A CENSUS OF HAMILTONIAN POLYGONS

W. T. TUTTE

Summary. In this paper we deal with trivalent planar maps in which the boundary of each country (or "face") is a simple closed curve. One vertex is distinguished as the root and its three incident edges are distinguished as the first, second, and third major edges. We determine the average number of Hamiltonian polygons, passing through the first and second major edges, in such a "rooted map" of $2 n$ vertices. Next we consider the corresponding problem for 3 -connected rooted maps. In this case we obtain a functional equation from which the average can be computed for small values of n.

1. Rooted maps. For the purposes of this paper a planar map M is a representation of the 2 -sphere (or closed plane) as a union of a finite number of disjoint point-sets called cells. The cells are of three kinds, vertices, edges, and faces, said to have dimension 0,1 , and 2 respectively. Each vertex consists of a single point. Each edge is an open arc whose ends are distinct vertices. Each face is a simply connected domain whose boundary is a simple closed curve made up of edges and vertices. We denote the numbers of cells, vertices, edges, and faces of M by $C(M), V(M), E(M)$, and $F(M)$ respectively.

Two cells whose dimensions differ are incident with one another if one is contained in the boundary of the other. We note that each edge must be incident with just two faces.

Let M and N be planar maps. An isomorphism of M onto N is a 1-1 mapping f of $C(M)$ onto $C(N)$ with the following properties.
(i) f preserves dimension,
(ii) Both f and f^{-1} preserve incidence relations.

If such a mapping exists we say that M and N are isomorphic.
If X and Y are complementary non-null subsets of $V(M)$ we write $Q(X, Y)$ for the set of all edges of M with one end in X and one in Y. This set is the cut between X and Y. A cut with just k edges is a k-cut.
(1.1) Each cut of M has at least two edges.

Proof. Suppose $Q(X, Y)$ is a 0 -cut. Define $U(X)$ as the union of the vertices of X and their incident edges, and let $U(Y)$ be defined analogously. By the connection of the 2 -sphere M has a face K whose boundary meets both $U(X)$ and $U(Y)$. But then the boundary of K is not connected, contrary to the definition of a face.

[^0]Next suppose $Q(X, Y)$ is a 1-cut, with edge A. Then A is incident with some face K. The boundary of K, a simple closed curve, must contain at least one other edge with one end in X and one in Y.

These contradictions establish the theorem.
(1.2) Let $Q(X, Y)$ be a 2 -cut or 3 -cut of a planar map M. Let X^{\prime} and $X^{\prime \prime}$ be complementary non-null subsets of X. Then there exists an edge C of M with one end in X^{\prime} and the other in $X^{\prime \prime}$.

Proof. Assume the theorem false. By (1.1) the cuts $Q\left(X^{\prime}, V(M)-X^{\prime}\right)$ and $Q\left(X^{\prime \prime}, V(M)-X^{\prime \prime}\right)$ have each at least two edges. Hence $Q(X, Y)$ is at least a 4-cut, contrary to hypothesis.
(1.3) Suppose $Q(X, Y)$ and $Q\left(X_{1}, Y_{1}\right)$ are 2-cuts or 3 -cuts of M with the same edges. Then the unordered pairs $\{X, Y\}$ and $\left\{X_{1}, Y_{1}\right\}$ are identical.

Proof. We can adjust the notation so that $X \cap X_{1}$ is non-null. Assume $X \cap Y_{1}$ is also non-null. By (1.2) there is an edge A of M with one end in $X \cap X_{1}$ and one in $X \cap Y_{1}$. But then $A \in Q\left(X_{1}, Y_{1}\right)$ and $A \notin Q(X, Y)$, which is contrary to hypothesis. We deduce that $X \subseteq X_{1}$. A similar argument shows that $X_{1} \subseteq X$. The theorem follows.

A planar map M is trivalent if each vertex v is incident with just three edges. This implies that v is incident with just three faces, and each pair of edges incident with v determines a unique face. A trivalent map is 2 -separable if it has a 2 -cut, and 3 -connected otherwise.

A trivalent planar map is rooted if one vertex is distinguished as the root and its three incident edges are distinguished as the first, second, and third major edges. Two rooted trivalent planar maps M and N are equivalent if and only if there is an isomorphism of M onto N which preserves the root and first, second, and third major edges. Such an isomorphism is a root-isomorphism of M onto N.
(1.4) Let $\{A, B\}=Q(X, Y)$ be a 2-cut of a trivalent map M. Then A and B have no common end.

Proof. Suppose A and B have a common end x. Let C be the third edge incident with x and let y be its other end. We may suppose $x \in X$. Then also $y \in X$. But then C is the only edge of the cut $Q(X-\{x\}, Y \cup\{x\})$, which is contrary to (1.1).
(1.5) Any root-isomorphism of a rooted map M onto itself is an identity.

