/ZG(T ). For

ω ∈ W(8R), let ω̄ be a representative of ω in NG(T ). For any λ ∈ 8̺ and ω ∈ W(8R),

we have

ρ(ω̄)V̺,λ = V̺,ω(λ). (3.6)
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THEOREM 3.4. (Bruhat decomposition) [He, §IX.1] We have

G =
⊎

ω∈W(8R)

Nω̄B,

where
⊎

denotes a disjoint union.

Fix an order 8+
R

= {λ1, . . . , λd} so that

any 1 ≤ i < j ≤ d satisfies λi � λj . (3.7)

For ω ∈ W(8R), let

{λ ∈ 8+
R

: ω(χ) + λ ∈ 8̺} = {λω
1 , . . . , λω

k(ω)},

where the indexation is the one induced from the indexation on 8+
R

, and let

Uω = exp(gλω
1
) · exp(gλω

2
) · · · exp(gλω

k(ω)
).

PROPOSITION 3.5. Let ω ∈ W(8R), n ∈ Uω, and v ∈ V̺,ω(χ). If n is not the identity and
v is non-zero, then there exists ω′ ∈W(8R) such that ω′(χ) 6=ω(χ) and ϕω′(χ)(̺(n)v) 6=0.

Proof. Arguing by contradiction, assume that there exist ω ∈ W(8R), 1 6= n ∈ Uω, and

0 6= v ∈ V̺,ω(χ) such that any ω′ ∈ W(8R), ω′(χ) 6= ω(χ) satisfies ϕω′(χ)(̺(n)v) = 0.

Denote ξ = ω(χ). Let λ ∈ 8+
R

be a reduced R-root which satisfies ξ + λ ∈ 8̺,R.

According to Lemma 2.9, there exists s1 ∈ W(8R) so that λ ∈ s1(1R). Then s1(χ) is the

highest weight according to the order defined by s1(1R). Let v1 = ̺(s̄1ω̄
−1)v ∈ V̺,s1(χ)

and g = nω̄s̄−1
1 ; then

̺(n)v = ̺(g)v1. (3.8)

Replace 1R with s1(1R). By Theorem 3.4, g = n2s̄2b, where n2 ∈ N , s2 ∈ W(8R), and

b ∈ B (note that here 8+
R

is defined using s1(1R)). Since s1(χ) is the highest weight,

according to the new order, ̺(b)v1 ∈ V̺,s1(χ). Then there exists a non-zero vector v2 ∈
V̺,s2s1(χ) such that

̺(g)v1 = ̺(n2)v2. (3.9)

It follows from (3.3) and n2 ∈ N that ϕs2s1(χ)(̺(n2)v2) = v2. Thus, by (3.8) and (3.9),

ϕs2s1(χ)(̺(n)v) = v2. Since ϕs(χ)(̺(n)v) = 0 if s(χ) 6= ξ , and v2 is non-zero, we can

deduce that s2s1(χ) = ξ . Since ξ + λ ∈ 8̺,R, by Lemma 2.10(i) and the assumption, we

have ϕωλ(ξ)(̺(n2)v2) = 0. Then it follows from Lemma 3.3 and equations (3.8) and (3.9)

that ϕξ+λ(̺(n)v) = ϕξ+2λ(̺(n)v) = 0. Hence, any positive real root λ satisfies

ϕξ+λ(̺(n)v) = 0. (3.10)

By the definition of Uω,

n = exp(X1) · · · exp(Xk(ω)), Xi ∈ gλω
i

.

We will now show by induction on i that Xi = 0. Let 1 ≤ i ≤ k(ω) and assume that

X1 = · · · = Xi−1 = 0. As in the proof of Lemma 3.3, it follows from (3.3), (3.7), and

the induction assumption that

ϕξ+λω
i
(̺(n)v) = ρ(Xi)v.
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Since v 6= 0, by (3.10) and Lemma 2.3, it follows that Xi = 0. Thus, n is the identity

element, which is a contradiction.

Let k1, k2 ∈ N, l = (l1, . . . , lk1
) ∈ Rk1

+ . We say that f : Rk1 → Rk2 is l-homogeneous
if for any x1, . . . , xk1

∈ R, a ≥ 0,

f (al1x1, . . . , alk1 xk1
) = af (x1, . . . , xk1

).

Let ‖·‖l be the following quasi-norm on Rk1 :

‖x‖l = max
1≤i≤k1

|xi |1/li , x = (x1, . . . , xk1
) ∈ Rk1 .

