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LIE SOLVABLE GROUP RINGS 

I. B. S. PASSI, D. S. PASSMAN, AND S. K. SEHGAL 

Let K[G] denote the group ring of G over the field K. One of the interesting 
problems which arises in the study of such rings is to find precisely when they 
satisfy polynomial identities. This has been solved for char K = 0 in [1] and 
for char K = p > 0 in [3]. The answer is as follows. If p > 0 we say that group 
A is ^-abelian if A'', the commutator subgroup of A, is a finite ^>-group. More­
over, for convenience, we say A is 0-abelian if and only if it is abelian. 

THEOREM [1; 3]. K[G] satisfies a polynomial identity if and only if G has a 
p-abelian subgroup of finite index where char K = p ^ 0. 

While this solves the problem in general, it does not of course answer the 
question for any specific polynomial. In this paper we consider the polynomial 
identities which correspond to Lie nilpotence and Lie solvability. 

Let R be any i£-algebra (R need not have a 1). HA and B are two K-sub-
spaces of R we define their Lie product [A, B] to be the i£-subspace of R 
spanned by all Lie products [a, b] = ab — ba with a Ç A, b £ B. We can then 
define inductively the Lie central and Lie derived series of R by 

y°R = R, yn+1R = [ynR, R] (central series) 
Ô°R = R, Ôn+1R = [ônR, ônR] (derived series). 

We say that R is Lie nilpotent if ynR = 0 for some integer n and similarly R 
is Lie solvable if ônR = 0 for some integer n. It is apparent that R is Lie 
nilpotent or Lie solvable if and only if it satisfies certain multilinear poly­
nomial identities. Thus for example ô2R = 0 if and only if R satisfies the 
identity 

[[fi, f2], [f8, r j ] 

which is multilinear of degree 4. 
Our main result is 

THEOREM. Let K\G\ be the group ring of G over the field K with char K = p ^ 0. 
Then 

(i) K[G] is Lie nilpotent if and only if G is p-abelian and nilpotent; 
(ii) for p y£ 2, K[G] is Lie solvable if and only if G is p-abelian; 

(iii) for p = 2, K[G] is Lie solvable if and only if G has a 2-abelian subgroup 
of index at most 2. 
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LIE SOLVABLE GROUP RINGS 749 

Thus we see that the assumption of Lie nilpotence or solvability is quite 
restrictive. In fact this occurs in characteristic 0 if and only if G is abelian. 

1. Matrix rings. Let S be a commutative i£-algebra (S need not have a 1). 
Then we let Mn (S) denote the ring of n X n matrices over S and Tn (S) denotes 
those matrices of trace 0. 

LEMMA 1.1. With S as above we have 
(i) [Tn(S),Mn(S)] = Tn(S

2); 
(ii) [Tn(S), Tn(S)] = Tn(S

2) unless n = 2 and char K = 2. 

Proof. If n = 1 then Tn(S) = 0 so the result is clear. Thus, let n ^ 2 and 
let {e^j denote a set of matrix units. Clearly [Mn(S), Mn(S)] Ç Tn(S

2) so we 
need only prove the reverse inclusions. 

Let i 7* j . If n è 3 we can choose k 9e i,j. Then for any sy s' £ 5 

[seijf s'(ejj — ekJc)] = ss'etj 

[setj, s'eji] = ss'(eu — ej:}). 

Since all these matrices have trace 0 and since the right hand matrices clearly 
span Tn(S

2) part (ii) follows and so therefore does (i). 
Now let n = 2. From the above and 

l o t / 2 7 j iî\ ~"~~ i i 

we see that (ii) holds. Finally if char K 9^ 2 then 

[setj, sf(ejj — eu)] = 2ss'eij 

implies that ss'etj G [Tn(S), Tn(S)] and the result follows. 

LEMMA 1.2. Assume that S is not nilpotent. Then 
(i) Mn(S) is Lie nilpotent if and only if n = 1; 

(ii) Mn(S) is Lie solvable if and only if n — 1 or n = 2, char K = 2. 

