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Abstract 

The goal in system-level design is to generate a diverse set of high-performing design configurations that 

allow trade-offs across different objectives and avoid early concretization. We use deep generative models 

to learn a manifold of the valid design space, followed by Monte Carlo sampling to explore and optimize 

design over the learned manifold, producing a diverse set of optimal designs. We demonstrate the efficacy 

of our proposed approach on the design of an SAE race vehicle and propeller. 
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1. Introduction 
The automated design of systems is a long-standing goal of artificial intelligence (AI), and computer-

aided design has been successfully used across a wide spectrum of applications, ranging from 

microprocessors to programs (Fujita, 2019). But this success is limited to domains where the design 

intent can be captured using complete and unambiguous specifications. We focus on the design of 

physical systems, which presents unique challenges beyond the scope of traditional design automation 

techniques. First, the design process lacks a complete formal characterization and relies on human 

intuition and domain expertise. The space of designs is large, but the designers have access to several 

examples of valid designs created for different performance objectives or functional goals. Designers 

use this knowledge and experience to identify a promising space of candidate designs and conduct 

manual design space exploration. Second, the design space exploration uses complex multiphysics 

models (Rider, 2013; Stolarski et al., 2018) spanning across several dimensions such as mechanical, 

electrical, and fluid-dynamics, and are non-differentiable, blackbox and proprietary. This renders 

direct use of combinatorial search or gradient-based methods for design inapplicable and necessitates 

minimizing the number of evaluated candidate-designs during exploration. Finally, the design process 

is often incremental and requires optimizing over multiple objectives (Schaltz & Soylu, 2011). Hence, 

it is not sufficient to view design as just an optimization process to find one optimal design; instead, 

designers create multiple diverse high-performing designs that trade-off different design objectives. 

This avoids early concretization and enables freedom to select designs for downstream integration and 

optimization when new objectives are added. 

This paper aims to address these challenges and develop a machine learning approach to aid the 

physical design process, reducing the dependency on human intuition and experience, accelerating the 

discovery of new designs, and improving the performance and diversity of generated designs. Our 

primary contribution is the formulation of a two-staged approach, DeLPhy for design using learning 

focussed on physical system. DeLPhy uses examples of designs to learn a design manifold and 

simultaneously explores and optimizes designs meeting the specified objectives. We jointly train a 
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variational autoencoder to generate design examples with a specification network to predict design 

objectives. The designer specified the specification objective which is represented as the specification 

network. The following novel contributions in DeLPhy makes it an effective approach to physical 

design. We use temperature-guided sampling in the latent space of a variational autoencoder to 

implement a partial simulated annealing approach, whereby we optimize for the specified designs 

objectives. We use uncertainty-aware Monte Carlo sampling to avoid exploration in unreliable parts of 

the design manifold. Our sampling approach leads to the generation of a diverse set of designs 

(possibly, produced using different technologies) that trade-off multiple design objectives. This is 

critical to designing physical systems, which necessitates diversity to increase downstream adaptation 

In Section 2, we describe the problem of physical system design and use an example to illustrate the 

key aspects of the problem. We also identify the requirements of a machine learning approach to 

physical design and present DeLPhy in Section 3 that meets these desiderata. We present three case 

studies to demonstrate the effectiveness of our approach in Section 4 and discuss related work in 

Section 5. We conclude in Section 6 by summarizing our key findings. 

2. Physical System Design  
The design freedom for a specific application can be parameterized to define a design space that needs 

to be explored. We expect multiple competing design objectives that need to be achieved 

simultaneously. The evaluation of these objectives requires the evaluation of domain models, which 

are typically slow and computationally expensive multiphysics models. Each point in the design space 

is called a design configuration. We are given a set of exemplar designs that are valid design 

configurations but do not address the design objectives under consideration. The goal is to use these 

exemplar designs to learn a manifold in the design space over which we can explore and identify a 

diverse set of optimal design configurations that trade off different design objectives.  