LEMMA 3.6. Let k1, k2 ∈ N, l ∈ Rk1
+ , and assume a norm on Rk2 . Let f : Rk1 → Rk2 be

a continuous l-homogeneous function. Then there exists c1 > 0 such that for any x ∈ Rk1 ,

c1 · ‖f (x)‖ ≤ ‖x‖l .

If f (x) = 0, x ∈ Rk1 , only when x = 0, then there exists c2 > 0 such that for any x ∈ Rk1 ,

‖x‖l ≤ c2 · ‖f (x)‖.

The proof of Lemma 3.6 is left as an exercise for the reader.

LEMMA 3.7. [Kn, Theorem 2.63] The R-Weyl group acts simply transitively on R-simple
systems. That is, if 1 and 1′ are two R-simple systems for 8R, then there exists one and
only one element ω ∈ W(8R) such that ω(1) = 1′.

PROPOSITION 3.8. Let ω ∈ W(8R). For any c1 ≥ 1, there exists c2 ≥ 1 such that if n ∈
Uω, 0 6= v ∈ V̺,ω(χ) satisfy

max
s∈W(8R)

‖ϕs(χ)(̺(n)v)‖ ≤ c1 · ‖v‖, (3.11)

then ‖̺(n)v‖ ≤ c2 · ‖v‖.

Proof. Let {E1, . . . , Ek} be a basis for nR which satisfies the following. For any 1 ≤ i ≤
d , there exists 1 ≤ j (i) ≤ k, j (0) = 1, such that {Ej (i−1), . . . , Ej (i)} is a basis for gλi

. Let

e ∈ V̺,ω(χ) be of norm one. By the definition of strongly rational over R representations

and (3.6), the vector e spans V̺,ω(χ).

For 1 ≤ i ≤ d , denote li =
∑

α∈1R
mα(λi) and, for µ ∈ 8̺, denote

lµ =
{

1 if µ ≤ ω(χ),
∑

α∈1R
mα(µ − ω(χ)) otherwise,

where for an R-weight λ, mα(λ) is defined as in (1.2). For µ ∈ 8̺, define fµ : Rk → R
by

fµ(x1, . . . , xk) = ‖ϕµ(̺(exp(x1E1 + · · · + xj (1)Ej (1))

◦ · · · ◦ exp(xj (d−1)Ej (d−1) + · · · + xkEk))e)‖1/lµ .
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If µ ≥ ω(χ), it follows from (3.3) that

fµ(x1, . . . , xk) =
∥

∥

∥

∥

∑ 1

b1! · · · bm!
ρ(xj (i1−1)Ej (i1−1) + · · · + xj (i1)Ej (i1))

b1

◦ · · · ◦ ρ(xj (ik−1)Ej (ik−1) + · · · + xj (ik)Ej (im))
bme

∥

∥

∥

∥

1/lµ

,

where the sum is over all i1 < · · · < im such that b1λi1 + · · · + bmλim = µ − ω(χ).

Since µ < ω(χ) implies that fµ(x) = 0, we may deduce that each fµ is a continuous

l = (l1, . . . , lk)-homogeneous function for any µ ∈ 8̺,R.

Let

{µ1, . . . , µk1
} = {s(χ) : s ∈ W(8R), s(χ) 6= ω(χ)}

and f : Rk → Rk1 be defined by f = (fµ1
, . . . , fµk1

). Then f is a continuous

l-homogeneous function and, by Proposition 3.5, f (x) = 0 implies that x = 0. Hence,

according to Lemma 3.6, there exists c′
2 > 0 such that for any x ∈ Rk ,

‖x‖l ≤ c′
2 · ‖f (x)‖. (3.12)

There exists a = (a1, . . . , ak) ∈ Rk such that

n = exp(a1E1 + · · · + aj (1)Ej (1)) · · · exp(aj (d−1)Ej (d−1) + · · · + akEk).

Since e spans V̺,ω(χ) and is of norm one, and by the linearity of the representation, for

any µ ∈ 8̺,

‖ϕµ(̺(n)v)‖ = ‖v‖ · ‖fµ(a)‖lµ . (3.13)

Then, by (3.12) and the assumption,

‖a‖l ≤ c′
2 · ‖f (a)‖ ≤ c′

2 ·
1

‖v‖
· c1‖v‖ = c′

2 · c1. (3.14)

Assume that 8̺ = {µ1, . . . , µk2
}. We may apply Lemma 3.6 to f ′ = (fµ1

, . . . , fµk2
),

which is also a continuous l-homogeneous function, in order to deduce that there exists

c′
1 > 0 such that for any µ ∈ 8̺, x ∈ Rk ,

‖fµ(x)‖ ≤ c′
1 · ‖x‖l . (3.15)

Without loss of generality, assume that for any u ∈ V ,

‖u‖ = max
µ∈8̺,R

‖ϕµ(u)‖. (3.16)

Denote c2 = maxµ∈8̺ (c
′
1 · c′

2 · c1)
lµ . Then, by (3.13), (3.14), (3.15), and (3.16),

‖̺(n)v‖ = max
µ∈8̺,R

‖ϕµ(̺(n)v)‖

= ‖v‖ · max
µ∈8̺

‖fµ(a)‖lµ

≤ c2 · ‖v‖.

