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Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of L-methylmalonyl
coenzymeA to succinyl coenzymeA, and the formation ofmethionine bymethylation of homocysteine. Eukaryotes, encompassing plants, fungi,
animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humansmust consume it in their diet. Themost important sources
include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is
recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is
more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological
aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes,
symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its
pharmacological use and potential toxicity.
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1. Introduction

Vitamins of the B complex are water-soluble molecules with
essential roles in humans. Our previous paper comprehensively
summarised the biological properties of vitamins B1, B2, B3

and B5
(1). Although there is a recent practical paper on

vitamin B12
(2), a comprehensive paper on vitamin B12 is missing.

Vitamin B12, cobalamin, with a molecular weight of 1355.4
Da, is indispensable for humans as an integral part of two
biochemical reactions: the conversion of L-methylmalonyl
coenzyme A to succinyl coenzyme A, and the formation of
methionine bymethylation of homocysteine. Humans, as well as
animals and plants, are unable to synthesise it. Therefore, we
have to obtain vitamin B12 from food(3–6).

The compound was first identified as a nutrient or external
factor in the 1920s thanks to the research efforts of Minot,
Murphy and Whipple, who showed that the symptoms of
pernicious anaemia can be overcome by adding liver to the diet.
The structure of the compound was solved by Dorothy
Hodgkin’s pioneering X-ray crystallography, which revealed
that the vitamin was cyanolated, amidated, tetrapyrrole-con-
taining cobalt. As a result, it was called cyanocobalamin(6,7).

The structure of vitamin B12 is shown in Figure 1. The cobalt is

located in the middle of a circular contraction of a modified

tetrapyrrole macrocycle coordinated by four nitrogen atoms.

This centre of the molecule is known as the corrin ring and is

similar to, although quite different from, the tetrapyrrole-derived

ring systems found in haem and chlorophylls. The lower

nucleotide loop is bound to the corrin ring by a side chain

attached to a macrocyclic ring that contains an unusual natural

base 5,6-dimethylbenzimidazole, which also coordinates the

cobalt ion. Thus, in cyanocobalamin, the cobalt ion is ligated not

only by the four pyrrole nitrogens of the central ring, but also by

the upper (β) and lower (α) ligands. The β-ligand in themolecule

of B12 is a cyano group, while the α is nitrogen from the

mentioned dimethylbenzimidazole. In biological systems, the

upper cyano ligand is usually replaced by an adenosyl group to

form adenosylcobalamin (more precisely, 5 0-deoxyadenosylco-
balamin, AdoCbl), or a methyl group to form methylcobalamin,

or a hydroxyl group to form hydroxocobalamin. Similarly,

some species use a different lower base where dimethylbenzi-

midazole is replaced by bases such as adenine, substituted

Abbreviations: AdoCbI, 5 0-deoxyadenosylcobalamin (adenosylcobalamin); CoA, coenzyme A; EFSA, European Food Safety Authority; IF, intrinsic factor; holo
TC, serum holotranscobalamin; MMA, methylmalonic acid; TC, transcobalamin; TCA, tricarboxylic acid; tHcy, total serum homocysteine.
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benzimidazoles, which include hydroxy- or methoxybenzimi-
dazole, or phenolic compounds, including phenol or cresol(6,7).

2. Sources of vitamin B12

Eukaryotes, encompassing plants, algae, protists, fungi, animals
and humans, do not synthesise vitamin B12

(6–22). Vitamin B12 is
biosynthesised exclusively in prokaryotes. However, only about
a third of all bacteria and archaea species are able to synthesise
it(8,9,23–38). These species provide it for other cobalamin non-
producing bacteria and archaea(30,39–51) as well as for eukaryotes,
except plants and fungi which do not use vitamin B12 as an
enzyme cofactor(6,7,17,18,30,52–58).

Vitamin B12 is also produced by microbiota in the large
intestine of humans, but it is not utilisable by the human body as
it is not spatially bioavailable since the intrinsic factor-mediated

absorption of cobalamin occurs in the upper part of the
gastrointestinal tract (i.e. upstream of the location of its
synthesis) as will be described in the following text related to
pharmacokinetics(6,59–69). Moreover, a major proportion of the
microbially produced vitamin B12 is utilised by other non-
vitamin-producing microbes, further limiting its possible
availability for the human host(60,69–76). The latest observational
study in adult humans reveals a slight colonic absorption of
cobalamin (approximately 7%) and speculates about the
potential involvement of the colonic microbiome in the body’s
vitamin B12 homoeostasis(77). However, the mechanism of
vitamin B12 uptake from the colon and the overall contribution
of the ‘endogenously produced’ colonic vitamin B12 to the
maintenance of vitamin B12 status remain unknown(78). Based
on the current knowledge, it seems that humans are mostly
dependent on vitamin B12 from exogenous sources.