 
Figure 1. Physical design problem for the formula SAE racing vehicle (Soria Zurita et al., 2018) 

Figure 1 illustrates the physical design problem using the example of the Formula SAE racing vehicle 

from systems engineering literature (Soria Zurita et al., 2018). The design of a Formula SAE racing 

vehicle comprises 11 subsystems such as the tires, suspensions, engine, cabin, impact attenuator and 

wings. Each subsystem is described using multiple parameters listed above. For example, the tire 

components have radius, pressure, x position and mass as parameters. There are 39 parameters that 

describe the vehicle’s design space. A more detailed design could consider higher dimensional 

description, such as the 3D shape of the wings, to better estimate wind-drag. The design objectives 

capture the designer’s underlying preferences for the system. The 11 objectives listed above can be a 

mixture of target performance such as the preferred height of the center of gravity, and optimization 

metrics such as maximizing acceleration and minimizing drag. While some of these objectives could 

be analytical domain models, the accurate computation of quantities such as drag requires slow 
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blackbox proprietary software (Rider, 2013). The slow physics domain models need to be 

approximated by faster surrogate specification models that can allow more efficient exploration and 

optimization. Further, a possible spread of performance over the objectives of the exemplar vehicle 

designs is illustrated in the radar plot in the top right corner in blue. The performance of a target 

vehicle design configuration is shown in red. The target requires us to have much higher velocity and 

acceleration while reducing drag, height of center of gravity and crash force. Designs must also be 

adaptable, that is, new metrics might be added later and hence, it is critical to generate not just one 

optimal design but a number of diverse designs that trade off different design objectives and enable 

future adaptation to new metrics.  

3. Physical System Design Using Machine Learning 
In this paper, we develop a two-stage approach DeLPhy (illustrated in Figure 2) for design using 

learning focused on physical system. We denote the design space by 𝑋 (structural parameters) with 

candidate designs 𝑥 ∈  𝑋 and the specification of the design objectives (functional and behavioural 

parameters) by 𝑠 which is a vector of competing multidimensional objectives 𝑠𝑖 expressing the 

performance of the target design. In the first stage, we use exemplar designs to learn a generative 

model in the form of a variational autoencoder (VAE) (Kingma & Welling, 2013; Rezende et al., 

2014) over the design space, along with a specification network that predicts the values of the different 

design objectives from the latent representation. The latent design space is denoted by 𝑧 ∈ 𝑍. The 

encoder network 𝜇,  log 𝜎2 = 𝐸𝜃(𝑥)  and 𝑧 = 𝜇 + 𝜖𝜎 with parameters 𝜃 maps a design to latent space 

and 𝜖 ∼ 𝑁(0, 1)is the VAE reparameterized noise. The decoder of the VAE is represented by 𝑥̅ =
𝐷𝜙(𝑧), where 𝜙 are the parameters of the decoder. The output of the decoder is a design (structural 

parameters). The specification network 𝑠 = 𝑆𝜇(𝑧) with model parameters 𝜇 predicts the design 

objectives as a function of the latent design 𝑧.   

 
Figure 2. DeLPhy uses exemplar designs to learn a variational encoder (VAE) where the 

decoder is trained with uncertainty quantification. The latent space represents the learned 
design manifold. The specification network predicts the design objectives from the latent 

space. The VAE and the specification network are jointly trained on the exemplar designs and 
their evaluation on physics models. In the design exploration stage, we condition on the new 

target design objectives and use temperature annealed sampling the latent space, moving 
towards optimal designs exploiting the gradient information. Further, Monte Carlo sampling in 

the decoder leads to multiple design samples for a sampled latent design, which are then passed 
through the encoder and the specification network to determine a distribution over the design 

objectives. High variance/uncertainty implies off-manifold designs that may not be 
unrealizable. DeLPhy finds multiple diverse optimal design configurations. 
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Training Model. Training the VAE and the specification network models can be done offline without 

a full knowledge of the target design objectives, and can be reused for different design problems. 