Proof of Theorem 3.1. Denote by c the constant c2 which satisfies the conclusion of

Proposition 3.8 for c1 = 1.
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Let s ∈ W(8R) satisfy

‖ϕs(χ)(̺(g)v)‖ = max
ω∈W(8R)

‖ϕω(χ)(̺(g)v)‖.

By Theorem 3.7, there exists s1 ∈ W(8R) such that s1(1R) = −s(1R). According to the

order defined using s1(1R), the R-highest weight for ̺ is s1(χ). Moreover, s(χ) is the

R-lowest weight for ̺ according to this order, i.e. every R-weight of ̺ is of the form

s(χ) +
∑

α∈1R
mαα with non-negative integers mα . Let v′ = ̺(s̄1)v. Then v′ ∈ V̺,s1(χ)

and

̺(g)v = ̺(gs̄−1
1 )v′.

Hence, by replacing 1R with s1(1R), χ with s1(χ), v with v′, and g with gs̄−1
1 , we may

assume that

‖ϕξ (̺(g)v)‖ = max
ω∈W(8R)

‖ϕω(χ)(̺(g)v)‖, (3.17)

where ξ is the R-lowest weight for ̺.

According to Theorem 3.4, g = nω̄b, where n ∈ N , ω ∈ W(8R), and b ∈ B. Since χ

is the highest weight, there exists v′ ∈ V̺,ω(χ) so that

̺(g)v = ̺(n)v′. (3.18)

Since ξ is the lowest weight, n ∈ N , and ϕξ (̺(g)v) 6= 0, by (3.3) we may deduce that

ω(χ) = ξ .

Order 8+
R

= {µ1, . . . , µd} so that

{µ1, . . . , µk(ω)} = {λω
1 , . . . , λω

k(ω)}.

Using Proposition 3.2 with 9 = 8+
R

, we may write

n = exp(X1) · · · exp(Xd), Xi ∈ gµi
.

For k(ω) + 1 ≤ i ≤ d , we have ξ + λi /∈ 8̺. Then, by (3.3), we have exp(Xi)v = v. Let

n′ = exp(X1) · · · exp(Xk(ω)); then

̺(n)v′ = ̺(n′)v′. (3.19)

By (3.17), (3.18), and (3.19), we have

‖ϕξ (̺(n′)v′)‖ = max
ω∈W(8R)

‖ϕω(χ)(̺(n′)v′)‖.

Since ϕξ (̺(n′)v′) = v′, Proposition 3.8 implies that

‖̺(n′)v′‖ ≤ c · ‖ϕξ (̺(n′)v′)‖. (3.20)

Now (3.18), (3.19), and (3.20) imply the conclusion of the theorem.

The following example shows that the reals in Theorem 3.1 cannot be replaced with the

rationals and hence that the assumption on the real rank of G in the proof of Theorem 1.6

is critical.
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Example 3.9. Let

1 =
(

1 0

0 1

)

, i =
(

0 −1

1 0

)

, j =
(

√
2 0

0 −
√

2

)

, k =
(

0
√

2√
2 0

)

.

One can check by direct computation that D = Q · 1 + Q · i + Q · j + Q · k is a central

division algebra over Q. Since D ⊗Q R ∼= M(2, R), the matrix algebra M(3, D) is

naturally imbedded in M(6, R). Denote by G the real algebraic group defined over Q
by

G(Q) = SL3(D) = {g ∈ M(3, D) : det(g) = 1}.

Then G = SL6(R) and

gQ = {X ∈ M(3, D) : trace(X) = 0}.