Proof. If n = 1 then Mn(S) is commutative and hence both Lie nilpotent 
and solvable. Let n > 1. Then by Lemma 1.1 (i) and induction we have for 
k ^ 1, ykMn(S) = Tn(S

2k). Since 5 is not nilpotent, Tn(S
2k) ^ 0 and Mn(S) 

is not Lie nilpotent. Moreover by Lemma 1.1 (ii) unless n = 2 and char K = 2 
we have a*Mn(S) = Tn(S

2k) for k ^ 1. Thus Mn(S) is not Lie solvable. 
Finally let n = 2 and char K = 2. Then 81M2(S) = r 2 (5 ) is spanned by 

S2ei2, S2e2i and 52(^n + e22) where {ei;-} denotes a set of matrix units. Thus 
since eu + e22, the identity matrix, is central ô2M2(S) is spanned by 

[S2e12, S
2e21] = S*(eu + e22) 

and hence Ô*M2(S) = 0. Therefore M2(S) is Lie solvable if char K = 2. 

Our proof requires some of the techniques of [4]. Unfortunately they are 
not stated in the generality we require so we restate the necessary lemmas 
below. 
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Let A be a normal abelian subgroup of G of finite index n and let 
Xi = 1, x2, . . . , xn be a set of coset representatives. Let p : K[G] —> Mn(K[A]) 
be given by p(a) = [a^] with atj £ i^[^4] where 

%i~ a = S aijXj~ f° r i = 1, 2, . . . , W. 

LEMMA 1.3. p is a monomorphism. 

Proof. This is just Lemma 1.1 of [4]. 

For each i = 2, 3, . . . , n the commutator 

(A,Xi) = {arlXi~laXi\a £ A] 

is a subgroup of A isomorphic to A/CA(xi) (see [4, Lemma 1.2]). Let 5Z- be 
the augmentation ideal of the group ring K[(A, x^]. Thus S* is a i£-subalgebra 
(without 1) of K[A]. Set 

S = 02^3 . . . Sn 

so that 5 is also a i£-subalgebra of i^[^4]. 

LEMMA 1.4. Let St be as above. 
(i) If [A : CA(Xi)] = 00 then St annihilates no nonzero element of K[A]. 

(ii) If char K = p > 0 then St is nilpotent if and only if {A, xt) is a finite 
p-group. 

Proof. Part (i) follows as in Lemma 1.3 of [4]. Consider part (ii). If 
\{A, Xi)I = GO then by (i) St cannot annihilate any element of K[A] so 
certainly St is not nilpotent. On the other hand if (A, xt) is finite then cer­
tainly Si is nilpotent if and only if (A, xt) is a ^>-group where char K = p > 0. 

Observe that K[A] is embedded in Mn(K[A]) in two different ways. First 
K[A] Ç Mn(K[A]) consists of all scalar matrices. Secondly p(K[A]) C 
Mn(K[A]). These are easily seen to be diagonal matrices but not necessarily 
scalars. 

LEMMA 1.5. Set R = K[A] • p(K[G]) ç Mn(K[A]). Then R 3 Mn(S) 
where S = S2S3 . . . Sn. 

Proof. This is just Lemma 1.4 of [4]. 

2. Charac ter i s t ic 5̂  2. We now study G under the assumption that 
K[G] is Lie nilpotent or solvable. It is convenient to list three separate 
assumptions. 

(*) K[G] is Lie nilpotent, char K = p (p = 0 allowed) 

(**) K[G] is Lie solvable, char K = p ^ 2 (p = 0 allowed) 
(***) K[G] is Lie solvable, char K = 2. 

Recall that A(G) is the F.C. subgroup of G, that is A(G) is the set of all 
elements of G having only finitely many conjugates. 
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LEMMA 2.1. Consider the group ring K[G], 
(i) (*) or (**) imply that G = A (G) and G' is finite. 

(ii) (***) implies that [G : A(G)] ^ 2 awd A(G)' is finite. 

Proof. Assume that K[G] satisfies (*), (**) or (***). Then K[G] satisfies a 
polynomial identity, so by Theorem 2.2 of [4], [G : A(G)] < oo and 
|A(G)'| < oo. Let [G: A(G)] = n. 