Since the exemplar designs only need to be valid but not address design objectives, we can generate 

them by sampling configurations from a simple distribution and evaluating the valid configurations 

using the physics models. The learned generative model along with the specification network 

interpolates the design objectives over the configurations and thus, also serves as a differentiable 

surrogate model minimizing the evaluation of the slow physics models. We train the generative model 

with Monte Carlo dropout (Gal & Ghahramani, 2016) over the decoder network to make the model 

uncertainty-aware and enable us to compute the confidence on our predicted design performance. The 

encoder, decoder, and the specification network are jointly trained using the following loss function 

where we use a variant of the standard VAE evidence lower bound (ELBO) loss called the generalized 

ELBO with constrained optimization (Rezende & Viola, 2018). 

𝐿𝜆(𝜃, 𝜙, 𝜇) = 𝐸𝜌(𝑥)[𝐷𝐾𝐿 (𝐸𝜃(𝑧|𝑥) || 𝜋(𝑧))] +  (1) 

                               𝜆𝑇(𝐸𝜌(𝑥) 𝐸𝜃(𝑧|𝑥) [𝑀𝑆𝐸 (𝑥, 𝐷𝜙(𝑧))   + 𝑀𝑆𝐸(𝑠, 𝑆𝜇(𝑧))]) 

This variant allows directly controlling the balance between compression (KL minimization) and the 

other constraints we wish to enforce in our model (reconstruction error and the accuracy of the 

specification network). We use a mixture of Gaussian prior 𝜋(𝑧) and the MSE loss, but MSE can be 

replaced with any other error characterization. The loss 𝐿𝜆(𝜃, 𝜙, 𝜇), with 𝜆 as the Lagrange multiplier, 

is computed using a sampling distribution 𝜌(𝑥) and it is minimized to obtain the network parameters 

𝜃, 𝜙, 𝜇 using the standard method of Lagrange multipliers (Bertsekas, 2014). 

This offline first stage in DeLPhy is followed by the second stage of exploration over the design 

configurations and optimization of the specific target objectives. We use Monte Carlo (MC) (Duane et 

al., 1987; Neal et al., 2011) sampling with a novel temperature scaling in the latent space of the VAE 

to implement a partial simulated annealing approach, whereby we optimize for certain performance 

objectives while conditioning on meeting the required specifications. This enables exploration of the 

Pareto frontier of the multi-objective design optimization problem and yields a diverse set of design 

configurations. We use partial simulated annealing where each objective has its own annealing 

schedule. For each annealing schedule, the temperature at step 𝑘 is 𝑇(𝑘) = 𝑇0𝑒−𝜆𝑘, where 𝑇0 is the 

initial temperature and 𝜆 is the annealing rate. At high temperatures, 𝑇 > 1, the energy gap between 

the subsequent proposals is reduced, which results in a higher chance of the Metropolis-Hastings step 

accepting moves to the regions of the space with lower probability. This favors more exploration and 

enables us to traverse low probability regions.  

As 𝑇 increases, we encourage accepting samples in the regions of high probability. Given a set of 

multiple objectives, we can treat these asymmetrically during exploration by using a different 

temperature annealing schedule for each of the objectives, favoring conditioning on some target values 

while trying to optimize over the others. This makes the approach partial annealing since some 

objectives are optimized via annealing while the remaining continue to be sampled conditioned on the 

target objective performances. 

Since we are optimizing over a surrogate model, optimization can drive the model out of its training 

distribution and the predicted values of the design objective on some apparent promising 

configurations will not match their real values. We can run the slow physics models to detect such 

errors, but we would like to minimize such a possibility by making our generative model and the 

specification network uncertainty-aware. We accomplish this without hurting the scalability of our 

method using Monte Carlo dropout (Gal & Ghahramani, 2016) over the decoder network of the 

generative model, which allows us to quantify uncertainty in the predicted values of the design 

objectives. The MC dropout in the decoder is used to sample reconstructions that are passed through 

the specification network to compute the uncertainty: 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑧) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒({𝑠 = 𝑆𝜇(𝐸𝜃(𝑥̅)) |  𝑥̅ ∈ 𝑀𝐶𝑆𝑎𝑚𝑝𝑙𝑒(𝐷𝜙(𝑧))}) (2) 