Then

S = {diag(s1, s1, s2, s2, s3, s3) : s1, s2, s3 ∈ R, s1 · s2 · s3 = 1}

is a maximal Q-split torus in G. Let ̺ : G → GL
(
∧8

g
)

be the eighth exterior power

of the adjoint representation. Then ̺ is a strongly rational over Q-representation. Denote

0 = ( 0 0
0 0

). There exists an order on the rational simple system so that 12s1 is the Q-highest

weight and

v =





0 0 1

0 0 0

0 0 0



 ∧





0 0 i

0 0 0

0 0 0



 ∧





0 0 j

0 0 0

0 0 0



 ∧





0 0 k

0 0 0

0 0 0





∧





0 1 0

0 0 0

0 0 0



 ∧





0 i 0

0 0 0

0 0 0



 ∧





0 j 0

0 0 0

0 0 0



 ∧





0 k 0

0 0 0

0 0 0





is a Q-highest weight vector. Let

g =



















1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



















.

Then it can be directly checked that ̺(g)v is a Q-weight vector for −6s3. Since

{ω(12s1) : ω ∈ W(8Q)} = {12s1, 12s2, 12s3},

we get that

max
ω∈W(8Q)

‖ϕω(χ)(̺(g)v)‖ = 0

even though ̺(g)v is a non-zero vector.
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4. Compactness criterion
Recall that 1Q = {α1, . . . , αr } is a Q-simple system for the rational root system 8Q.

Let B be a rational basis for gZ such that Bβ ⊂ gβ for any β ∈ 8Q ∪ {0} and B =
⊎

β∈8Q∪{0} Bβ .

For 1 ≤ i ≤ r , let

ui =
⊕

β∈8Q, β≥αi

gβ , Pi = NG(ui),

and Bi =
⊎

β≥αi
Bβ . Then P1, . . . , Pr are the maximal Q-parabolic subgroups of G

containing B (see §3 for the definition of B), u1, . . . , ur are the Lie algebras of their

unipotent radicals, and B1, . . . , Br are bases for u1, . . . , ur .

Definition 4.1. For a neighborhood W of zero in g, g ∈ G, and 1 ≤ i ≤ r , we say that

q ∈ G(Q) is (W , i)-active for g if

Ad(gq)Bi ⊂ Ad(g)gZ ∩ W .

The following useful criterion is similar to the one proved in [TW, Proposition 3.5] and

can be deduced from its proof.

PROPOSITION 4.2. (Compactness criterion) There exists a finite subset C0 ⊂ G(Q) which
satisfies the following. A subset A ⊂ G/Ŵ is unbounded if and only if for any neighborhood
W of zero in g and g ∈ G, π(g) ∈ A, there are 1 ≤ i ≤ r , and q ∈ ŴC0 which is
(W , i)-active for g.

Remark 4.3. Since C0 is a finite subset of G(Q), by changing B we can assume that C0

only contains the identity.

Let u0 =
⊕

β∈8Q, β>0 gβ . A subset of g is called horospherical if it is contained in a

Q-subalgebra conjugate to n0.

PROPOSITION 4.4. [TW, Proposition 3.3] There exists a neighborhood W0 of zero in g

such that for any g ∈ G, the span of Ad(g)gZ ∩ W0 is horospherical.

PROPOSITION 4.5. [KW, Proposition 3.5] Let 1 ≤ i ≤ r . If v ⊂ g is conjugate to ui and
v ⊂ n0, then v = ui .

PROPOSITION 4.6. There exists a neighborhood W0 of zero in g such that any neighbor-
hood of zero W ⊂ W0 satisfies the following. Let A ⊂ G be a connected set and 1 ≤ i ≤ r .
Assume that for each g ∈ A there exists γg ∈ Ŵ which is (W , i)-active for g ∈ G. Then, for
any g, h ∈ A, we have γ −1

g γh ∈ Pi .

Proof. Let W0 be as in Proposition 4.4 and W ⊂ W0.

Let g ∈ A. By the continuity of the adjoint representation, there exists a neighborhood

H of g such that for any h ∈ H ,

Ad(γg)Bi ⊂ span(gZ ∩ Ad(h−1)W).
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This implies that

Ad(hγg)ui , Ad(hγh)ui ⊂ span(Ad(h)gZ ∩ W).

By Proposition 4.4, the span of Ad(h)gZ ∩ W is contained in a conjugate of n0.

Then Proposition 4.6 implies that Ad(hγg)ui = Ad(hγh)ui . Therefore, γ −1
g γh is in the

normalizer of ui , which is Pi . Since A is connected, the conclusion of the proposition

follows.

We use the notation of §2.3. To simplify some of it, in this section we denote dαi
by

di and ̺αi
by ̺i for any 1 ≤ i ≤ r . Note that if 8Q is not reduced, then uα1

, . . . , uαr are

proper subalgebras of u1, . . . , ur .

