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1. Introduction. In a previous paper (3) the study of one-dimensional, 
unsteady flows, isentropic or anisentropic, was reduced to the integration of a 
Monge-Ampère partial differential equation 

For a polytropic gas, the specific volume 

(2) T = e{s-S°)lc" p~\ n = 1/7, 

takes the form 
r = ôtt)p~n, 

once the entropy distribution function S = S(\f/) is specified. A solution 
£ == ?Ws P) having been determined by one means or another, the actual flow 
is presented by the mapping 

(3) x = J {(fwêto + r)d\p + &PPdp}, t = £p, (u = &), 

of the ($, p)-plane upon the (x, t)-plane. This mapping carries the rectilinear 
network \p — const., p = const., in the (\p, p)-plane into the curvilinear 
network of trajectories and isobars in the (x, t)-plane. 

A progressive condensation shock, carrying in back of it the values u, T, p 
of the velocity, specific volume and pressure and moving into a quiet atmo­
sphere where these quantities have fixed values u0y r0, po is governed by the 
shock conditions: 

(4.1) u = Uo + V (p - PO)(T0 - T), 

(A o\ dx A /p — po 

(4.2) - = Mo + r„y -7—T , 
U*\ - (T - l)j> + (7 + l)po 
( 4"3 ) T-T0(y+l)p+(y-l)pQ< 

where (4.2) gives the shock velocity. 
Once the entropy distribution function S(\p) is selected, the determination 

of the motion of the shock into the quiet atmosphere and of the flow immedi­
ately behind it, sets (3) a Problem of Cauchy for the controlling partial 
differential equation (1). 
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If, however, one is willing to forgo knowledge of the flow immediately in 
back of the shock, the motion of the shock into the quiet atmosphere can be 
determined without solving the Problem of Cauchy. In this paper we investigate 
the influence of the choice of the entropy distribution function S(\p) upon the 
propagation of the shock into the quiet atmosphere. Among other things we 
find that the time required (2, p. 213) for complete decay of the shock may be 
finite or infinite, depending upon the selection of the entropy distribution 
function. 

2. The shock curve. If we substitute from (2) for r in (4.3) and prescribe 
an entropy distribution function Sty), the resulting equation 

defines a curve \// = \//(p) in the ty, p)-plane. This curve transforms by (3) 
into the shock curve in the (x, /)-plane and we propose to deduce its parametric 
equations 
(6) x = x(p), t = t{p), 

for a given entropy distribution function Sty). Here p denotes the pressure 
immediately in back of the shock. 

From (3) we see that a curve \p = \//(p) in the ty, p) -plane is carried into a 
curve x = x(t) in the (x, /)-plane along which 

,_x dx , d\I/ I dt 
(7 ) lTt=u + TTp/dp-
As a matter of fact this result is an immediate consequence of the relation 

(8) d\f/ = p dx — pu dt, 

i.e., of the principle of conservation of mass. 
We take (5) for the curve \p = \p(p)j substitute in (7) for u and dx/dt from 

(4.1) and (4.2), to obtain 

When r is eliminated from this by (4.3) we find 

CO) ' -Jgl/( ( T + W ? ( T _ 1 J ^ 
to reduce the determination of the function t(p) in (6) to a quadrature, once 
the function \f/ = yp{p) is fixed by the selection of Sty) in (5). 

To determine the function x(p) in (6), we write (4.2) in the form 

T _i_ à/p ~ Po] dt dx 
dp L V TO — r J dp 

and substitute in here for dt/dp from (9). This yields 
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(11) X = Ttfp + U0t, 

where ^, t are the functions of p defined in (5) and (10). This result may be 
checked by applying the principle of conservation of mass across the shock in 
the form 

d\p = pdx — pudt = podx — poUodt. 

We sum up our results on the shock curve in the theorem below. 