Therefore, rather than deciding on whether a design proposed by the generative model is likely in the 

design space, we use the specification network to determine the reliability of the design. By focusing 
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on the regions where the objectives can be predicted with low uncertainty, DeLPhy is able to avoid 

high uncertainty regions of the manifold and find diverse designs which have high confidence of 

retaining optimal performance when evaluated against slow but more accurate models. This 

uncertainty measures the reliability of the design process and does not correspond to the robustness of 

the design against environmental perturbations.  

4. Case Studies 
We demonstrate how DeLPhy can be used to generate physical designs using three case studies: 

propeller design, SAE race vehicle design, and an air vehicle design. In our case studies, we examine 

the following research questions:  

1. Can DeLPhy find valid design configurations for given design objectives?  

2. Can DeLPhy detect when the generated designs are unreliable?  

3. Do designs generated by DeLPhy exhibit high diversity? 

4.1. Propeller Design 

Propellers are key components in a range of vehicle classes including aircraft, ships, and underwater 

vehicles. A propeller design configuration is defined by its geometric properties such as the number of 

blades, diameter of the propeller, shape and pitch of the blades, and hub diameter. The performance 

metrics of a propeller include thrust, rotation speed, required torque, and efficiency. In this design 

problem, we look to trade off velocity and efficiency, whereby the challenge is to design an efficient 

propeller that operates at low velocities. To build and evaluate the performance of our proposed 

designs, we use OpenProp (DMS, 2021; Epps et al., 2009) - an open-source tool that is widely used in 

academia and industry and implements relevant physics models. Figure 3 compares the distribution of 

the two competing objectives - velocity and the propeller efficiency when sampled using a Gaussian 

prior in the latent space, and those generated using DeLPhy. The y-axis represents density of the 

design distribution. The designs from DeLPhy have high efficiency even at low velocity. 

 
Figure 3. DeLPhy can find propellers with high efficiency at relatively low speed 

Figure 4 (left), shows the sample trajectories of the velocity and the propeller efficiency, as well as the 

corresponding variance on the objectives. Around sample ID 9000, we see high velocities with high 

efficiency, but the corresponding variance is high, suggesting these are unreliable designs. Figure 4  

(right) shows that our predicted high uncertainty area align with high deviation from the detailed 

model (true error) and we are also able to identify cases (black points) when the OpenProp physics 

model actually failed to produce a valid output. Physics models also have implicit assumptions on 

their inputs to converge to a valid output. Thus, we are able to avoid unreliable designs using 

uncertainty quantification in DeLPhy. Several diverse propeller designs were produced by DeLPhy 
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with the same objective of efficiency higher than 75% and velocity lower than 4.5 m/s. The propellers 

have a different number of blades, shape and pitch of the blades, and hub diameter. 

 
Figure 4. Uncertainty quantification detects unreliable designs during exploration.  

Left: Increased deviation of objective functions from OpenProp physics model is  
detected by DeLPhy. Right: High true error or physics model failure corresponds  

to high uncertainty predicted by DeLPhy 

4.2. SAE Race Vehicle Design 

The second case study is the SAE race vehicle (Stolarski et al., 2018) described in Section 2 and 

Figure 1. The design objective is to build a vehicle of a specific weight, with a high cornering velocity 

which is challenging as maximum cornering velocity decreases with the mass of the vehicle. DeLPhy 

samples designs that converge around the design objectives even though the training data and the prior 

distribution are far from it. DeLPhy is able to detect when the sampling trajectory goes off-manifold 

and generates unreliable designs. The deviation of the predicted objectives diverges from the true 

value after some number of samples but DeLPhy can detect this as the variance of the specification 

output also rapidly increases. Figure 5 shows that the race vehicle designs created by DeLPhy exhibits 

significant diversity in the choice of key components: engine, tires, and brakes. 