Fig. 1. Structure of vitamin B12: Natural forms include 5 0-deoxyadenosylcobalamin (AdoCbI), methylcobalamin and hydroxocobalamin, industrially produced is
cyanocobalamin(7). Structure was created by ChemDraw, version 20.0.
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In animals, the vitamin B12 from prokaryotes is obtained and
stored in tissues through microbial interactions in the natural
food chain. A good example are ruminants, such as cattle and
sheep. They are herbivores, i.e. they feed on pasture that does
not contain cobalamin, but they obtain the essential vitamin B12

through symbiotic relationship with microbes inside their body.
They have a specialised digestive organ positioned upstream of
the small intestine – a rumen that is heavily colonised with
various micro-organisms, including cobalamin-synthesising
ones, and that allows fermentation of the ingested feed. The
synthesised cobalamin is later absorbed in the small intestine,
incorporated into organs and muscles, and secreted into
milk(49,52,60,73,79–81). Monogastric, non-ruminant herbivores,
e.g. rabbits, receive the benefit of microbial cobalamin
production in their own large intestine by consuming their
faeces. This coprophagy enables microbial cobalamin absorp-
tion in the upper part of the digestive tract(52,60,73,82). Omnivores,
such as pigs and poultry, as well as carnivores acquire cobalamin
from feed of animal origin(80,81). In aquatic environments,
cobalamin is produced only by certain bacteria and archaea.
It is taken up by cobalamin-requiring bacteria as well as
eukaryotic plankton, transferred to fish bodies via plankton, and
concentrated in the larger piscivorous fishes. Similarly, the
vitamin concentrates in the bodies of shellfish feeding on
plankton(80,83–85).

Accordingly, foods of animal origin are the principal sources
of vitamin B12 for humans(63,80,86,87). The most important ones
include meat, milk and dairy products, fish, shellfish and
eggs(64,68,83,84,88–136). The highest levels of cobalamin are found in
offal, especially the liver and kidney(64,68,70,93,111,137–141). Shellfish,
such as mussels, oysters, clams and shrimps, are rich in
cobalamin. However, certain types of edible shellfish (herbivo-
rous sea snails such as abalone and turban shell) are not suitable
as a source of vitamin B12 because they contain substantial
amounts of pseudocobalamin(80,85,142–147). Pseudocobalamin (or
pseudovitamin B12) is an analogue of cobalamin, in which
adenine substitutes for 5,6-dimethylbenzimidazole as the lower
axial ligand. It is biologically very likely inactive in humans
because the intrinsic factor is very specific for binding
cobalamin. Prevention of the absorption of cobalamin analogues
might protect humans from their potential deleterious
effects(6,74,79,142,148–152). Interestingly, edible insects, such as
mealworms, grasshoppers and cockroaches, might also be a
source of vitamin B12 for humans. Crickets, however, do not suit
this purpose because they contain pseudocobalamin as the
predominant corrinoid compound(153–156).

Fungi, as mentioned above, neither produce nor utilise
vitamin B12. Therefore, mushrooms and yeasts, e.g. blackmorels
(Morchella conica), oyster mushrooms (Pleurotus ostreatus),
parasol mushrooms (Macrolepiota procera), porcini mushrooms
(Boletus sp.) and yeasts (Yarrowia lipolytica), generally contain
none or very low amounts of this vitamin, which is presumably
derived from the substrate on which they grow or from
cobalamin-synthesising bacteria that live on the mushroom
surface. Among edible mushrooms, the highest vitamin B12

contents were found in truffles (Tuber sp.), black trumpet
(Craterellus cornucopioides), golden chanterelle (Cantharellus
cibarius) and shiitake (Lentinula edodes)(14,80,85,157–167).

Algae, like other eukaryotic organisms, are not capable of
synthesising vitamin B12 de novo. Over one half of all algal
species require vitamin B12. Those algae, as well as cobalamin-
independent ones, which can, however, also accumulate
exogenous cobalamin, acquire the vitamin from prokaryotic
producers that are in symbiotic relationships with algae or reside
on algal surfaces(11,12,53,56,80,83,158,168–179). Changes in the charac-
ter and magnitude of the epiphytic prokaryotic communities
related to the region or algal physiological state (e.g. growing
conditions and harvesting period) may contribute to variation in
the vitamin content, but these factors are currently poorly
quantified(180). Contents of vitamin B12 vary interspecifically and
intraspecifically in edible algae ranging from traces, e.g. in Irish
moss (Chondrus crispus) and hijiki (Sargassum fusiforme), to
substantial amounts, e.g. in green laver (Ulva spp.), purple laver
or nori (Porphyra/Pyropia spp.) and Chlorella spp., especially
the Chlorella grown non-aseptically under open culture
conditions(80,83,144,150,158,172,176,181–193).

Plants, like fungi, neither synthesise nor use vitamin B12 in
their metabolism(18,20). A few exceptions of plants containing
some cobalamin have been reported: edible duckweed Wolffia
globosa called mankai(194,195), sea buckthorn (Hippophae
rhamnoides), elecampane (Inula helenium), couch grass
(Elymus repens)(21,61) and tea plant (Camellia sinensis)(196).
Cobalamin in those plants is, like in other eukaryotes, of
prokaryotic origin and is presumably produced by symbiotic
endophytic microbes(21,194,195) or taken up from soil containing
some organic fertilisers such as fishmeal or manure(82,196,197).
Therefore, cobalamin is not a normal constituent of commonly
eaten plant foods unless they are contaminated with cobalamin-
producing microbes (e.g. from soil or manure), contain yeasts
or have been exposed to microbial fermentation that have
produced the vitamin, or have been fortified with cobalamin
(e.g. fortified ready-to-eat breakfast cereals and
bread)(6,21,81,82,84,88–90,104,137,152,198–202).