THEOREM. For a shock moving into a quiet atmosphere in which the velocity u, 
specific volume r, and pressure p have fixed values u0l TO, po, the shock curve 
in the (x, t)-plane is described parametrically in terms of the pressure p immedi­
ately in back of the shock by 

(12) X = To, + u4, t = J % l / ( ( T + 1}/+ (7 - D J». 
in which the junction ^(p) is defined implicitly by 

S(t) - cv loĝ xo {y + 1)p+{y_lTp- P ) 

upon prescription of the entropy distribution function Sty) 

(y + l)P+(y-l)Po1' ,+ So' 5 ° - c o n s t > 

3. Shock decay. The problem of shock decay is of some interest (1; 2) 
and we shall make some remarks on how decay is affected by the choice of the 
entropy distribution function. 

First of all, for a shock to decay completely it is necessary and sufficient 
that the pressure p in back of the shock equal the pressure po in front of the 
shock. 

Starting with a pressure pi > po in back of the shock, it is clear from the 
above theorem that complete decay will require a finite or an infinite time, 
according as the integral 

(,3) «*> - ,(*> - £%]/(h+1)P^\y-w)dt 

converges or diverges. 
To fix the ideas, let us take u0 = 0, so that the gas in front of the shock is 

at rest, and assume that the entropy distribution function S(\f/) is chosen so 
that 

(14) - œ < -^ < o for p! < p < po. 

From the parametric equations (12) of the shock curve it is clear that x and t 
both increase monotonically for decreasing p as shown in Fig. 1. 

If the entropy distribution function S(\f/) is taken so that dip/dp is finite at 
po, or is infinite for p = p0 to an order low enough so that the integral (13) 
still converges, the shock curve will end at a finite point P 0 in the (x, t)-plane. 
Under these conditions the shock decays after covering a finite distance in a 
finite time. 
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FIGURE 1. The shock curve for d\p/dp < 0. 

On the other hand, if Sty) be chosen so that dip/dp is infinite for p = p0 

and the integral (13) diverges, both x and t become infinite as p decreases to p0. 
In this case the shock travels an infinite distance and requires an infinite time 
before it decays. 

Decay after travelling an infinite distance in a finite time or a finite distance 
in an infinite time is accordingly not possible. 

Let us write (5) in the form 

<»> **>-ww[g;%:<;li»fe)-]. So = const., 

in which So may be interpreted as the specific entropy of the quiet atmosphere 
in front of the shock. Expansion of the second member in powers of p — po 
yields 

(16) Sty) - So = A (p - p0y + . . . , A = »(1 - n*)cp/12pQ\ 

(P - Po)2 

and differentiation gives 

(17) S'(4) j - p = cp(y -y1) p[{y_1)p+ (y + 1 ) M ( 7 + 1)p +{y_ l)Po], 

where Sf(\p) is the derivative of Sty). 
From (17) it is clear that (14) requires 5 ' < 0, i.e., that the entropy dis­

tribution function be monotone decreasing. Furthermore the shock will require 
a finite time to decay if 6"(^), expressed as a function of p, vanishes to less 
than the third order in p — p0; on the other hand, if S'ty) vanishes to the 
third or a higher order in p — p0, the time for decay is infinite. 

4. Examples of shock decay. We illustrate the general principles in the 
previous section by simple examples. 
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For the first example, take 

S(*) = So - *, 
so that, from (16) 

* = -A(p-poY + ..., ^ = - 3A(p - p0f + . . . 

from which and (13) it is clear that the shock decays in finite time. 
For the second example, take 

for which 

* = A~\p - p»Yl + ..., g = - SA-\p - Pô)'* + ..., 

and it is clear again from (13) that shock decay now requires an infinite time. 
More generally let us take 

SW = S o - j r - , i = ± l , ± 3 

Clearly S'OA) < 0 for all stated k, and its expansion in powers of p — po is 

s'w = -B(p-p0y«-^ + ..., 
where B is a positive constant. Thus S'(\f/) will vanish to an order less than 
three at po for k = 1, 3, . . . and the shock decays in finite time; for k = — 1, 
— 3, . . . S'(\//) vanishes to a higher order than 3 at po and decay requires an 
infinite time. 
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