Suppose first that A(G) = A is abelian and consider (in the notation of 
Lemma 1.5) R = K[A] • p(K[G]) Q Mn(K[A]). Since K[A] C Mn(K[A]) is 
the set of scalar matrices we see that R satisfies the same nultilinear poly­
nomial identities as does K[G], Hence R is Lie nilpotent or Lie solvable 
accordingly as K[G] is. By Lemma 1.5, R 2 Mn(S) where S = S2Sz . . . Sn 

and by Lemma 1.4 (i) since xt (? A(G) for i > 1 we see that 5 is not nilpotent. 
Since Mn(S) is Lie nilpotent or Lie solvable we see from Lemma 1.2 that (*) 
or (**) imply n = 1 and (***) implies that n = 1 or 2. 

Finally let W = A(G)'. Since W is a finite normal subgroup of G we see 
that if_G = G / ^ then A(G) = A(G)/W is abelian and [G : A(G)] = 
[G : A(G)]. Since K[G] is also Lie nilpotent or Lie solvable, the result follows. 

Let JK[G] denote the Jacobson radical of K\G\. 

LEMMA 2.2. Let K[G] be Lie nilpotent or Lie solvable and suppose a £ K[G]y 

a d JK[G]. Then there exists a homomorphism a : K[G] —» Mn(E) where E 
is some algebraically closed field extension of K such that a (a) ^ 0. Moreover 

(i) (*) or (**) implies that n = 1; 
(ii) (***) implies that n = 2. 

Proof. Since a (I JK[G] there exists an irreducible representation a such 
that a (a) 9e 0. Then a(K[G]) = P is a primitive algebra satisfying a poly­
nomial identity and thus by a theorem of Kaplansky [2, Theorem 6.4] P is 
finite dimensional over its center Z which is a field. Say 

P = Mr{D) = D ®Mr{Z) 
z 

where D is a finite dimensional division algebra over Z. 

Let E be the algebraic closure of Z. Then E 3 Z 2 K, E is algebraically 
closed and Lemma 6.3 of [2] implies easily that E ®ZD = MS(E) for some 
integer 5. Thus 

E ® P = E ®D ®Mr{Z) = MS(E) ®Mr(Z) 
z z z z 

= E®MS(Z) ®Mr(Z) = Mn(E) 
z z 

where n = rs. Since P is naturally contained in E (x)zP as 1 ® P we can 
extend a to a map a : K[G] —> Mn(E) and certainly a (a) ^ 0. 

Since E ®z P is generated by E (x) 1 and 1 (x) P and since E (x) 1 is central, 
we see that E ®ZP satisfies any multilinear polynomial identity satisfied 
by P. Thus P = a(K[G]) implies that P and hence Mn(E) = E ®ZP is Lie 

an irreducible representation of degree >\P\. 
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nilpotent or Lie solvable. Therefore we conclude from Lemma 1.2 that (*) or 
(**) implies n = 1 and (***) implies n = 1 or 2. In the latter case if n = 1, 
we just embed M\{E) into M2(E) as the set of scalar matrices. Thus here we 
can always view ( r a s a map from K[G] into M2(E). 

We can now handle the easy cases. 

LEMMA 2.3. Consider the group ring K[G], 
(i) (*) implies that G is p-abelian and nilpotent. 

(ii) (**) implies that G is p-abelian. 

Proof. Assume that K[G] satisfies (*) or (**). Then by Lemma 2.1, 
\Gf\ < oo. Let g G G', g ^ 1 and suppose that (1 - g) g JK[G}. Then by the 
previous lemma, there exists a homomorphism a : K[G] —» Mi(E) with 
1 — <Kg) = °"(1 — g) ^ 0- Now ikfi(E) = E so o- yields a homomorphism 
cr : G —> £ — {0}. B u t E — {0} is a commutative group and g G G' so a(g) = 1, 
a contradiction. We have therefore shown that the whole augmentation ideal 
of K[G'] is contained in JK[G\. Thus by [2, Lemma 16.9] this augmentation 
ideal is contained in JK[G] H K[Gr] Ç JXfG']. This implies easily that if 
char K = 0 then G' = (1) and if char K = p > 0 then G' is a ^-group. Thus 
C7 is £>-abelian. 