For any 1 ≤ i ≤ r , let 8c
αi

be the set of all real roots which lie in the span of 1Q\{αi}.
Then, for any 1 ≤ i ≤ r , Pi is the subgroup generated by ZG(S) and exp(gβ) for any

β ∈ 8c
αi

(see [Bor1, §21.11]) . By the definition of 8αi
and 8c

αi
, 1 ≤ i ≤ r , it is easy to

see that for any β ∈ 8αi
, λ ∈ 8c

αi
, c1 > 0, and c2 ≥ 0 we have c1β + c2λ ∈ 8αi

. Hence,

for any 1 ≤ i ≤ r , the maximality of Pi implies that

Pi = NG(uαi
). (4.1)

For any 1 ≤ i ≤ r , let Vi =
∧di g and

vi = X1 ∧ · · · ∧ Xdi
∈ Vi ,

where

{X1, . . . , Xdi
} =

⋃

β∈8αi

Bβ =: B′
i (4.2)

is a basis for uαi
(vi is uniquely determined up to a sign).

Fix a norm on g.

The following corollary can be deduced in a similar way to [KW, Corollary 3.3] using

Proposition 4.2, Proposition 4.6, and (4.1).

COROLLARY 4.7. For any ǫ > 0, there exists a neighborhood Wǫ of zero in g such that if
W ⊂ Wǫ is a neighborhood of zero and γ ∈ Ŵ is (W , i)-active for g ∈ G, then

‖̺i(gγ )vi‖ < ǫ.

PROPOSITION 4.8. There exists a neighborhood W0 of zero in g such that any neighbor-
hood of zero W1 ⊂ W0 satisfies the following. Let g ∈ G, 1 ≤ i ≤ r , 9 ⊂ 8̺i

, and A be a
connected subset of T such that ag is (W1, i)-active for any a ∈ A. If for any neighborhood
W of zero in g and λ ∈ 9 there is a ∈ A such that ag is (W , i)-active and λ(a) ≥ 1, then
there exists γ ∈ Ŵ such that

̺i(gγ )vi ∈
⊕

λ∈8̺i
\9

V̺i ,λ.

Proof. Let W0 be as in Proposition 4.6. For λ ∈ 8̺i
, let ϕλ : Vi → V̺i ,λ be the projection

associated with the direct sum decomposition Vi =
⊕

λ∈8̺i
V̺i ,λ.
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Let λ ∈ 9. By Proposition 4.2, Proposition 4.6, Corollary 4.7, and the assumption, there

exist γ ∈ Ŵ and a sequence {aj } ⊂ A such that

λ(aj ) ≥ 1 and ‖̺i(ajgγ )vi‖ −→
j→∞

0. (4.3)

Since any norm on a finite-dimensional vector space is equivalent to the sup-norm, there

exists c > 0 so that

‖̺i(ajgγ )vi‖ ≥ c · ‖ϕλ(̺i(ajgγ )vi)‖ = c · λ(aj )‖ϕλ(̺i(gγ )vi)‖. (4.4)

Equations (4.3) and (4.4) prove the conclusion of the proposition.

THEOREM 4.9. Assume that rankRG = rankQG = 2 and 8Q is irreducible. For any g ∈
G, there exists a neighborhood W0 = W0(g) of zero in g such that any neighborhood of
zero W ⊂ W0 satisfies the following. Let a be a connected subset of

a− = {t ∈ t : χ1(t) ≤ 0, ωα1
(χ1)(t) ≤ 0} (4.5)

such that exp(a)g is (W , 1)-active for any a ∈ a. Then there exists χ ∈ {χ1, ωα1
χ1} such

that all a ∈ a satisfy χ(a) < 0.

Proof. Let the notation be as in the proof of Proposition 4.8.

Assume that B = {X1, . . . , Xd} and denote the Z-span of

{Xi1 ∧ · · · ∧ Xid1
: 1 ≤ ii < · · · < id1

≤ d} ⊂ V1

by V1(Z). Then, ̺1(g)V1(Z) is a discrete subset. Therefore, there exists ǫ0 = ǫ0(g) > 0

such that

for all v ∈ ̺1(g)V1(Z) ‖v‖ > ǫ0. (4.6)

Let c satisfy the conclusions of Theorem 3.1. Let W satisfy the conclusion of

Corollary 4.7 for ǫ = ǫ0/2c. Without loss of generality, assume that W ⊂ W0. Then,

according to Corollary 4.7 and Proposition 4.6, there is γ ∈ Ŵ such that for all a ∈ a,

‖̺1(exp(a)gγ )v1‖ < ǫ =
ǫ0

2c
. (4.7)

For any λ ∈ 8̺1
, we have

ϕλ(̺1(exp(a)gγ )v1) = exp(λ(a))ϕλ(̺1(gγ )v1). (4.8)

Let s ∈ W(8R) satisfy

‖ϕs(χ1)(̺1(gγ )v1)‖ = max
ω∈W(8R)

‖ϕω(χ1)(̺1(gγ )v1)‖.