Thus, individuals who consume diets completely free of
animal products (vegans) and even lacto-ovo vegetarians are at
risk of vitamin B12 deficiency comparedwith omnivores. Indeed,
different national nutritional societies quote a need to ensure a
reliable source of vitamin B12 in persons on plant-based
diets(63,66,81,102,104,108,163,203–244). Some dietary ingredients or food
supplements of non-animal origin may be useful for vegetarians
to partly contribute to the supply of vitamin B12. Microalgae
Chlorella and Spirulina (Arthrospira) are the commercially most
produced microalgal genera as dietary supplements (245,246). In
particular, the green alga Chlorella containing cobalamin is a
relevant source of it. On the contrary, microalgae, e.g. Spirulina,
Aphanizomenon and Nostoc, i.e. cyanobacteria, contain pre-
dominantly pseudocobalamin that they synthesise, and only
minor amounts of cobalamin acquired from the environment;
therefore, they are not suitable sources of vitamin B12. It should
also be emphasised that nutrient labels on products often do not
differentiate between forms of vitamin B12 – i.e. they do not
specify that pseudocobalamin is present there instead of
cobalamin(13,23,24,84,85,102,142,163,171,172,180,182,184,189,191,192,247–253).
Macroalgae (seaweeds) green laver and purple laver, the most
widely consumed edible algae, belong to the best non-animal
sources of cobalamin; consumption of approximately 4 g of
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dried purple laver could supply the US recommended dietary
allowance of 2.4 μg/d(80,85,115,150,158,181,182,184,185,187,188,193,254–260).
Shiitake can serve as a source of cobalamin. Nevertheless,
although about 50 g of dried fruiting bodies could be adequate to
achieve the daily cobalamin requirement, ingestion of such large
amounts would not be feasible daily(14,80,158,259). Sea buckthorn
berries as well as mankai contain acceptable quantities of
cobalamin; approximately 18 g of sea buckthorn jam (about 1.5
tablespoons), 6.5 g of sea buckthorn dried berries or circa 100 g
of driedmankai (equivalent to 500 g of frozenmankai formaking
five cups of green shakes) may cover the daily US recommended
amount of the vitamin specified above(21,195,261). However, the
cobalamin contents in all these alternative sources fluctuate
greatly(14,21,61,80,158,160,163,172,189). Moreover, safety hazards posed
by some constituents of those dietary products should not be
underestimated. Continuous intake of large amounts of those
products might adversely affect human health owing to the
presence of potentially harmful substances, whose content
should be monitored during the quality control(262–267). High
consumption of algae is associated with higher risks of
deleterious effects due to excessive intake of some minerals
that algae naturally accumulate, e.g. iodine, cancerogenic
arsenic and toxic heavy metals(150,180,193,218,228,249,262,263,265,268–
284). In addition, these products might be detrimental to human
health because they may be contaminated with toxic cyanotox-
ins produced by some cyanobacteria(262,264–267,270,285) and with
cancerogenic polycyclic aromatic hydrocarbons from the
environment(265,266,280). Similarly to algae, excessive ingestion
of mushrooms may threaten human health as a consequence of
exceeding dietary exposure limits of heavy metals, arsenic and
radionuclides(286–299). Consumption ofWolffia globosa (mankai)
is of safety concern because it leads to an increase in manganese
intake which could represent a risk of adverse health effects(300).

Fermented plant-based foods, such as kimchi, sauerkraut, injera,
kombucha, tempeh andmiso, are generally poor dietary sources
of vitamin B12 for vegetarians mainly because there is simply
not enough vitamin B12 produced by these fermenta-
tions(21,23,65,85,114,115,158,163,184,205,214,255,261,301–303). Taking every-
thing into account, all these alternative sources of cobalamin
for vegetarians are unreliable, insufficient or impractical to meet
cobalamin needs of the human body in the long term. They may
improve vitamin B12 status in vegetarians but cannot replenish
the total body store of the vitamin(85,158,184,192–195,205,304–309).

Plant-based diets, except those rich in ultra-processed plant-
based food products(310–319), are considered potentially superior
to a traditional omnivorous diet for reducing the risk of chronic
diseases, such as metabolic syndrome with type 2 diabetes
mellitus, hypertension, cardiovascular diseases in general, and
several types of cancer(205,217,222,227,241,320–344). Meanwhile, com-
pared with omnivorous diets, plant-based ones are deficient
in some nutrients, which could have detrimental health
implications as well. Vitamin B12 is of particular rel-
evance(204,222,227,231,241–244,305,345,346). The proposed benefit of
plant-based-diets is conditioned by the balance and incorpo-
ration of all missing constituents so that nutritional quality is
not compromised. Regular intake of cobalamin-fortified foods
(mostly ready-to-eat-cereals, bread, nutritional yeast, meat
analogues, such as tofu, and milk substitutes, e.g. soy, almond
and rice milk) and/or cobalamin-containing supplements is
recommended for people on plant-based diets to prevent
vitamin B12 deficiency(70,82,85,93,141,163,184,205,218–222,224–233,235,
236,238,241–243,256,259,305–308,320–326,345–373). The vitamin B12 status
should also be monitored regularly(102,141,218,223,224,227,233,235,
242,256,306,307,320,325,326,347,360–362,367,374).

Contents of cobalamin in some selected foodstuffs are
presented in Table 1.