We need only show that if K\G] is Lie nilpotent, then G is nilpotent. If 
char K = 0 then G is abelian and hence certainly nilpotent. Thus we need 
only consider char K = p > 0. If ymK[G] = 0 then certainly ym'K\G] = 0 
for any m' ^ m. Thus we may assume that ymK\G] = 0 where m = 1 + pn 

for some n ^ 1. Let x j f G and let r̂  denote the operator on K[G] which is 
right multiplication by y and let ly denote left multiplication. Then [x, y] = 
x{rv — ly) so 

0 = [[...[[x,y]y]...]y] = x(ry - ly)**. 

Since right and left multiplication commute as operators and since 
char K = p > 0 we have 

0 = x(ry - lyy
n = %{{ryy

n - (lvy
n) = xy>* - y»nx. 

Thus ypn centralizes x for all x G G, so ypn G Z(G). This shows that G/Z(G) 
is a £-group. Moreover G' is finite so G/Z(G) is a ^>-group with a finite com­
mutator subgroup. It follows easily that G/Z(G) is nilpotent and therefore 
so is G. 

3. Characteristic = 2. In this section we complete the case (***). It will 
be necessary to study the finite group A(G)' and we will need some facts which 
are well known to finite group theorists. Since these are not difficult to prove 
we include them for the sake of completeness. 

754 I. B. S. PASSI, D. S. PASSMAN, AND S. K. SEHGAL 

hi, h2 G H - {1} and set a = (1 - Ai)(l - h2). Since fa, h2 ^ 1 and \H\ is 
odd, it is trivial to see that a ^ 0. Thus there exists a a as above with a (a) ^ 0 
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x G G either P = Px or P C\ Px = (1). If P is not normal in G, then L[G] has 
an irreducible representation of degree ^ \P\. 

Proof. Let P 0 = P , Pi, P2, . . . , Pw be all the conjugates of P in G. Then G 
permutes these groups transitively and we construct a permutat ion module V 
for L[G] as follows. V has an L-basis {vo, vi, • • • , vn] and x £ G acts on V by 
permut ing the basis elements in the same way it permutes the groups in the 
set { P 0 , P i , . . . , P » } . 

Le t us consider V as an L[P]-module. I t is certainly still a permuta t ion 
module bu t now P is no longer transit ive on the basis. In fact P normalizes 
Po = P so P fixes ZJ0. Suppose the orbits under the action of P on {vo, Vi, . . . , z>&} 
are &0 = Wo}, ^ 1 , ^ 2 , . . . , ©T- Then clearly as an L[P]-module 

V = Vo + V, + . . . + Vr 

where Vt is the permutat ion module for L[P] corresponding to the orbit Û t. 
Let h £ P and suppose t h a t h fixes some z^ with j 9^ 0. This means t h a t h 

normalizes Pj so t h a t (Pj, h) is a ^-subgroup of G. Since P j is a Sylow ^-sub­
group we conclude t ha t h £ Pj so h £ P C\ Pj = (1). This shows t h a t for all 
orbits Ûi with i ^ 0, P acts regularly on © t so t h a t F* is essentially the 
regular representation of L [P ] . In fact once we choose some vj G © u the 
permuta t ion basis for Vt is {Vjh\h £ P } . On the other hand Vo is jus t 1-dimen-
sional with basis {VQ}. 

Now 

v = {Z^*IZa* = 0} 
is certainly an L[G]-submodule of F and since P is not normal in G, V ^ 0. 
T h u s we can choose 0 < W C F to be an irreducible submodule. Let w £ W, 
w 9e 0. Then by multiplying w b y a suitable element of G if necessary we may 
assume t h a t w = 2 a^k with a0 F^ 0. This implies t ha t 2 ^ o a* 9e 0 so 
X #£ 9e- 0 over some orbit © t with i 3^ 0. For this i, the natura l L[P]-projec-
tion n : V —> Vt sends IF to an L[P]-submodule of F* = L[P] which is not 
contained in the augmentat ion ideal. Bu t P is a ^-group and char L = p so 
the augmenta t ion ideal of L[P] is the unique maximal submodule ( tha t is, 
r ight ideal) of L[P]. T h u s U(W) = V, ^ L[P] and 

d im* IF ^ d i m L r , ( IF ) = dim,, Vt = \P\. 

This completes the proof. 

For the remainder of this section we assume t h a t K[G] satisfies (***). 