Proof. Let f be such a root-isomorphism. Let us call a face P of M strictly invariant if P itself and each of its incident edges and vertices is invariant under f. Clearly the three faces of M incident with the root are strictly invariant, and every face having a common edge with a strictly invariant face is strictly invariant. Hence every face of M is strictly invariant, by the connection of the 2 -sphere, and the theorem follows.
2. Duality. Two planar maps M and M^{*} are duals if there is a $1-1$ mapping f of $C(M)$ onto $C\left(M^{*}\right)$ with the following properties.
(i) f maps $V(M)$ onto $F\left(M^{*}\right), E(M)$ onto $E\left(M^{*}\right)$ and $F(M)$ onto $V\left(M^{*}\right)$.
(ii) Both f and f^{-1} preserve incidence relations.

We call any such mapping f a dual correspondence between M and M^{*}.
(2.1) Each planar map M has a dual planar map M^{*}.

Proof. In each face K we select a point $p(K)$ and on each edge A we select a point $P(A)$. We join $p(K)$ to each point $P(A)$ in the boundary of K by an open arc $L(K, A)$ in K, arranging that the arcs $L(K, A)$ are disjoint. The point $p(K)$ and the arcs $L(K, A)$, for a given K, separate the remainder of K into as many simply connected domains as K has incident vertices. Any one of these domains can be specified by a symbol $D(K, v)$, where v is the single vertex of M on its boundary.

For each edge A of M we define $f(A)$ as the open arc formed by $P(A)$ and the two arcs $L(K, A)$. For each vertex v of M we define $f(v)$ as the union of v, the segments $v P(A)$ of the edges A of M incident with v, and the domains $D(K, v)$ derived from faces incident with v. We also write $f(K)=p(K)$. It is readily verified that the sets $f(K), f(A), f(v)$ are the cells of a planar map M^{*} and that f is a dual correspondence between M and M^{*}.
Let us define a triangulation as a planar map in which each face has just three incident edges and in which no two edges have the same pair of ends. The triangulations can be characterized as the dual planar maps of the trivalent planar maps without 2 -cuts, that is the 3 -connected trivalent planar maps.

We call a triangulation "rooted" if one face is distinguished as the root or outside and the three incident edges are distinguished as the first, second, and third major edges. Two rooted triangulations are equivalent if there is an isomorphism of one onto the other which preserves the root and each major edge. A rooted triangulation and a rooted 3 -connected trivalent planar map are duals if the corresponding unrooted maps are duals, with a dual correspondence that relates root to root and k th major edge to k th major edge.
By (2.1) every rooted 3 -connected trivalent planar map has a dual rooted triangulation, and conversely. It follows from the definitions that the duals of equivalent rooted 3 -connected trivalent maps are equivalent rooted triangulations, and conversely.
Let q_{n} denote the number of inequivalent 3 -connected trivalent rooted maps of $2 n$ vertices. (The number of vertices of a trivalent map must be even.) By the above results q_{n} is also the number of inequivalent rooted triangulations of $2 n$ faces. But rooted triangulations are studied in (1), where they are called simply "triangulations." The number q_{n} is the number $\psi_{n-1,0}$ of (1) since a rooted triangulation with $2 n$ faces, counting the outside, is one with $3 n-3$ internal edges (as defined in (1)). So by (4.10) of (1) we have

$$
\begin{equation*}
q_{n}=\psi_{n-1,0}=\frac{2 \cdot(4 n-3)!}{n!(3 n-1)!} . \tag{2.2}
\end{equation*}
$$

3. Extensions. From now on the term "map" is to mean always a trivalent planar map.

Let M_{1}, M_{2}, and M be rooted maps, with roots r_{1}, r_{2}, and r respectively. Let A be an edge of M_{1} incident with the vertices x_{1} and y_{1} and the faces P_{1} and R_{1}. Let B be the first major edge of M_{2} incident with the vertices r_{2} and y_{2} and the faces P_{2} and R_{2}, these faces being incident with the second and third major edge respectively.

We say that M is an (x_{1}, P_{1})-extension of M_{1} by M_{2} at A if the three maps are related as follows
(i) $C\left(M_{1}\right)-\left\{A, P_{1}, R_{1}\right\}$ and $C\left(M_{2}\right)-\left\{B, P_{2}, R_{2}\right\}$ are disjoint subsets of $C(M)$.
(ii) The remaining cells of M are an edge E_{x} incident with x_{1} and r_{2}, an edge E_{y} incident with y_{1} and y_{2} and two faces P and R. The face $P(R)$ is incident only with E_{x}, E_{y}, and those other edges and vertices of M which are incident with $P_{1}\left(R_{1}\right)$ in M_{1} or $P_{2}\left(R_{2}\right)$ in M_{2}.
(iii) $r=r_{1}$ and the k th major edge of M is the k th major edge of M_{1} if this is not A. In the exceptional case the k th major edge of M is whichever of E_{x} and E_{y} is incident with r.