Table 1. Cobalamin contents in selected foodstuffs

Food Cobalamin content (μg/100 g) References

Oat, wheat, maize, rye, barley, millet, sorghum 0 (697)

Rice, both brown and white 0 (697)

Soybean, lentil 0 (697)

Macadamia nut, peanut, pistachio nut, hazelnut walnut almond 0 (697)

Potato, carrot, cabbage, tomato, garlic 0 (697)

Broccoli, cauliflower, spinach 0 (697)

Orange, strawberry, apple, pear 0 (697)

Avocado 0 (697)

White and brown bread 0 (697)

Pork 0.3–2 (116–118,126,138,521,698,699)

Beef 1.09–3.17 (111,116–118,138,378,395,398,400,521,698,699)

Chicken breast 0.23–0.40 (118,401,521,698,699)

Liver, beef 59.3–110 (138,697)

Liver, pork 24.8–59.7 (123,138,697)

Tuna 0.5–2.21 (698,700)

Sardines 8.31 (700)

Baker’s yeasts 0.01 (697)

Oyster mushroom 0.05 (164)

Button mushroom 0.05–0.06 (164)

Milk 0.4–0.51 (120,133,521,701)

Yoghurt 0.2–0.25 (133,701)

Cheese, cheddar 1.06 (697)

Eggs 0.89–2.7 (521,702)
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The stability of vitamin B12 in food products during
processing, preparation and storage is an important parameter
affecting the supply of the vitamin to consumers(70,85,375–378).
Cyanocobalamin is chemically more stable than adenosylcoba-
lamin, methylcobalamin and hydroxocobalamin. In neutral and
weakly acid aqueous solutions, it is stable at room temperature
with highest stability at pH 4.5–5 and it is relatively stable to the
thermal processing. Loss of vitamin activity may occur due to
heat treatments under alkaline and strong acid conditions or due
to light or via contact with reducing agents, such as ascorbic acid,
polyphenols, nitrous oxide, sulphite and iron(II) salts, but also
with oxidising ones, such as atmospheric oxygen, hypochlorous
acid and chloramine-T(14,21,68,70,124,142,160,198,375–377,379–393). On the
one hand, degradation of vitamin B12 caused by ascorbic acid
might have little practical importance because foods containing
vitamin B12 generally do not contain significant amounts of
vitamin C(376), but on the other hand, it should be taken into
account, e.g. in vitamin fortified beverages(388,390).

In food matrices, vitamin B12 is generally considered to be
rather heat stable compared with other water-soluble vitamins.
Reported losses depend on the type of food and processing
conditions(68,70,134,378,394–406). In milk, vitamin B12 is affected by
heat processing; themore severe the process, the greater the loss
is. Vitamin losses are generally less than 10% after pasteurisation,
10–20% after ultra-high temperature treatment, up to 20%
following sterilisation and 20–35% during spray dry-
ing(84,375,396,407–411). The vitamin B12 amount decreased three
times more in heated chocolate milk (by about 33%) than in the
unflavoured one because cocoa powder used formilk flavouring
contains polyphenols, which are mainly responsible for the
decomposition of the vitamin(383). In meat, vitamin B12 is stable
during the cooking, if the vitamin content in the cooking liquids,
gravy and drippings is taken into consideration(375,403). Indeed,
most vitamin B12 losses result from leaching into water, e.g.
during cooking or freezing/thawing(399,403,412–415). This process is
essentially similar to that of other water-soluble B vitamins(1).
Boiling, stewing and frying lead to vitamin B12 losses of 20–40%,
10–40%, 30–50% and 10–20% in pork, beef, chicken and fish,
respectively(403). The highest reduction in the vitamin content
occurs during boiling(403–406). The best method for cooking fish
was vacuum-packed pouch cooking with no loss of vitamin B12,
compared with steaming, boiling, grilling, frying and micro-
waving(399). Scrambled, fried and hard-cooked eggs lose during
cooking 5%, 5–15% and 20% vitamin B12, respectively(403,406).

Treatment of foods with penetrating waves such as micro-
waves was shown to promote the degradation of vitamin
B12

(70,399,416–418). For instance, decreases by 17%, 14% and 48%
were estimated in beef, pork and milk, respectively, treated with
microwave heating for 6 min, which is a common time used for
reheating of foods(416).

Puffed rice extrudates could be used as a palatable vehicle for
fortification with vitamin B12; losses of added vitamin ranged
from 19% to 64% depending on extrusion processing parame-
ters(419). The stability of the added and in situ-produced vitamin
B12 in breadmaking varied according to the chosen process
(straight-, sponge- and sourdough processes)(386,420).
Converning baking from fortified whole wheat, the vitamin
amounts were reduced by 9%, 20%, 66% and 76% in chapattis

(unleavened flatbread), bread, cake and cookie, respectively.
The lowest vitamin B12 retention was recorded in pooris
prepared from fortified whole wheat flour by frying; the vitamin
loss was 86%(421).