L E M M A 3.2. Let H be a finite normal abelian subgroup of G of odd order with 
(1) < H C G'. Then [G : G(H)] = 2 and G/G(H) acts in a dihedral manner 
on H. 

Proof. Since H is a finite group of odd order and char K = 2, Lemma 16.9 
of [2] yields JK[G] Pi K[H] C J X f i î ] = 0. T h u s if a G K [ i î ] , a 5* 0 then by 
L e m m a 2.2 (ii) there exists a homomorphism o- : i£[G] —» M2(E) where E is 
some algebraically closed extension of K with a-(a) ^ 0. Now suppose 

https://doi.org/10.4153/CJM-1973-076-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-076-4


I 

754 I. B. S. PASSI, D. S. PASSMAN, AND S. K. SEHGAL 

hi, h2 G H — {1} and set a = (1 — hi)(l — h2). Since hi, h2 9e 1 and \H\ is 
odd, it is trivial to see that a 9* 0. Thus there exists a a as above with o-(a) ^ 0 
and hence cr(^i) 9e 1 and o-(/z2) ^ 1. 

We first show that C(H) 9* G. Since i f ^ (1) choose & 6 H, k ^ 1. By 
the above there exists o- : K[G] -» Af2(E) with o-(&) ^ 1. Now o-(&) G Af2(£) 
has determinant 1 since k Ç if C G' so by taking similar matrices if necessary 
we can assume that a(k) is the diagonal matrix a(k) = diag(a, a - 1) for some 
a Ç E, a 9e- 1. Note that a ^ a - 1 since a2 = 1 and char £ = 2 imply that 
a = 1. Suppose C(if) = G. Then a(G) centralizes a(k) and this must consist 
of diagonal matrices. This implies that a(G) is commutative so o-(G') = 
<r(G)r = (1), a contradiction since k £ G' and cr(&) 9^ 1. 

Now let x G G — C (if) and fix k £ H not centralized by x. Then &*&-1 is 
a nonidentity element of H. We show now that hx = h~l for all A G H. If this 
is not the case choose h £ H with /r*7z ^ 1. By our above remarks there exists 
a homomorphism a : K[G]-> M2(E) with <j(kxk~l) 9* 1 and a(hxh) 9* 1. 
Since 

1 ^ 0 . (^-1) = *(*)'<*>*(ife)-1 

we conclude that a-(&) 9^ 1. As above we may assume that a(k) = diag(a, a - 1) 
with c ^ l . 

Now f i is abelian so o-(if) centralizes <r(k) and hence c(fi) consists of 
diagonal matrices with determinant 1. Since a(kx) 9^ <r(k) we then have 
a(kx) = diag(&, b~l) with b 9* a. Suppose 

a(x) = t « 
From ^ ( x ) ^ ^ ) = a(k)a(x) we have 

[ r si Vb 0 1 = [ a 0 1 [ r 5] 
\_t u\ |_0 ô-1] [ o a-1 J [_t u\ 

so a 9^ b yields easily r = u = 0, and 

a(x) = 
0 5 
/ 0 

Finally, a(h) = diag(c, c_1) for some c £ E, so 

- [ r ?]-'»»-• 
Thus a(hxh) = 1, a contradiction. 

We have therefore shown that every element of x £ G — C(if) acts in a 
dihedral manner on H. This clearly yields [G : C (if)] = 2. 

We now obtain all needed information when G is finite. For finite groups G 
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we let 02(G) denote their maximal normal 2-subgroup and we let 02 ' (G) 
denote their maximal normal subgroup of odd order. 

LEMMA 3.3. Let G be a finite group. 
(i) G is solvable. 

(ii) If \G\ is odd, then G is abelian. 
(hi) If02(G) = (l)thenCG(02>(G)) = 02 , (G). 