When it seems unnecessary to specify x_{1} and P_{1} we shall speak of M simply as an extension of M_{1} by M_{2} at A.
(3.1) Let M_{1} and M_{2} be rooted maps. Let $r_{1}, r_{2}, x_{1}, y_{1}, y_{2}, A, B, P_{1}, R_{1}, P_{2}, R_{2}$ be defined as above. Then we can construct an $\left(x_{1}, P_{1}\right)$-extension of M_{1} at A by a rooted map M_{3} equivalent to M_{2}.

Proof. Choose a point O on A. Let Q be a circle on the sphere S_{1} of M_{1} with centre O and radius ϵ such that Q and its interior meet no edge or vertex of M_{1} other than A. We can find a topological mapping ϕ of the sphere S_{2} of M_{2} onto S_{1} with the following properties
(i) ϕ maps P_{2} onto P_{1}.
(ii) $\phi(B)$ contains the whole of the boundary of P_{1} outside Q. Moreover ϕ maps every edge and vertex of M_{2}, other than B, into the interior of Q.
(iii) x_{1} lies between $\phi\left(r_{2}\right)$ and y_{1} on $\phi(B)$ (see Fig. 1).

Let M_{3} be the rooted map on S_{1} determined by M_{2} and the homeomorphism ϕ. On combining M_{1} and M_{3} we obtain the required (x_{1}, P_{1})-extension of M_{1} at A_{1}. We take E_{x} and E_{y} to be the disjoint open segments $x_{1} \phi\left(r_{2}\right)$ and $y_{1} \phi\left(y_{2}\right)$ respectively of $\phi(B)$, and we write $P=P_{1}=\phi\left(P_{2}\right), R=R_{1} \cap \phi\left(R_{2}\right)$. This completes the proof of (3.1).

Suppose $A_{1}, A_{2}, \ldots, A_{k}$ are distinct edges of a rooted map N_{0}. Suppose N_{1} is an extension of N_{0} at A_{1} by a rooted map M_{1}, N_{2} is an extension of N_{1} at A_{2} by a rooted map M_{2}, and so on up to N_{k}. Then we call N_{k} a multiple extension of N_{0} of order k.

Let the ends of A_{i} in N_{0} be x_{i} and y_{i}. In the i th extension A_{i} is replaced

Figure 1.
by two distinct edges, B_{i} and C_{i} say, incident with x_{i} and y_{i} respectively. It follows from the definitions that
(3.2) If $1 \leqslant i \leqslant k$, then $\left\{B_{i}, C_{i}\right\}$ is a 2-cut $Q\left(V\left(N_{k}\right)-V\left(M_{i}\right), V\left(M_{i}\right)\right)$ of N_{k}.

We call B_{i} and C_{i} the representatives of A_{i} in N_{k}. If A is any edge of N_{0} which survives in N_{k} we say that A is its own representative in N_{k}.

Now consider a face P_{0} of N_{0}. If P_{0} is incident with A_{1} then the first extension replaces it by a face P_{1} incident with B_{1} and C_{1} and with precisely those edges of N_{0}, other than A_{1}, which are incident with P_{0} in N_{0}. If P_{0} is not incident with A_{1} it becomes a face of N_{i} incident with the same edges as in N_{0}.

We then write $P_{1}=P_{0}$. Similar considerations apply to P_{1} in the second extension, and so on. We deduce
(3.3) Let P be any face of N_{0}. Then there exists a face P^{\prime} of N_{k} such that P is incident with $A \in E\left(N_{0}\right)$ if and only if P^{\prime} is incident with the representatives of A in N_{k}.

We can supplement this result as follows.
(3.4) P^{\prime} is uniquely determined when P is given. Moreover, the correspondence $P \rightarrow P^{\prime}$ is a 1-1 mapping of $F\left(N_{0}\right)$ onto the set U of all faces of N_{k} incident with vertices of N_{0}.

Proof. If P and R are distinct faces of N_{0} we cannot arrange that $P^{\prime}=R^{\prime}$.

For then P and R would have the same incident edges in N_{0}, by (3.3), which is impossible since N_{0} is trivalent.

Suppose $P \in F\left(N_{0}\right)$ and that there are two distinct choices $P_{1}{ }^{\prime}$ and $P_{2}{ }^{\prime}$ for P^{\prime}. Let A be any edge of N_{0} incident with P in N_{0}, and let B be a representative of A in N_{k}. Let T be the second face of N_{0} incident with A. Then T^{\prime} must be either $P_{1}{ }^{\prime}$ or $P_{2}{ }^{\prime}$ since these are the two faces of N_{k} incident with B, and this is contrary to the preceding result. Hence P^{\prime} is uniquely determined by P.

If $P \in F\left(N_{0}\right)$ it is trivial that $P^{\prime} \in U$. Conversely, suppose $W \in U$. Then W is incident in N_{k} with a vertex $z \in V\left(N_{0}\right)$ and two edges B_{1} and B_{2} incident with z. These are representatives of distinct edges A_{1} and A_{2} of N_{0} incident with z, by (1.4) and (3.2). There is a face P of N_{0} incident with both A_{1} and A_{2}. The face P^{\prime} is incident with both B_{1} and B_{2} in N_{k}, and so it must coincide with N. The theorem folllows.

