A NOTE ON COMMUTATIVE SEMIGROUPS
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1. Introduction

In 1962, O. Frink [2] showed that in a pseudo-complemented semi-
lattice (P; A, %, 0, the closed elements form a Boolean algebra. We shall
consider an extension of this result to arbitrary commutative semigroups
with zero.

Let S = {S; -, 0> be a commutative semigroup with zero. For a subset
A CS we define 4* = {se S :54 C7(S)}, where 7(S) denotes the set of
all nilpotents of S (the radical). 4* is called the r-annihilator of 4. If 4 =
{a} we write {a}* = (a)* since {a}* coincides with (a)*, where (a) denotes
the principal ideal (@) = aS generated by a.

A well-known congruence definable in semigroups with zero is the
congruence R defined by

{a,b> e R =p, (a)* = (b)*.
Our main result is

THEOREM 1. In a commutative semigroup S = (S;-,0>, S/R is a
Boolean algebra if and only if for all x € S (x)** = (x')* for some x’ € S.

We also consider when S/R is a Boolean algebra with a higher degree
of (lattice) completeness, and determine the normal completion of S/R in
a special case.

2. Proof of Theorem 1

We need some results on 7-annihilators - the first result being straight-
forward has its proof omitted.

LemMA 2.1. For subsets A and B of S we have
(i) 4% = Naes @)%
(ii) A C B implies A* 2 B* and thus, A** C B**,
(iil) 4 C A**,
(iv) A* n A¥* = 7(S) and A*** = A*.
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LEMMA 2.2. For any two ideals I and J of S
(I A J)** = I*% o J*x

Proo¥. Since I n J CTand I n J C J we have, by 2.1 (ii) (I n J)** C
I**and (I n J)** C J** and so (I n J)*¥* CI** n J**

For the reverse inclusion, let seI** n J** and t e (I n J)*, 7€l and
jeJ. Clearly el n J and so #j er(S) or tie (j)* for any j e J. Thus
# € ()jes(7)* = J*. This implies sti e #(S) since s € J** and thus st € (2)* for
any tel.

We then have ste(),.; (¢)* =I* and so stel** nI* =7(S), or
se (t)* Vte (I n J)*, which gives us the result s € (I n J)** or

The reverse inclusion is now proved and the result follows.

COROLLARY. (ab)** = (a)** n (b)**.

Rather than work with S/R. which is a semi-lattice by a result of R.S.
Pierce [5], we prefer to consider the isomorphic semilattice
S** = (S**; n, (0)**> where S** = {(a)**: a € S}.

LEMMA 2.3, S/R ~ S**,

Proor. If we let p denote the natural homomorphism existing between
S and S/R we may define a map ¢ : S/R— S** by apd = (a)**. ¢ is well-
defined, for if ap = bp, (a)* = (b)* and hence (a)** = (b)**. This argument
reverses to show p is an injection, and ¢ is obviously surjective. The corollary
above shows that ¢ is a semigroup homomorphism and so the result follows.

We now proceed to the main part of our proof using the postulate set
for Boolean algebras of O. Frink [1]. The postulates are in terms of semi-
lattice meet (), and complement ().

Pl.anb=bnra

P2. (anb)rc=an (brc)
P3. ana=a

P4, arnd =0 anrb=a.

Clearly P1, P2 and P3 are postulates for a semi-lattice, and P4 is the only
postulate which needs considering in detail.

LEMMA 2.4. If the commutative semigroup S = {S; -, 0> satisfies Condi-
tion (¥): For any x € S, (x)** = (a')* for some x' € S, then
S¥* = (§**; n, 7(S)) is a Boolean algebra.

ProoF. In S** the semi-lattice operation is set intersection n, the zero
7(S) = (0)** and we define the complement of (a)** € S** by (a)**' = (a')**
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where a’ is defined by Condition (*). Lemma 2.3 tells us that S** is a
semi-lattice so we need only consider P4. Suppose (a)** n (b)**" = (0)**,
Then (a)** n (b')** = (ab’)** = (0)** and hence ab’ e7(S) by 2.1 (i).
This implies b’ € (a)* and so (b') C (a)*, giving (0")* = (0)** 2 (a)**. Thus
(@)** ~ (b)** = (a)** and the left-right implication of P4 is proved.

Next, suppose (a)** n (b)** = (a)**. Then (ab)** = (a)** and
(@)** ~ (B)** = (a)** A (b')** = (ab)** N (D')** = (abb')**. Now bbb e
(0)** N (b")** = #(S) and so (abd’)** C (bb')** = r(S). Thus (a)** n (b)**
= 7(S) and the right-left implication is proved.

LEMMA 2.5. Suppose S = (S; -, 0> is a commutative semi-group with
zero, and that S** = (S**; n, (0)**) is a Boolean algebra. Then S satisfies
Condition (*): For any x € S, (z)** = (x')* for some x’ € S.

Proor. Since S** is a Boolean algebra, P4 is satisfied; i.e. for any (b)**

there is a (b)**’ such that
(@)% o (B)* = (0)** = (@)™ n (B)** = (a)**

Defining (b')** by (&’)** = (b) **' we show that (b)* = (b")** or, equivalently
(2.1(iv)) (b)** = (b')*. Put a = b in the above equivalence and, since the
right side is clearly true, we deduce that (B)** n (B)** = (B)** n (b')** =
(6b")** = (0)**. Thus, by 2.1 (i) b’ € 7(S) and so &’ € (b)*, giving (b') C (b)*
or (b')* 2 (b)**. Now take a4 € (b')* and put it in the left side of the equiv-
alence. For such an a4, we see that

(@)%~ (5% = (@)** 0 ()% = (ab))** = (0)**,
and so we deduce that (a¢)** n (b)** = (a)**. This means, by 2.1 (ii) that
a € (b)** and we have thus proved (b')* C (b)**. Combining this with the

reverse inclusion obtained above gives us (b")* = (b)** and the Lemma
follows.