Vitamin B12 is sensitive to light and ultraviolet (UV)
radiation(70,84,375,376,381,382,384,422,423). Sunlight at a brightness of
8000-foot candles (approximately 86 000 lux) caused a 10% loss
of cyanocobalamin for each 30 min of exposure in neutral
aqueous solutions, but exposures to levels of brightness below
300-foot candles (approximately 3200 lux) had little effect(375).
Photodegradation of cyanocobalamin in aqueous solutions may
be accelerated by riboflavin, which acts as a sensitiser(376,422).
The vitamin B12 concentration in milk exposed to the light for 24
h decreased by 1–27%, depending on the type of milk tested(424),
while no changes in the vitamin B12 content occurred in
pasteurised milk packed in a clear polyethylene terephthalate
bottle exposed to fluorescent light (1700 lux) for 10 d(425). The
photostability of vitamin B12 in foods may be increased due to
matrix effects, such as binding to proteins(70,121,426,427).
Furthermore, light penetrates only slightly below the surface
of foods, which would suggest that vitamin B12 photosensitivity
is not a serious issue in most foods(70).

Vitamin B12 content decreases in fermented milk prod-
ucts(397,410). Fermentation of milk resulted in vitamin B12 losses of
25% in yoghurt and 15% in Filmjölk. Storage of an unopened
package of the final product at 4°C for 14 d, until the ‘use by date’,
reduced the vitamin concentrations further by 33% and 26% for
yoghurt and Filmjölk, respectively, so that they contained 40–
60% of vitamin B12 originally present in the milk. This is most
likely attributed to the consumption of the vitamin by starter
cultures of lactic acid bacteria, which aremetabolically active not
only during fermentation but also at lower temperatures during
storage(410). During the cheese-making process, the whey
fraction is removed, leading to a considerable loss of vitamin
B12 (on average about 50%of the vitamin originally present in the
milk) due to its water solubility. Meanwhile, the vitamin content
in final products (especially in hard cheeses) is higher relative to
the starting milk owing to the milk thickening during cheese
production (for instance, about 10 litres of milk is required to
produce 1 kg of hard cheese). Ripening and storage of cheeses
do not alter the vitamin B12 content, except in mold cheeses, in
which the contentmay decline(68,410,428). Swiss-type cheeses (e.g.
Emmentaler andGruyère) contain higher amounts of vitamin B12

than other ones owing to the application of propionibacteria as
adjunct starter cultures for ripening (responsible for the
characteristic flavor and opening formation) that are able to
produce vitamin B12

(68,99,410,429,430).
Maturation of meat between the time of slaughtering and

consumption for up to 14 d does not affect the vitamin B12

content in beef(398).
Vitamin B12 is fairly stable to ionising radiation, which is used

as a food preservation method to control foodborne pathogens
and extend product shelf life; no losses of the vitamin were
found in irradiated pork, chicken, clam and haddock(431–433).
Hypochlorous acid water (used to sanitise food products, e.g.
vegetables, fruits and meat) as well as sodium metabisulfite and
sodium sulfite (used to prevent black discoloration of shrimps)
destroy vitamin B12 in aqueous solutions but do not reduce its
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content in shrimps. Similarly, no significant changes in vitamin
B12 amounts occur in beef treatedwith hypochlorous acid water.
This is explained by the fact that most vitamin B12 present in
foods is in protein-bound form rather than free(385).

Some food ingredients have been shown to influence
positively the stability of vitamin B12. Sorbitol, a sweetener,
protects cyanocobalamin from degradation by heat, ascorbic
acid, thiamine, UV light, and lowor high pH values (379,384). Whey
proteins enhance thermal stability of vitamin B12 by 20% and
could be useful as protective agents against the physical
destruction of the vitamin during food processing(427).
Carnosine, a dipeptide naturally present in meat, prevents the
destruction of cyanocobalamin by vitamin C in the presence of
copper ions and may be useful as an additive to multivitamin–
mineral food supplements. Carnosine has been shown to
possess antioxidant and metal chelating activity, which could
be responsible for the observed protection(21,434).

Storage may influence the rate of vitamin B12 decomposi-
tion(376,388,390,435,436). For instance, storage of ultra-high-temper-
ature milk at room temperature for 18 weeks resulted in the
complete disappearance of vitamin B12, probably due to
exposure to dissolved oxygen in the container, while low
temperature (7°C) did not alter the vitamin content for up to 18
weeks(68,131,376,396,407). No appreciable losses of vitamin B12 were
found in pasteurised milk during storage in a refrigerator for 9 d,
regardless of how long it had been since the packages had been
opened(409). Effects of storage conditions (time, temperature,
moisture content, oxygen and nitrogen) on the vitamin B12

amount in milk powders have also been studied(435). No
remarkable changes in the vitamin B12 content occurred in
vacuum-packaged salmon stored for 880 d at room temperature
either on the Earth or exposed to spaceflight(437).
Cyanocobalamin loss reached up to 63% in fortified wheat flour
packed in permeable paper bags, whereas no significant
reduction of vitamin amounts occurred, when the flour was
packed in multilayer aluminium/polyethylene bags (non-
permeable to oxygen and humidity)(436). When whole wheat
flour fortified with cyanocobalamin was stored in air-tight plastic
containers in the dark under different combinations of temper-
ature (25°C and 45°C) and relative humidity (33%, 63% and 93%)
to mimic the effects of various climatic conditions, the highest
and lowest vitamin losses of 51% and 15% were recorded at 45°
C/93% and at 25°C/all, respectively, after 120 d of storage,
suggesting that wheat flour may be effectively fortified with
vitamin B12

(421). The degradation kinetics of vitamin B12 in
fortified co-crystallised sugar cubes was studied under different
storage conditions as for temperature and humidity; a half-life of
23 months was achieved at 25°C and 33% relative humidity(438).
Vitamin B12 was stable in a salt fortified with multiple micro-
nutrients, including microencapsulated vitamins, during
6 months of storage(439). Different storage temperatures of
fortified juices from carrot (pH 6) and lime (pH 2, richer in
vitamin C promoting vitamin B12 degradation) showed losses of
vitamin B12 of 8%, 15% and 19% in carrot juice and 82%, 95%
and 100% in lime juice, respectively after 28 d at 4°C, 25°C and
37°C. Carrot juice is therefore more suitable for vitamin B12

fortification owing to its mild acidic character(388).