We call P^{\prime} the representative of $P \in F\left(N_{0}\right)$ in N_{k}.
(3.5) Let N be a rooted map and let V be a non-null proper subset of $V(N)$. Let it be given that N is a multiple extension of some rooted map M such that $V(M)=V$. Then the structure of M isu niquely determined by N and V. More precisely we can determine M to within a root-isomorphism reducing to an identity for the vertices.

Proof. The vertices of M are given. Let B be any edge of N incident with a vertex x of V, and let its other end be u. If $u \in V$ then B is an edge of M, by (3.2).

Suppose $u \notin V$. Then B is a representative of some edge A of M incident with x. The second representative C of A has the following properties.
(i) C has an end $y \in V$ and an end $v \notin V$.
(ii) $\{B, C\}$ is a 2 -cut $Q(X, Y)$ of N such that $V \subseteq X$.
(See (3.2).) We show that these properties determine C uniquely. For suppose there is a third edge C^{\prime} of N with ends $y^{\prime} \in V$ and $v^{\prime} \notin V$, and suppose $\left\{B, C^{\prime}\right\}$ is a 2 -cut $Q\left(X^{\prime}, Y^{\prime}\right)$ of N such that $V \subseteq X^{\prime}$. Then we have

$$
B \in Q\left(X \cup X^{\prime}, Y \cap Y^{\prime}\right) \subseteq\left\{B, C, C^{\prime}\right\}
$$

But $v \notin Y \cap Y^{\prime}$ since $C \notin Q\left(X^{\prime}, Y^{\prime}\right)$, and similarly $v^{\prime} \notin Y \cap Y^{\prime}$. Hence $Q\left(X \cup X^{\prime}, Y \cap Y^{\prime}\right)=\{B\}$, which contradicts (1.1).

We see that the edges of M are determined through their representatives in N. The incidence relations between edges and vertices of M can thus be reconstructed. The faces of M can likewise be determined through their representatives, which are the members of the set corresponding to U in (3.4). The incidence relations between faces and edges of M are given by (3.3). The theorem follows.

4. The core of a rooted map.

(4.1) Let M be a rooted map, with root r. Let $\{A, B\}=Q(X, Y)$ be a 2-cut of
M, with $r \in X$. Then M is an extension, at an edge C, of a rooted map M_{1} such that $V\left(M_{1}\right)=X$.

Proof. Let the ends of A be $a_{X} \in X$ and $a_{Y} \in Y$. Let those of B be $b_{X} \in X$ and $b_{Y} \in Y$ (Fig. 2). Choose a face P incident with A, and therefore B. If we remove A and B from the boundary of P we obtain two closed arcs. One

Figure 2.
joins a_{X} and b_{X}, passing through vertices of X only. The other joins a_{Y} and b_{Y}, passing through vertices of Y only. We denote these arcs by K_{X} and K_{Y} respectively. Similarly we obtain an $\operatorname{arc} L_{X}$ joining a_{X} and b_{X}, and an $\operatorname{arc} L_{Y}$ joining a_{Y} and b_{Y}, from the second face R incident with A and B.

We construct a rooted map M_{1} as follows. We unite A, K_{Y}, and B to form a new edge C_{1}. We retain all the cells of M incident with vertices of X except A, B, and R, and we unite R with all the other cells incident with members of Y and not contained in C_{1} to form a new face R_{1}. (This union of cells is a simply connected domain since its boundary is the simple closed curve $L_{X} \cup C_{1}$.) We give M_{1} the same root and major edges of M, except that C_{1} is to replace A or B if necessary.

A similar construction gives a rooted map M_{2} whose cells are an edge $C_{2}=A \cup B \cup K_{X}$, all the cells of M incident with vertices of Y except A, B, and R, and the union R_{2} of all the cells of M incident with members of X and not in C_{2}. We take a_{Y} as the root of M_{2} and C_{2} as the first major edge. We choose the second major edge to be incident with P. The third one is then fixed.

We observe that M satisfies the definition of an $\left(a_{X}, P\right)$-extension of M_{1} by M_{2} at C_{1}.

In what follows we recognize each rooted map as a multiple extension of itself, of order zero.
(4.2) Let M be a rooted map. Then M is a multiple extension of some 3 -connected rooted map \bar{M}.

Proof. If possible choose M so that the theorem fails and M has the least number of vertices consistent with this condition. By the convention just stated M is 2 -separable. Choose a 2 -cut $\{A, B\}=Q(X, Y)$ of M such that the root r of M is in X and such that Y has the greatest number of vertices consistent with this condition.