Proof, (i) Since (***) is inherited by subgroups and quotient groups we 
need only show that G cannot be a finite nonabelian simple group. Thus by 
way of contradiction assume that G is such a group and let P be a Sylow 
2-subgroup of G. There are three cases to consider accordingly as \P\ = 1, 2 
or ^ 4 . Let L be the algebraic closure of K. Then L[G] also satisfies (***). If 
a is an irreducible representation of L[G], then since G is finite a(L[G]) = 
Mn(L) for some n. By Lemma 1.2 (ii) we have only n = 1 or 2. Moreover 
since G = G', <r(G) is contained in the matrices of determinant 1. Thus if 
n = 1 then for all g (z G, a(g) = 1. Now G is not a 2-group so JL[G] is not the 
augmentation ideal. Thus for some g £ G, g ^ 1 there exists a with a(g) ^ 1. 
Since G is simple this implies that a is an isomorphism on G so G is isomorphic 
to an irreducible subgroup of SL2(L), the group of 2 X 2 matrices over L with 
determinant 1. 

Suppose \P\ = 1 so that G has odd order. Then by Maschke's theorem 
[2, Theorem 15.3], L[G] is completely reducible. Now G Ç SL2(L) C M2(L) so 
G acts by conjugation on the 4-dimensional L-space M2(L) and T2(L) is an 
L[G]-submodule of codimension 1. Thus by complete reducibility M2(L) — 
T2(L) + W where W is a 1-dimensional space acted upon by G by conjugation. 
But G acts trivially on all 1-dimensional spaces so W Ç M2(L) is centralized 
by G. Since G is an irreducible subgroup of SL2(L) this implies that W consists 
of scalar matrices and hence since char L = 2 we have W CI T2(L), a con­
tradiction. 

Suppose \P\ = 2. Then as is well-known G has a normal subgroup of index 2, 
a contradiction. The argument here is to embed G in the symmetric group on 
its elements and then to observe that if x G P has order 2 then x is an odd 
permutation. Thus G intersected with the alternating group is a proper 
normal subgroup of G. 

Finally let \P\ ^ 4 and choose x G Z(P) with # of order 2. Then by taking 
similar matrices if necessary we can assume that 

J J ] e SL2(L). 
Then we see easily that C(x), the centralizer of x in SL2(L), is given by 

C(*) = {[1 ; ] | a £ L} 
and this is an elementary abelian 2-group. Since x G Z(P) this implies that P 
is elementary abelian and then that P = C ^ ^ ) for any y £ P, y 7* 1. Now P 

-
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is not normal in G. If y 6 P C\ P° and y ^ 1 then P = C0(y) = Pg. Thus 
by Lemma 3.1 with p = 2, L[G] has an irreducible representation of degree 
at least \P\ ^ 4, a contradiction. Thus G is solvable. 

(ii) Let \G\ be odd. By the above G is solvable. If G is not abelian we can 
choose H to be the last nonidentity term in the derived series for G and have 
H Ç G'. By Lemma 3.2 since H is abelian we have [G : C(H)] = 2, a contra­
diction since G has odd order. 

(iii) Now H = 02 ' (G) is abelian by (ii) so G(H) 2 H. Suppose C(H) > H. 
Since H = 02 ,(G) we see that 02>(C(H)/H) = (1) so 02(G(H)/H) ^ (1) 
since C(H)/H is solvable. Let G 3 N > H with N/H = 02(C(H)/H). If P 
is a Sylow 2-subgroup of N, then iV = ^ P and since H is central in N, 
N = HXP. Thus P = 02(N) -A (1). Now N < G so 02(7V) < G and 
02(G) F^ (1), a contradiction. Thus C(iJ) = H and the lemma is proved. 

Finally we obtain 

LEMMA 3.4. G has a 2-abelian subgroup of index ^ 2 . 

Proof. By Lemma 2.1 (ii), [G : A(G)] = 1 or 2 and A(G)r is finite. We 
assume first that O2(A(G)0 = (1) and show that G has an abelian subgroup 
of index ^ 2 . This is clear if A(G)' = (1) so suppose A(G)' ^ (1). Since this 
group is solvable by Lemma 3.3 (i) H — 02 ' (A(G)') ^ (1) and then by 
Lemma 3.3 (ii) H is a finite normal abelian subgroup of G of odd order with 
H Ç A(G)r Ç G'. We conclude from Lemma 3.2 that [G : GG(H)] = 2 and 
[A(G) : CA(G)(H)] = 2. Note that A ( G ) / C A ( G O ( # ) has order 2 so it is abelian 
and A(G/ Ç CA(G)(H). Thus by Lemma 3.3 (iii) since O2(A(G)0 = (1) we 
see that H = A(G)r. 