Production of vitamin B12 and biofortification with B12

Vitamin B12, mainly in the most stable form cyanocobalamin,
is commercially produced for use in fortified foods,
dietary supplements, pharmaceuticals and animal
feeds(67,81,88,93,102,141,152,199,214,256,260,304,348,351,379,440–465). The total
synthesis of vitamin B12 comprising about seventy reactions was
achieved in 1972(466–470). Due to the vitamin’s enormous
structural complexity, its chemical synthesis is highly compli-
cated and not economically feasible on an industrial scale.
Therefore, industrial production of vitamin B12 is exclusively
based on microbial fermentation. Currently, the most commonly
employed micro-organisms are high-producing bacterial strains
of Pseudomonas denitrificans and Propionibacterium freuden-
reichii, developed by means of random mutagenesis and
selection, as well as genetic engineering from wild strains
with high natural production ability(6,7,48,52,67,70,175,450,471–502).
Fermentations produce a mixture of hydroxocobalamin, adeno-
sylcobalamin and methylcobalamin; they are then converted to
cyanocobalamin by the addition of potassium cya-
nide(7,48,70,450,471,474,476,478,479). Current industrial biotechnological
processes for the production of vitamin B12 are suboptimal.
Accordingly, further possible micro-organisms suitable for large-
scale production have been widely studied in recent years, e.g.
natural producers Bacillus megaterium and Sinorhizobium
meliloti, and even Escherichia coli, which is not able to
synthesise vitamin B12 de novo in nature but can do so after
genetic modifications (heterologous expression of the whole
biosynthetic pathway). However, the reported yields are not yet
competitive with those achieved in present-day manufacturing
bioprocesses(7,48,450,471,472,503–517).

Biofortification aims to make crop plants naturally more
nutritive rather than adding nutrient supplements to the foods
during food processing. Biofortification can be achieved through
three main approaches including plant breeding, transgenic
techniques and agronomic practices(518–522). No efforts are being
made to biofortify crops with vitamin B12 through conventional
breeding or genetic engineering due to the fact that the
biosynthetic pathway is present exclusively in some bacteria
and archaea(521,523). As for the agronomic approach, which
requires physical application of cobalamin to plants for enriching
themwith this vitamin, some biofortification attempts have been
reported, e.g. in wheat and spinach(524) and green tea(196) by the
addition of organic fertilisers (naturally rich in vitamin B12) to the
soil, in garden cress seedlings by growing on an agar medium
containing cobalamin(197), in Japanese radish sprout (kaiware
daikon) by soaking its seeds in cobalamin solution(415), in
lettuce(423) and spinach(418) in hydroponic culture by treatment
with cobalamin, and in the recombinant alga Chlamydomonas
(expressing human intrinsic factor) by culturing in a medium
supplemented with cobalamin(525). Milk concentrations of
vitamin B12 are influenced by the genotype of the cow.
Genomic regions associated with vitamin B12 concentrations
in milk have been identified, which offer an interesting potential
for marker-assisted genetic selection and breeding to increase
the content of vitamin B12 in cow milk. However, feeding
composition management could help optimise vitamin B12

amounts in milk only to a limited extent as there are adequate
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cobalt levels in the cow’s diet required by ruminal microbiota for
cobalamin biosynthesis(86,97,99,526–531). The introduction of
vitamin B12 into foods may also be achieved via the in situ
production by micro-organisms naturally capable of synthesis-
ing cobalamin. The propionibacterium Propionibacterium
freudenreichii has been most often investigated (rarely other
bacteria, e.g. Bacillus megaterium(61) and Acetobacter pasteur-
ianus(532)) for fortification by fermentation during food process-
ing; and various substrates have been fermented, including
cereals (e.g. wheat, barley, rye, oat, rice, sorghum and millet),
pseudocereals (e.g. buckwheat, quinoa and amaranth), legumes
(e.g. faba bean, soy bean and lupin beans), whey, soy milk,
sunflower seed milk, cabbage, ground elder and black
tea(61,386,420,450,533–550). The usefulness of lactic acid bacteria,
such as Lactobacillus plantarum, Lactobacillus reuteri and
Lactobacillus rhamnosus, for in situ fortification with vitamin
B12 is questionable. It is not clear which, if any, of these strains
synthesises true cobalamin and not merely pseudocobalamin.
The ability of lactic acid bacteria to produce vitamin B12 is, in fact,
usually evidenced by a microbiological assay that does not
distinguish between cobalamin and pseudocobalamin and is not
verified by a reliable analytical method for structure elucidation
and/or by a genetic analysis confirming the presence of the
whole biosynthetic pathway in the genome of a particular micro-
organism(79,303,372,536,539,545,547,551–563). The practical importance
of vitamin B12 biofortification strategies, including in situ
methods, is so far low, if any, compared with fortification (i.e.
external addition of cobalamin to foods). However, it is a
promising way to provide the vitamin to consumers and requires
further research.