By (4.1) M is an extension of a rooted map M_{1}, where $V\left(M_{1}\right)=X$, at an edge C whose representatives in M are A and B. By the choice of M the rooted map M_{1} is a multiple extension of some 3 -connected rooted map \bar{M}.
C is not an edge of \bar{M}. For otherwise M would be a multiple extension of \bar{M}, contrary to its definition. We deduce that there is a 2 -cut $Q(Z, T)$ of M_{1}, corresponding to one of the single extensions of \bar{M}, such that $r \in Z$ and at least one end of C is in T. If only one end of C is in T then C is a member of $Q(Z, T)$. It follows that the cut $Q(Z, T \cup Y)$ of M is a 2 -cut having the same edges as $Q(Z, T)$ of M_{1}. But this is contrary to the choice of $Q(X, Y)$. The theorem follows.

We refer to \bar{M} as the core of M. We proceed to show that the vertices and structure of this core are uniquely determined when M is given.
(4.3) Let M^{\prime} and $M^{\prime \prime}$ be two cores of a given rooted map M. Then there is a root-isomorphism of M^{\prime} onto $M^{\prime \prime}$ which reduces to an identity for the vertices.

Proof. By (3.5) it is sufficient to prove that $V\left(M^{\prime}\right)=V\left(M^{\prime \prime}\right)$.
Assume this equation false. Without loss of generality we may assume that $V\left(M^{\prime}\right)$ has a vertex v not in $V\left(M^{\prime \prime}\right)$. Since M is a multiple extension of $M^{\prime \prime}$ there is a 2 -cut $\{A, B\}=Q(X, Y)$ of M such that $v \in Y$ and $V\left(M^{\prime \prime}\right) \subseteq X$. Since the root r of M is common to $V\left(M^{\prime}\right)$ and $V\left(M^{\prime \prime}\right)$ there exists a cut $J=Q\left(X \cap V\left(M^{\prime}\right), \quad Y \cap V\left(M^{\prime}\right)\right)$ of M^{\prime}.

In the process of constructing M from M^{\prime} we may suppose that the successive extensions are made at edges $C_{1}, C_{2}, \ldots, C_{k}$ of M^{\prime}, by the rooted maps $M_{1}, M_{2}, \ldots, M_{k}$ respectively.

Suppose $C \in J$. If $C \in E(M)$ then C is either A or B. In the remaining case we have $C=C_{j}$, where $1 \leqslant j \leqslant k$. Then either C has A or B as a representative in M or $V\left(M_{j}\right)$ meets both X and Y. In the latter alternative either A or B has both ends in $V\left(M_{j}\right)$, by (1.2) and (3.2). Since the k sets $V\left(M_{i}\right)$ are disjoint it follows from these observations that J is at most a 2 -cut of M^{\prime}. But M^{\prime} is 3 -connected. This contradiction establishes the theorem.

5. A census of rooted maps.

We write p_{n} for the number of inequivalent rooted maps of $2 n$ vertices. We introduce the generating functions

$$
p(x)=\sum_{n=1}^{\infty} p_{n} x^{n}
$$

$$
q(x)=\sum_{n=1}^{\infty} q_{n} x^{n}
$$

where q_{n} is defined as in $\S 2$.
By (2.2) the function $q(x)$ is the one denoted by $x g(x)$ in (1). By equations (4.8) and (4.9) of that paper there is a function $\theta(x)$ satisfying

$$
\begin{align*}
x & =\theta(x)\{1-\theta(x)\}^{3} \tag{5.1}\\
q(x) & =\theta(x)\{1-2 \theta(x)\} . \tag{5.2}
\end{align*}
$$

(5.3) Let M be a rooted map of $2 m$ vertices. Then the number of inequivalent multiple extensions of M having $2 n$ vertices is the coefficient of x^{n} in

$$
x^{m}\{1+p(x)\}^{3 m}
$$

Proof. M has just $3 m$ edges. Let them be enumerated as $A_{1}, A_{2}, \ldots, A_{3 m}$.
Suppose a multiple extension M^{\prime} of M is formed by extending M first at A_{i} by a rooted map M_{i} and then at A_{j} by a rooted map M_{j}. It follows from the definition of an extension that M^{\prime} can be regarded equally well as the result of extending M first at A_{j} by M_{j} and then at A_{i} by M_{i}.

Hence if N is any multiple extension of M we can suppose that the successive extensions of M at edges $A_{k(1)}, A_{k(2)}$, etc. are made in the order of these edges in the sequence $\left(A_{1}, A_{2}, \ldots, A_{3 m}\right)$.

For each edge A_{i} of M we pick out an incident vertex x_{i} and an incident face P_{i}. Suppose one of the extensions used in the construction of N is the extension of a rooted map N_{j} by M_{j} at A_{j}. Then by adjusting the root and major edges of M_{j} we can arrange that this operation is an ($x_{i}, P_{i j}$)-extension, where $P_{i j}$ is the representative of P_{i} in N_{j}. In what follows we adopt this convention.