 
Figure 5. DeLPhy generates vehicles with different engines, tires and brakes  

(color denotes the third dimension) 

5. Related Work 
The use of deep generative modelling for computer aided design is a relatively recent research frontier 

(Seff et al., 2021; Xu et al., 2021; Zhao et al., 2020). These approaches target certain aspects of design 

such as geometry while we focus on system-level design. Some recent work (Tripp et al., 2020; 
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Sanchez-Lengeling & Aspuru-Guzik, 2018) combine the latent space representation of generative 

models as part of their Bayesian optimization (Shahriari et al., 2015) algorithms. One particular 

approach relevant to our work is by Notin et al. (2021), where they derive an importance sampling 

estimator of the mutual information to indicate uncertainty in the latent space for discrete data. In our 

work, DeLPhy samples over the latent space to simultaneously explore and optimize to ensure 

diversity. Further, we develop an uncertainty quantification approach that takes into account the 

variance of the specification network predicting the design objectives. This ensures DeLPhy can avoid 

exploring design configurations where the predicted performance cannot be trusted. Machine learning 

methods have also been used for drug discovery and molecule design (Brookes & Listgarten, 2018; 

Brookes et al., 2019). These approaches have impressive results on solving complex combinatorial 

optimization problems. In our work, we are focused on the design of diverse physical systems with both 

continuous and discrete components, and with multiple design objectives which have to be satisfied 

simultaneously. Surrogate-based optimization is widely explored in design optimization, where the goal 

is to learn a surrogate function to replace often expensive black-box simulators e.g., computational fluid 

dynamics simulators (Koziel et al., 2011; Han et al., 2012; Viquerat et al., 2021). The surrogate 

function aims to capture the physical properties of the design environment and reliably evaluate design 

samples. These approaches tend to be more scalable compared to the black-box optimization 

approaches (Belakaria et al., 2020; Deshwal et al., 2021) by avoiding the expensive black-box 

evaluation during optimization. Further, if the surrogate function is differentiable e.g., a neural network, 

the gradients are also available to the optimizer to perform an end-to-end optimization Grabocka et al. 

(2019); Liu et al. (2020); Sun et al. (2021). Our proposed method can leverage advances in better 

surrogate modeling for more efficient exploration. In contrast to existing methods, the design for 

physical systems needs to find a diverse set of designs that trade off different objectives and allow 

further downstream adaptation to new design objectives. 

6. Conclusion 
Design of a physical system for a given set of design objectives requires domain expertise and 

creativity. System designers use their experience and knowledge about previous designs to propose new 

solutions. The challenge of using machine learning for physical design requires a combination of 

uncertainty-aware extrapolation from existing designs to new design configurations, and efficient 

exploration and optimization to identify diverse optimal designs. DeLPhy presented in this paper 

addresses these challenges. DeLPhy comprises two stages. The first is an offline stage of learning the 

design manifold using a variational autoencoder which is trained to be uncertainty-aware using Monte 

Carlo dropout in the decoder network. We also jointly learn a specification network to predict the 

design objectives from the latent space, which helps replace slow domain models with faster 

differentiable neural network surrogates. The second stage uses partial simulated annealing over the 

latent space of the autoencoder to explore the design manifold and optimize the design objectives, 

generating a diverse set of optimal designs. DeLPhy was demonstrated on three case studies involving 

the design of an SAE race vehicle, a propeller, and an air vehicle. First, DeLPhy is shown to be able to 

sample designs with objectives which are very different from the original exemplar designs used in 

learning. Second, DeLPhy uses uncertainty awareness to detect when the predictions of the surrogate 

model cannot be trusted and thus, enables it to avoid designs that are not realistic. Finally, DeLPhy 

finds a diverse set of optimal designs in each of the three case studies. This work is a first step towards 

leveraging deep learning to aid the design of physical systems. 
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