Pharmacokinetics and homoeostasis

Absorption

In humans, the selective absorption of vitamin B12 is a multi-
step process (Figure 2). The bioavailability depends on the
individual’s gastrointestinal absorption capacity and, in terms
of food sources, on the amount and type of protein consumed.
Indeed, vitamin B12 ingested through food appears to have
varying rates of absorption(5,564). In general, the bioavailability
of the vitamin from the usual diet is assumed to be about
50% (depending on the dietary source, the amount of
cobalamin ingested, the ability to release cobalamin from
food and the proper functioning of the intrinsic factor system),
but lower from sources containing high amounts, e.g. from
liver, due to saturation of the active absorption
process(63,66,81,84,88,92,93,98,152,565).

Vitamin B12 is bound to proteins in food and is available for
absorption only after releasing by pepsin and hydrochloric acid
produced by the gastric mucosa. Subsequently, it binds to
transcobalamin I (TCI) belonging to haptocorrins (HC)/R
binders. Due to this classification, it is sometimes simply referred
as haptocorrin. It is a glycoprotein that is found in saliva and
gastric fluids and, inter alia, in blood serum. TCI has a high
affinity for both B12 and for its analogues. In the duodenum, TCI
is degraded by pancreatic proteases and free cobalamin binds to
intrinsic factor (IF), a glycoprotein that is secreted by gastric

parietal cells after a meal. There is high homology between IF
and TCI, and both of them bind one molecule of vitamin B12

(566).
Cobalamin binds to IF with a higher affinity in a more alkaline
environment; hence, in the stomach, where the pH is acidic, IF
has a very low affinity for vitamin. This glycoprotein is much
more specific for B12 binding than TCI and has limited affinity for
cobalamin analogues. The IF–cobalamin complex is absorbed in
the distal ileum by receptor-mediated endocytosis enabled by
cubilin with participation of other protein(s), e.g. amnionless
(AMN). IF is degraded in the lysosome, and released B12 enters
the cytoplasm likely by use of the transmembrane protein
LMBD1. The precise mechanism of vitamin B12 efflux from
enterocytes into the circulation is not yet well described. It

Fig. 2. Absorption of vitamin B12 via the IF pathway: Dietary protein-bound
vitamin B12 can bind to transcobalamin I (TCI) only after its release mediated by
pepsin and hydrochloric acid produced by the gastric mucosa. In the duodenum,
TCI is degraded by pancreatic proteases and free cobalamin binds to intrinsic
factor (IF). The IF–cobalamin complex is absorbed in the distal ileum by
receptor-mediated endocytosis enabled by cubilin with participation of other
protein(s), e.g. amnionless (AMN). IF is degraded in the lysosome and released
cobalamin enters the cytoplasm likely by use of the transmembrane protein
LMBD1. The precise mechanism of vitamin B12 efflux from enterocytes into the
circulation is not yet well described. It appears to be mediated by several
exporters; one of them is multidrug resistance protein 1 (MRP1, shown in teal
colour).
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appears to be mediated by several exporters; one of them is
multidrug resistance protein 1 (MRP1)(5,260,566).

The normal mechanism of absorption of orally administered
vitamin B12, via the IF pathway, is readily saturated. While
approximately 70% of vitamin B12 is absorbed from doses of 0.1–
0.5 μg, it decreases to 56% at 1 μg, to 16% at 10 μg and to 3% for
doses 25–50 μg(6). High oral doses (100–100 000 μg) are
absorbed passively, but the extent reaches only about 1% of the
ingested dose(567).

Transport

In the bloodstream, the majority of B12 (80%) and all cobalamin
analogues are bound to TCI, which, thanks to its relatively long
biological half-life of 10 d, forms a circulating supply of vitamins
in the body(568). Of the total B12, 20–30% is carried by
transcobalamin II (TCII), a non-glycosylated protein(6). TCII
binds physiological forms of vitamin B12, while TCI also binds
B12 analogues. TCII and TCI deliver vitamin B12 to peripheral
tissues and liver, respectively(569). The TCII–cobalamin complex
binds in the presence of calcium to its receptor, a trans-
membrane, highly glycosylated protein CD320 (8D6A) contain-
ing two low-density lipoprotein-receptor class A domains. The
receptor is selective to cobalamin–TCII, and neither TCI nor IF
binds to it(570). After endocytosis, the complex enters the
lysosome, where TCII is degraded and free B12 is exported to
the cytosol by use of the ATP-binding cassette transporter
ABCD4. Presence of another membrane lysosomal protein
LMBD1 is also necessary (6,571). A third specific vitamin B12

transport protein found in human serum, transcobalamin III
(TCIII), is also reported in the literature(572–576). Like TCI, TCIII is
a glycoprotein and, in addition, these two transcobalamins are
immunologically identical (573,574).