Then, by Theorem 3.1 and (4.6),

‖ϕs(χ1)(̺1(gγ )v1)‖ >
ǫ0

c
. (4.9)

By Lemma 2.7, there exist b1, b2, not both positive, such that s(χ1) = b1χ1 + b2ωα1
(χ1).

If b1 ≤ 0 and there exists a ∈ a such that ωα1
χ1(a) = 0, the, by (4.5), s(χ1)(a) ≥ 0. Using

(4.8), we arrive at

‖ϕs(χ1)(̺1(exp(a)gγ )v1)‖ ≥ ‖ϕs(χ1)(̺1(gγ )v1)‖.
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But then, using (4.7) and (4.9), we obtain a contradiction. Hence, all a ∈ a satisfy

ωα1
χ1(a) < 0. In a similar way, if b2 ≤ 0, then all a ∈ a satisfy χ1(a) < 0.

5. Proof of Theorem 1.6
We keep the notation of §4.

For the proof of Theorem 1.6, we will need the following results.

THEOREM 5.1. (Lebesgue) [Ka, Theorem 4.3] Let the two-dimensional unit cube I =
[0, 1]2 be covered by a pair of closed sets X1, X2. For i = 1, 2, let F+

i and F−
i be the

facets of I defined by xi = 1 and xi = 0, respectively. Then some connected component of
Xi , i ∈ {1, 2}, intersects both the corresponding opposite facets F+

i and F−
i .

THEOREM 5.2. (Riemann) [G, §II] Let D denote a simply connected domain in C that
has more than one boundary point. Then there exists an analytic one-to-one mapping of D

onto the disk {|z| < 1}. If the boundary of D is a piecewise smooth curve, then the mapping
extends in a unique analytic one-to-one way to the closure of D.

Replacing 1Q with −1Q, we may assume that

a+ = {t ∈ t : χ1(t) ≤ 0, ωα1
(χ1)(t) ≤ 0}.

Recall that A+ = exp(a+). Let A+ ⊂ A ⊂ T be a closed cone and let g ∈ G. Suppose

that Aπ(g) is a divergent trajectory. We need to prove that it is an obvious divergent

trajectory.

Let W0 satisfy the conclusions of Proposition 4.8 and Theorem 4.9. Let W1 be an open

neighborhood of zero in g so that its closer satisfies W1 ⊂ W0.

Fix a norm on g and denote

a+(r , R) = {a ∈ a+ : r ≤ ‖a‖ ≤ R},
a+(r) = {a ∈ a+ : ‖a‖ ≥ r},
a+

0 (r) = {a ∈ a+ : ‖a‖ = r}.

According to Proposition 4.2 and Remark 4.3, there exists a compact subset C ⊂ A such

that for any a ∈ A\C there are 1 ≤ i ≤ r and γ ∈ Ŵ which is (W1, i)-active for ag. For

i = 1, 2, denote

di = {a ∈ a : ∃γ ∈ Ŵ which is (W1, i)-active for exp(a)g}.

Then there exists r0 > 0 such that d1, d2 is a cover of a+(r0). Moreover, it follows from

Definition 4.1 that for i = 1, 2 the set di is open in a = log(a) and satisfies

di ⊂ {a ∈ a : ∃γ ∈ Ŵ which is (W0, i)-active for exp(a)g}. (5.1)

We first claim that

for all r > r0 ∃P an unbounded connected component of d2 such that P ∩ a+
0 (r) 6= ∅.

(5.2)

Assume otherwise. Let r1 > r0. Since d2 is an open set and a+(r1, r1 + 1) is a compact

set, there are only finitely many connected components of d2 which intersect a+(r1, r1 + 1)
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and the set

S1 = {P is a connected component of d2, P ∩ a+
0 (r1) 6= ∅}

is finite. Let R1 > max(‖a‖ : ∃P ∈ S1 s.t. a ∈ P). Then there is no connected component

of d2 which intersects both a0(r1), a0(R1).

The boundary of a+ is the union of the following two rays from the origin:

{a ∈ a+ : χ1(a) = 0} and {a ∈ a+ : ωα1
χ1(a) = 0}.