Let A = GA(G)(H) so that [A(G) : A] = 2. Then A' Q A(G)' = H so A' 
is central and of odd order in A. By Lemma 3.2, A' = (1) and A is abelian. 
Since [G : A(G)] = 1 or 2 and [A(G) : A] = 2 we see that A is a normal 
abelian subgroup of G of index 2 or 4. We assume that [G : A] = 4 and derive 
a contradiction. 

Let p : X[G] -> ikf4(^[^]) be as in section 1 and let R = K[A] • P(K[G]). 
Then R is also Lie solvable. Since [G : A(G)] = 2 and [A(G) : 4 ] = 2, the 
coset representatives xi = 1, x2, #3, XA can be so labeled that x2 G A (G) — A 
and X3, X4 Ç G — A (G). By Lemma 1.4 (i), 5 3 and 5 4 do not annihilate any 
nonzero element of K[A]. Furthermore, x2 acts in a dihedral manner on the 
group H of odd order so (A,x2) 2 (H, x2) = H. Thus, Lemma 1.4 (ii) 
implies that S2 is not nilpotent and therefore by all of the above S = 525354 

is not nilpotent. Now R 3 M\(S) by Lemma 1.5 and since R is Lie solvable 
and S is not nilpotent Lemma 1.2 (ii) yields a contradiction. Thus G has an 
abelian subgroup of index at most 2. 

Finally we consider the general case. Let W = 02(A(G)')- Then W is a 
finite normal subgroup of G so if G = G/W then A(G) = A(G)/W, A(G)r = 
A(G)'/W and thus 02(A(G) /) = (1). By the above G has an abelian subgroup 
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A with [G : A] ^ 2. If 4̂ is the complete inverse image of A in G, then 
[G : A] S 2 and ,4' Ç W so 4 is 2-abelian. 

4, Conclusion. It is now a simple matter to prove our main theorem. 

Proof of the Theorem. Suppose K[G] is Lie nilpotent or Lie solvable. Then by 
Lemmas 2.3 and 3.4 we see that G has the appropriate structure. We need 
only show that if G has the appropriate properties then so does K[G]. 

(i) Suppose G is ^-abelian and nilpotent. If char K = 0, then G is abelian 
so K[G] is certainly Lie nilpotent. Thus let char K = p > 0. We show by 
induction on \G'\ that K[G] is Lie nilpotent. The result is clear if G' = (1). 
Suppose G' T^ (1). Then since G is nilpotent, G' P\ Z(G) ^ (1) so choose 
x Ç: Gf C\ Z(G) of order p. Let G = G/(x) and consider the natural map 
r : K[G]^K[G]. By induction K[G] is Lie nilpotent so say ynK[G] = 0. 
This implies that ynK[G] is contained in (1 — x)K[G], the kernel of r. Since 
(1 — x) is central this yields easily y2n~lK[G] Q (1 — x)2K[G] and continuing 
in this manner yvn~lK[G] C (1 - x ) ^ [ G ] . But (1 - x)p = 1 - xp = 0 so 
y m - i ^ g ] = Q a n d K[G] i s L i e n i ip0 tent. 

(ii) Again if char K = 0 then G is abelian and certainly K[G] is Lie solvable. 
Let char K = p > 0 and consider the natural map r : K[G] —» i^[G/G ;]. Then 
the image of r is commutative and the kernel of r is nilpotent. Since ô^fG] is 
nilpotent, it is Lie solvable and hence so is K[G], 

(iii) Finally let char K = 2 and suppose first that G has an abelian subgroup 
A of index 2. Then p : 2£[G] —> M2(K[A]) is a monomorphism by Lemma 1.3 
and M2(K[A]) is Lie solvable by Lemma 1.2. Therefore K[G] is Lie solvable. 
Now suppose G has a 2-abelian subgroup A of index 2 and let r be the natural 
map r : K[G] —> i^[G/^4r]. Then again the image of r is Lie solvable and the 
kernel is nilpotent so K[G] is Lie solvable. This completes the proof. 

We remark that the degree of Lie nilpotence or Lie solvability bounds the 
size of the commutator subgroup of the ^-abelian group by the main result 
of [3]. Presumably in this case a much sharper bound can be obtained. 
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