THEOREM 1. Let S = (S; -, 0> be a commutative semi-group with zero.
Then S|R is a Boolean algebra if and only if Condition (*) holds in S.

ProoF. Lemmas 2.3, 2.4, and 2.5.

REMARK. A commutative semigroup with zero is called a Baer semi-
group if for each s € S there exists an idempotent e € S such that

{t:st=0}=5e.

J. Kist [4] has shown that in a commutative Baer semigroup 7(S) = (0)
and so for any s € S, (s)* = Se for some idempotent ¢ € S. This enables us
to give a new proof of Theorem 7.3 of J. Kist [4].

COROLLARY 1. If S = (S, -, 0> is a commutative Baer semigroup, then
S/R is a Boolean algebra.
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ProoF. For s € S, (s)* = Se. We then show (¢)* = (s)** and so we may
take s’ = ¢ in Condition (*). Observe that (s)** = (Se)*. Now if {Se = (0),
then fee = te? = fe = 0 and so ¢ € (e)*. Further, if ¢ (¢)*, then #se = 0
for s e S, and so ¢ € (Se)*. Thus (Se)* = (¢)* and the Corollary is proved.

COROLLARY 2. (0. Frink [2])If S = {S; A, *, 0) is a pseudo-complement-
ed semi-lattice, then S** is a Boolean algebra.

Proor. A pseudo-complemented semi-lattice is a commutative Baer
semigroup and so the result follows from Lemma 2.3 and Corollary 1 above.

3. Completeness of S/R

In this section we generalise Condition (*) to the following (m denotes
an arbitrary cardinal)

ConpDITION m(*). For any 4 C S with |4] < m, A** = (a')* for some
a' €S.

ReEMARK. Condition m(*) implies Condition n(*) for n a cardinal, n < m.

THEOREM 2. Let S = (S;-, 0> be a commutative semi-group with zero.
Then S** = (S**; n, (0)**) is an m-complete Boolean algebra if and only if
S satisfies Condition m(*)

ProoF. Assume S satisfies Condition m(*) and take {a,:yelI}CS
with |I'} < m. Then (), (a,)** = N ey (@4)* = 4* = (a')** where 4 =
{a, 1y e I'} and a,,, &’ exist because of Condition m(*). Thus S** is closed
under intersections of m elements, and by Condition (*), it is complemented.

This implies S** = S/R is an m-complete Bolean algebra, and the first
half of our proof is complete.

Next we assume S** is an m-complete Boolean algebra. Then S** is
closed under intersections of m elements, and satisfies Condition (*), by
Theorem 1. Take 4 = {a, :y e ['}, || < m.

A* =] (a,)* by 2.1 (i)
yel'
and so =[] (a;)** by Condition (*)
yel'
= (a')** since S** is m-complete.
Thus A** = (a’)* and our theorem is proved.
COROLLARY. S** {5 a complete Boolean algebra if and only if for

A CS, A** = (a')* for somea’ € S.
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4. The normal completion of S/R

We next consider the normal completion of S/R = S**. Qur construc-
tion applies to the class of commutative semi-groups without radical for
which the mapping @ — (a) is injective. A wide class of semigroups satis-
fying this condition is the class of semi-lattices. The result is in fact mainly of
interest in the case of semi-lattices. For this reason we shall formulate
our results for semi-lattices, although the extension to the class of semi-
groups mentioned above is immediate.

LeEMMA 4.1. If E = (E; A, 0) is a semi-lattice with zero, then the semi-
lattice of ideals, # (E) = (I(E); n, (0)) is a pseudo-complemented semi-lattice.
The pseudo-complement of JeI(E) is simply J*. Further, J(E)** is a
complete Boolean algebra.

ProoF. Only the last statement really needs checking. Suppose & =
{I,: a € A} is an arbitrary family of ideals of E. Then

of ¥ — (LaJIa)** — (D I:)* — J*

where I = (), [¥.

We see that the conditions of the preceding Corollary are satisfied and
so the result follows.

Next we note, by the comments above, that there is a faithful copy
of E embedded in # (E). More important is that thisimplies E** is a subsemi-
lattice of S (E)**, since {a}** = (a)**. A subset Q of a semi-lattice with
zero (P; A, 0) is said to be dense if for any p e P, p # 0, there is g Q
with 0 < ¢ =< 5.

LEMMA 4.2. E** is a dense subsemi-lattice of F(E)**.

Proor. We must show that for any I** € # (E)** such that I** 3 (0)
there is (a)** € E**, (0) C (a)** C I'**. This follows readily since I** # (0)
implies (¢)** # (0) for some ¢ e l. Clearly then (0) C (¢)** CI** and our
result is proved.

An immediate consequence of 4.2 is

THEOREM 3. Let E = (E; A, 0) be a semi-lattice with zevo. If E*¥* is a
Boolean algebra, then S (E)** is the normal completion of E**.

PrOOF. E** as a Boolean algebra is a dense subsemi-lattice of £ (E)**.
It is well known that under these conditions .# (E)** is the normal comple-
tion of E**, See R. Sikorski [6] p. 153.
5. Concluding remarks

In this note our method of proof of the main theorem follows that of
O. Frink [2] using the postulates of O. Frink [1]. In the author’s thesis
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these results followed (in the case of distributive lattices and semi-lattices)
from theorems regarding the space of minimal prime ideals. Condition (*)
was introduced by M. Henrikson and M. Jerison [3] and was related to the
congruence R via distributive lattices.
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