Denote

l1(r , R) = {a ∈ a+(r , R) : χ1(a) = 0},
l2(r , R) = {a ∈ a+(r , R) : ωα1

χ1(a) = 0}. (5.3)

Fix a homeomorphism from a+(r1, R1) to the two-dimensional unit cube I which

sends l1(r1, R1), l2(r1, R1) to F+
1 , F−

1 and a0(r1), a0(R1) to F+
2 , F−

2 . Then we may apply

Theorem 5.1 with d1, d2 as the cover of a+(r1, R1) to deduce that there is a connected

component of d1 which intersects both l1(r1, R1), l2(r1, R1), which is a contradiction to

Theorem 4.9, proving (5.2).

Let D1, D2 be the sets of all unbounded connected components of d1, d2, respectively.

Let D = D1 ∪ D2. Then by (5.2) D is not empty.

Recall that for i = 1, 2, ̺i : G → GL(Vi) is a strongly rational over Q-representation

with a set of R-weights 8̺i
, an R-highest weight χi , and vi non-zero R-weight vectors

for χi . For λ ∈ 8̺i
, let ϕλ : Vi → V̺i ,λ be the projection associated with the direct sum

decomposition Vi =
⊕

λ∈8̺i
V̺i ,λ.

Let i = 1, 2 and P ∈ Di . It follows from (5.1), Proposition 4.2, Proposition 4.8, and

our assumption that Aπ(g) diverge that there exists γP ∈ Ŵ such that for any unbounded

{ak} ⊂ A,

̺i(agγP )vi → 0 as k → ∞.

Denote vP = ̺i(gγP )vi . Denote by 9P the set of weights λ ∈ 8̺i
such that

ϕλ(̺i(gγP )vi) 6= 0.

Let

ϒi = {9P : P ∈ Di}, i = 1, 2,

and ϒ = ϒ1 ∪ ϒ2.

Since both 8̺1
, 8̺2

are finite, ϒ1, ϒ2 are also finite.

If for any a ∈ a there exists 9 ∈ ϒ such that λ(a) < 0 for all λ ∈ 9, then we are done.

Indeed, let {ak} ⊂ a be an unbounded sequence. Since ϒ is finite, there are i = 1, 2 and

9 ∈ ϒi such that for some subsequence {akℓ
}, 9akℓ

= 9. Then, for P ∈ Di which satisfies

9 = 9P , we have

‖̺i(exp(akℓ
))vP‖ ≤ max

λ∈9
(exp(λ(akℓ

))) · ‖vP‖ → 0 as k → ∞. (5.4)

Note that it follows from (4.1) that the second part of Definition 1.3 is satisfied for any vP ,

P ∈ D.
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FIGURE 3. Either r has elements of D on both sides, or one of the boundaries of r is a boundary of the cone.

Otherwise, there exists a0 ∈ a such that ‖a0‖ = 1 and for any 9 ∈ ϒ there exists λ ∈ 9

such that λ(a) ≥ 0.

Denote

a(r , R) = {a ∈ a : r ≤ ‖a‖ ≤ R},
a(r) = {a ∈ a : ‖a‖ ≥ r},
a0(r) = {a ∈ a : ‖a‖ = r},

and

ǫ0 = min{‖ϕλ(v9)‖ : 9 ∈ ϒ}.

Since 8̺1
, 8̺2

are finite sets, and gŴ is a discrete set, ǫ0 is non-zero.

Let W2 ⊂ W0 be an open set which satisfies the conclusion of Corollary 4.7 for 0 <

ǫ < ǫ0. We can repeat the above arguments with W2 instead of W0 (and maybe get a larger

ǫ0). In that case, by Proposition 4.8, any P ⊂ D satisfies

P ∩ a(r1) ⊂ {a ∈ a(r1) : ∀λ ∈ 9P , λ(a) < 0}.

Hence, our choice of ǫ implies that

for all P ∈ D, P ∩ {ta0 : t ≥ r1} = ∅. (5.5)

Since a is a closed cone, there exist l1, l2 ⊂ a, two disjoint rays from the origin, so that

their union is the boundary of a. Let P1, P2 ∈ D ∪ {l1, l2} be the sets adjacent to the line

{ta0 : t ≥ r1} on the line a0(r2). Note that by (5.2), we may assume that P1 ∈ D. Let r be

the maximal closed connected subset of a(r1) such that {ta0 : t ≥ r1} ⊂ r and r does not

intersect the interior of P1 ∪ P2. See Figure 3.