Consider the construction of a multiple extension N of M. A given edge A_{i} can either be left unaltered or used in an extension by a rooted map M_{i} of (say) $2 s$ vertices. In the latter alternative the extension can be made in just p_{s} essentially different ways. Hence the number of ways of forming a multiple extension N with $2 n$ vertices is the stated coefficient.

To complete the proof we observe that no two of these ways give equivalent multiple extensions. For equivalent multiple extensions of M must use the same set of edges, by (3.5) and (1.5), and the extending rooted map M_{i} for an edge A_{i} is uniquely determined, to within an equivalence, by the structure of N.

By (4.2) the rooted maps are the multiple extensions of the 3 -connected rooted maps. So by (4.3) and (5.3) p_{n} is equal to the coefficient of x^{n} in

$$
\sum_{m=1}^{\infty} q_{m} x^{m}\{1+p(x)\}^{3 m}
$$

Thus $p(x)$ satisfies the functional equation

$$
\begin{equation*}
p(x)=q\left(x\{1+p(x)\}^{3}\right) \tag{5.4}
\end{equation*}
$$

To solve this we write

$$
\phi=\theta\left(x\{1+p(x)\}^{3}\right)
$$

We then have

$$
\begin{align*}
x\{1+p(x)\}^{3} & =\phi(1-\phi)^{3}, & \text { by (5.1). } \\
p(x) & =\phi(1-2 \phi), & \text { by (5.2) and (5.4). }
\end{align*}
$$

Hence

$$
\begin{align*}
x\left(1+\phi-2 \phi^{2}\right)^{3} & =\phi(1-\phi)^{3}, \\
x(1-\phi)^{3}(1+2 \phi)^{3} & =\phi(1-\phi)^{3} \\
\phi & =x(1+2 \phi)^{3} . \tag{5.6}
\end{align*}
$$

Applying Lagrange's theorem to (5.5) and (5.6) we obtain

$$
\begin{align*}
p(x)= & \sum_{n=1}^{\infty} \frac{x^{n}}{n!}\left[\left(\frac{d}{d \phi}\right)^{n-1}\left\{(1+2 \phi)^{3 n}(1-4 \phi)\right\}\right]_{\phi=0} \\
= & \sum_{n=1}^{\infty} \frac{x^{n}}{n!}\left[\left(\frac{d}{d \phi}\right)^{n-1}\left\{3(1+2 \phi)^{3 n}-2(1+2 \phi)^{3 n+1}\right\}\right]_{\phi=0} \\
= & \sum_{n=1}^{\infty} \frac{x^{n}}{n!}\left[\frac{3 \cdot(3 n)!}{(2 n+1)!} 2^{n-1}(1+2 \phi)^{2 n+1}\right. \\
& \left.\quad-\frac{2 \cdot(3 n+1)!}{(2 n+2)!} 2^{n-1}(1+2 \phi)^{2 n+2}\right]_{\phi=0} \\
= & \sum_{n=1}^{\infty} \frac{x^{n}}{n!} \cdot \frac{2^{n-1}(3 n)!}{(2 n+2)!}\{3(2 n+2)-2(3 n+1)\} \\
p(x)= & \sum_{n=1}^{\infty} \frac{2^{n+1}(3 n)!}{n!(2 n+2)!} x^{n} . \tag{5.7}
\end{align*}
$$

An application of Stirling's theorem gives the following asymptotic formula.

$$
\begin{equation*}
p_{n} \sim \frac{1}{4} \sqrt{\frac{3}{\pi}} n^{-5 / 2}\left(\frac{27}{2}\right)^{n} \tag{5.8}
\end{equation*}
$$

From (5.7) we have $p_{1}=1, p_{2}=4$ and $p_{3}=24$. The corresponding rooted maps are shown in Figure 3. Rooted maps differing only by a permutation of major edges are represented by a single diagram, the number of corresponding rooted maps being written underneath. Other numerical values for p_{n} are given in Table I.
6. Cross-connections. Let J be a simple closed curve on a 2 -sphere and let D be one of its residual domains. Let $2 n$ distinct points $P_{1}, P_{2}, \ldots, P_{2 n}$ be chosen on J. By a cross-connection of these points in D we understand a set of n non-intersecting open arcs in D joining the $2 n$ points P_{i} in pairs. Two such cross-connections are equivalent if one can be converted into the

Figure 3.
other by a topological mapping of $J \cup D$ onto itself which leaves each point of J invariant. Clearly the number of inequivalent cross-connections of the given points in D is a function γ_{n} of n only. We write $\gamma_{0}=1$.

Let us suppose that the enumeration of the points P_{i} corresponds to their cyclic order on J.