Without loss of generality, assume that P1 ⊂ d2. As before, since d2 is an open set and

a(r1, r1 + 1) is a compact set, there are only finitely many connected components of d1
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which intersect a(r1, r1 + 1) and the set

S2 = {P is a connected component of d1, P ∩ r ∩ a0(r2) 6= ∅}\{P2}

is finite. Let R2 > max(‖a‖ : ∃P ∈ S2 s.t. a ∈ P). Then there is no connected component

of d1 which intersects both a0(r1), a0(R2).

By the definition of r, r ∩ a(r1, R2) is a bounded simply connected domain. Let

F−
1 = r ∩ a0(r1), F+

1 = r ∩ a0(R2),

F−
2 = r ∩ P1 ∩ a(r1, R2), F+

2 = r ∩ P2 ∩ a(r1, R2).

Using Theorem 5.2, one can construct a sequence of sets Ik ⊂ r ∩ a(r1, R2) which satisfy

the following.

(1) The boundary of each Ik is a disjoint union (up to the end points) of four simple

smooth curves F±
1 (Ik), F±

2 (Ik) such that for i = 1, 2, F+
i (Ik) and F−

i (Ik) are

opposite.

(2) Any σ ∈ {+, −}, i ∈ {1, 2}, satisfy F σ
i (Ik) → F σ

i as k → ∞.

Moreover, Theorem 5.2 implies that each Ik is conformally equivalent to I with facets F σ
i ,

σ ∈ {+, −}, i ∈ {1, 2}. Since r is covered by d1 ∪ d2, so is Ik , k ∈ N. Therefore, for any

k ∈ N, we may use Theorem 5.1 with d1, d2 as a closed cover of Ik with facets F±
1 , F±

2

to deduce that for some i ∈ {1, 2} there exists a connected component Pi,k of di which

intersects both F±
i (Ik). Then there exists i ∈ {1, 2} which appears infinitely many times in

the sequence i(1), i(2), . . .. Since a(r1, R2) is compact, there exists a non-empty limit set

Pi,k → P3. Then, by the definition of R2, P3 ⊂ d2 and intersects F±
2 . Since any connected

component of d2 which intersects P1 is P1, we may deduce that P1 intersects P2 in r, which

is a contradiction to the definition of r.

6. Proof of Theorem 1.7
Replacing 1Q with −1Q, we may assume that

aǫ = {t ∈ t : χ ′
1(t) ≤ −ǫ‖t‖, χ ′

2(t) ≤ −ǫ‖t‖} (6.1)

for some ǫ > 0.

We preserve the notation of §4.

THEOREM 6.1. [W1, Theorem 4.5] Suppose that G is a semisimple Q-algebraic
group, Ŵ = G(Z), and A ⊂ G is a closed cone. Suppose that for i = 1, 2 there are
Q-representations ςi : G → GL(Wi) and non-zero vectors wi ∈ Wi(Q) such that the
following hold.

(1) For any divergent (in G) sequence {ak} ⊂ A, we have ςi(ak)wi −→
k→∞

0 for both i.

(2) The groups Qi = {g ∈ G : ¯̺ i(g)wi ∈ Rwi}, i = 1, 2, are Q-parabolic subgroups of
G and Q1, Q2 generate G.

Then there is x ∈ G such that Aπ(x) is divergent, but for any one-parameter semigroup
{exp(ta) : t ≥ 0} ⊂ A, any Q-representation ς : G → GL(W), and any non-zero w ∈
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W(Q) we have

ς(exp(ta)x)w 6−→
t→+∞

0.

In particular, there are non-obvious divergent trajectories for A.

In the notation of §4, let wi = vi and ςi = ̺i for any i = 1, 2. In order to prove

Theorem 1.7, it is enough to prove that v1, v2, ̺1, and ̺2 satisfy conditions (1) and (2)

of Theorem 6.1 for any A ⊂ Aǫ .

Let {exp(ak)} ⊂ A be a divergent sequence. Then ‖ak‖ → ∞ as k → ∞. Without loss

of generality, we may assume that the norm defined on t is the sup-norm defined using a

basis which contains only Q-weight vectors. Thus, using (2.18) and (4.5) for i = 1, 2, we

have

‖̺i(exp(ak))vi‖ = eχ̃i (ak)‖vi‖ < e−ǫ‖ak‖‖vi‖ −→
k→∞

0

and hence (1) is satisfied.

Since P1, P2 are maximal Q-parabolic subgroups of G, according to (4.1) in the notation

of Theorem 6.1 we have Qi = Pi,Q for i = 1, 2. The maximality of P1, P2 implies that

condition (2) is also satisfied.
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