To construct a cross-connection we may begin by joining P_{1} to any other point P_{i} by an arc L_{1} in D. For a given i this can be done in essentially only one way. The points P_{1} and P_{i} separate J into two arcs J_{1} and J_{2}. We distinguish J_{1} by postulating that it contains the arc K in J which joins P_{1}

Figure 4.
and P_{2} without passing through any other point P_{k} (or a specified arc K of this kind if $n=1$). The $\operatorname{arc} L_{1}$ separates D into two simply connected domains D_{1} and D_{2} with boundaries $L_{1} \cup J_{1}$ and $L_{1} \cup J_{2}$ respectively. The construction must be completed by combining a cross-connection of the $i-2$ points P_{2}, \ldots, P_{i-1} in D with a cross-connection of the points $P_{i+1}, \ldots, P_{2 n}$ in D_{2}.

We observe that i must be an even number, $2 j+2$ say, and that γ_{n} satisfies the recursion formula

$$
\begin{equation*}
\gamma_{n}=\sum_{j=0}^{n-1} \gamma_{j} \gamma_{n-j-1} . \tag{6.1}
\end{equation*}
$$

We introduce the generating function

$$
\gamma(x)=\sum_{n=0}^{\infty} \gamma_{n} x^{n+1}
$$

In terms of this function (6.1) becomes

$$
\begin{align*}
& \gamma(x)=x+(\gamma(x))^{2}, \tag{6.2}\\
& \gamma(x)=\frac{1}{2}\left(1-(1-4 x)^{\frac{1}{2}}\right) .
\end{align*}
$$

Hence, by the binomial theorem,

$$
\begin{equation*}
\gamma(x)=\sum_{n=0}^{\infty} \frac{(2 n)!}{n!(n+1)!} x^{n+1} \tag{6.3}
\end{equation*}
$$

7. Hamiltonian polygons. A polygon in a map M is a simple closed curve made up of edges and vertices of M. It is a Hamiltonian polygon if it includes all the vertices.

A Hamiltonian rooted map is a rooted map M in which one Hamiltonian polygon passing through the first and second major edges is distinguished as the principal polygon. Two Hamiltonian rooted maps are equivalent if and only if there is an isomorphism of one onto the other which preserves the principal polygon as well as the root and each major edge.
We denote the number of inequivalent Hamiltonian rooted maps of $2 n$ vertices by u_{n}.

Consider the construction of a Hamiltonian rooted map M of $2 n$ vertices. We may represent the principal polygon by a great circle J. We can fix a positive direction on J, proceeding from the root r along the first major edge, and we can distinguish each vertex of M by its position in the cyclic order of vertices on J. Of the residual domains of J one can be distinguished as containing the third major edge. We denote this residual domain by D_{1} and the other by D_{2}.
With this much given we must complete the construction of M as follows. First we partition $V(M)$ into two sets W_{1} and W_{2}, each with an even number of vertices, such that $r \in W_{1}$. If W_{2} is to have $2 j$ vertices this can be done in

$$
\binom{2 n-1}{2 j}
$$

ways. Then we make a cross-connection between the members of W_{1} in D_{1} and a cross-connection between the members of W_{2} in D_{2}. Our construction is then complete. The above process can be carried through in

$$
\sum_{j=0}^{n-1}\binom{2 n-1}{2 j} \gamma_{j} \gamma_{n-j}
$$

essentially different ways. Hence, by (6.3),

$$
\begin{aligned}
u_{n} & =\sum_{j=0}^{n-1} \frac{(2 n-1)!}{(2 j)!(2 n-2 j-1)!} \cdot \frac{(2 j)!}{j!(j+1)!} \cdot \frac{(2 n-2 j)!}{(n-j)!(n-j+1)!} \\
& =\sum_{j=0}^{n-1} \frac{2 \cdot(2 n-1)!}{j!(j+1)!(n-j-1)!(n-j+1)!} \\
& =\frac{2 \cdot(2 n-1)!}{(n-1)!(n+2)!} \sum_{j=0}^{n-1}\binom{n-1}{j}\binom{n+2}{j+1}
\end{aligned}
$$

Since

$$
\binom{n-1}{j}
$$

is the coefficient of x^{j} in $(1+x)^{n-1}$ and

$$
\binom{n+2}{j+1}
$$

is the coefficient of x^{n-j+1} in $(1+x)^{n+2}$ it follows that

$$
\sum_{j=0}^{n-1}\binom{n-1}{j}\binom{n+2}{j+1}
$$

is the coefficient of x^{n+1} in $(1+x)^{2 n+1}$, which is

$$
\frac{(2 n+1)!}{n!(n+1)!}
$$

Hence

$$
\begin{equation*}
u_{n}=\frac{1}{2} \frac{(2 n)!(2 n+2)!}{n!((n+1)!)^{2}(n+2)!} . \tag{7.1}
\end{equation*}
$$

Applying Stirling's theorem to this we obtain

$$
\begin{equation*}
u_{n} \sim \frac{2}{\pi} n^{-3}(16)^{n} \tag{7.2}
\end{equation*}
$$

The average number of Hamiltonian polygons, passing through the first and second major edges, in a rooted map of $2 n$ vertices is the fraction u_{n} / p_{n}. By (5.7) and (7.1) we have

$$
\begin{equation*}
\frac{u_{n}}{p_{n}}=\frac{(2 n)!((2 n+2)!)^{2}}{2^{n+2}((n+1)!)^{2}(n+2)!(3 n)!} \tag{7.3}
\end{equation*}
$$

and by (5.8) and (7.2)

$$
\begin{equation*}
\frac{u_{n}}{p_{n}} \sim \frac{8}{\sqrt{ }(3 \pi)} n^{-\frac{1}{2}}\left(\frac{32}{27}\right)^{n} \tag{7.4}
\end{equation*}
$$

If we remove the restriction to Hamiltonian polygons through the first and second major edges the above average must be multiplied by 3 .

We observe that if it is assumed that almost all maps with a specified Hamiltonian polygon are without non-trivial automorphisms then the average number of Hamiltonian polygons in an unrooted map with $2 n$ vertices must be asymptotically,

$$
8 \sqrt{\frac{3}{\pi}} n^{-\frac{1}{2}}\left(\frac{32}{27}\right)^{n}
$$

In Table I we give the values of p_{n}, u_{n} and u_{n} / p_{n}, the first two accurately and the last to three decimal places, for $1 \leqslant n \leqslant 11$.
8. 3-connected Hamiltonian rooted maps. Let M be a rooted map, and H a Hamiltonian polygon of M, passing through the first and second major edges. We write $\{M, H\}$ for the Hamiltonian rooted map formed from M by taking H as the principal polygon. We observe that the edges of any 2-cut in M belong to H.

TABLE I

n	p_{n}	u_{n}	u_{n} / p_{n}
1	1	1	1.000
2	4	5	1.250
3	24	35	1.458
4	176	294	1.670
5	1456	2772	1.904
6	13056	28314	2.169
7	124032	306735	2.473
8	1230592	3476330	2.825
9	12629760	40831076	3.233
10	133186560	493684828	3.707
11	1436098560	6114096716	4.257

Let \bar{M} be the core of M. The edges of \bar{M} having representatives in H evidently define a Hamiltonian polygon of \bar{M}. We denote this by \bar{H} and call the Hamiltonian rooted map $\{\bar{M}, \bar{H}\}$ the core of $\{M, H\}$.

To construct a Hamiltonian rooted map $\{M, H\}$ with a given core $\{\bar{M}, \bar{H}\}$ we must form M as a multiple extension of \bar{M}, operating only at the edges of H. If M has $2 m$ vertices there are just $2 m$ such edges. Suppose one of the single extensions is by a rooted map M_{i} at an edge A_{i} of M. As in (5.3) we may suppose it specified as an $\left(x_{i}, P_{i j}\right)$-extension. We must make a corresponding change in the principal polygon by replacing its edge A_{i} by the new representatives of A_{i} and the edges, other than A_{i}, of any Hamiltonian polygon H_{i} of M_{i} which passes through the first major edge A_{i}. The polygon H_{i} may pass through either the second or the third major edge of M_{i}. Hence if M_{i} is to have $2 j$ vertices the complete extension can be made in just $2 u_{j}$ essentially different ways.

We write v_{n} for the number of inequivalent 3 -connected Hamiltonian rooted maps of $2 n$ vertices. We write also

$$
\begin{aligned}
& u(x)=\sum_{n=1}^{\infty} u_{n} x^{n}, \\
& v(x)=\sum_{n=1}^{\infty} v_{n} x^{n} .
\end{aligned}
$$

(Thus $1-2 x-4 x u(x)$ is the hypergeometric function $F\left(-\frac{1}{2}, \frac{1}{2}, 2 ; 16 x\right)$.)
From the above observations we deduce that the number of inequivalent Hamiltonian rooted maps of $2 n$ vertices having a given core of $2 m$ vertices is the coefficient of x^{n} in

$$
x^{m}\{1+2 u(x)\}^{2 m} .
$$

By (4.3) this gives us the functional equation

$$
\begin{equation*}
u(x)=v\left(x\{1+2 u(x)\}^{2}\right) . \tag{8.1}
\end{equation*}
$$

Some values of v_{n} calculated from this equation are given in Table II. They have been verified by actual counts of Hamiltonian polygons as far as $v_{6}=518$. The numbers q_{n} are from (1).

TABLE II

n	q_{n}	v_{n}	v_{n} / q_{n}
1	1	1	1.000
2	1	1	1.000
3	3	3	1.000
4	13	14	1.077
5	68	80	1.176
6	399	518	1.298
7	2530	3647	1.442
8	16965	27274	1.608
9	118668	213480	1.799
10	857956	1731652	2.018

Reference

1. W. T. Tutte, A census of planar triangulations, Can. J. Math., 14 (1962), 21-38.

University of Toronto

[^0]: Received August 22, 1961. Part of this work was done at the Combinatorial Symposium held by the RAND Corporation, July-August 1961.