Reabsorption and excretion

Vitamin B12 is secreted into the bile, and a part is reabsorbed by
the enterohepatic circulation through ileal receptors that require
IF(566,577). Cobalamin is excreted in the faeces, which consists of
unabsorbed biliary vitamin B12, vitamin B12 from gastrointestinal
cells and secretions, and that synthesised by bacteria in the
colon. When the vitamin B12 is found in the excess in the
circulation, it outreaches the binding capacity of TCII, and it is
also excreted in the urine(5). However, it is partially reabsorbed
in the kidney by the transcobalamin II receptor megalin
(Lrp2)(566). Further losses of vitamin B12 occur through the skin
and metabolic reactions(564).

Storage of cobalamin in the human body

Cobalamin, unlike other water-soluble vitamins, is stored in the
human body. Most adults have stores of up to 5 mg. The liver is
the main reservoir of this vitamin, and it stores normally up to
one half of the total amount of the vitamin(577,578). Smaller
amounts of accumulated cobalamin can also be found in the
kidneys and brain, and the circulating supply of TCI-bound
vitamin B12 in plasma cannot be neglected(577).

Physiological function

Vitamin B12 is essential for human metabolism, production and
regeneration of carbohydrates, fats and proteins, as well as for
the proper development of erythrocytes and the central nervous
system. Only two forms are biologically active: methylcobalamin
and adenosylcobalamin(564,566). The former is a cofactor for
methionine synthase and the latter for L-methylmalonyl-CoA
mutase (Figure 3). These B12-mediated reactions are facilitated
by the ability of the cobalt ion to change its oxidation states, Co
(I), Co (II) and Co (III) (Figures 4 and 5)(579,580). Co (I) is unstable
and acts as a supernucleophile. The corrin ring helps to stabilise
this form(6).

Methionine synthase

Methionine synthase is a cytoplasmic enzyme requiring both
vitamin B12 and vitamin B9. It converts homocysteine into
methionine by transfer of a methyl group. The donor of the
methyl group is methylcobalamin, which is subsequently
recovered by transfer of one carbon unit from methylenete-
trahydrofolate (vitamin B9). It need not be emphasised that
mutation in methionine synthase or derangement in vitamin B12

physiology leads to hyperhomocysteinaemia(581). High plasma
homocysteine levels are considered vasculotoxic and neuro-
toxic, but the relationship between human diseases, homocys-
teine levels and supplementation by B vitamins to decrease the
homocysteine levels it is still a matter of debate(582,583).
Furthermore, the formation of the essential amino acid
methionine allows several methylation reactions necessary for
the synthesis of nucleotides for DNA/RNA and proteins. Failure
of this step can be observed especially in rapidly multiplying
cells, such as erythrocytes or enterocytes, and can affect several
processes including the growth of vascular endothelial cells or
the production of noradrenaline, which is involved in both stress
response and cardiovascular system function(93,566,584).

Methylmalonyl-coenzyme A mutase

The mitochondrial enzyme methylmalonyl-coenzyme A mutase
is involved in the catabolism of odd-chain fatty acids, some
branched-chain amino acids and cholesterol to form succinyl-
coenzyme A. A defect in this response is thought to be involved
in several neurological manifestations of vitamin B12 deficiency,
including movement disorders, seizures and mental
retardation(93,566,584).

Laboratory assessment of vitamin B12 status

Vitamin B12 status can be assessed by measuring the serum/
plasma B12 level, which is the sum of B12 TCI-bound
(holohaprocorrin) and TCII-bound (holotranscobalamin); serum
holotranscobalamin (holoTC) concentration; serum/plasma
methylmalonic acid (MMA) concentration; and total serum
homocysteine (tHcy) concentration(4,585). However, no single
laboratory marker is suitable for assessing B12 status in all
patients. Combinations, such as multiple markers or sequential
assay selection algorithms(585) or the calculations(586), that
combine the single B12 diagnostic indicators, such as combined
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indicator (cB12), which uses all four most commonly available
markers: cB12 = log10[(holoTC × total serum B12 level)/(MMA ×
tHcy)] − (age factor), are usually employed for more precise
determination of vitamin B12 levels(585,587). Analytical methods
used for the measurement of vitamin B12 in serum/plasma and
other biological fluids are summarised in Table 2.

Determination of total serum/plasma cobalamin

Serumor plasma B12 levels provide information on the long-term
B12 status and liver stores. Recent intake has no particular effect.
This marker is not very sensitive or specific, leading to a false
positive and negative diagnosis. A serum level of vitamin B12

below 148 pM with symptoms is a strong indicator of deficiency,
but symptoms might be present even with serum levels above
this value(2). Conditions that increase TCI levels such as chronic
granulocytic leukaemia, autoimmune lymphoproliferative

syndrome, alcoholism, liver disease and cancer will also elevate
vitamin B12 levels(93).

Determination of holotranscobalamin

Serum holoTC levels determine the amount of the physiologi-
cally active form of cobalamin bound to TCII. As aforemen-
tioned, holoTC accounts for 20–30% of total B12 serum levels.
This method is the most sensitive to recent intake with a
response within few hours. Hence, this marker can be increased
even when body reserves are low. HoloTC levels are, however,
also increased in patients with renal impairment(93).

Determination of methylmalonic acid

Serum MMA is the most sensitive biomarker of B12 status. It is a
good indicator of liver stores, and it reflects the utility of vitamin
B12 for metabolic functions, i.e. methylmalonyl CoA mutase
activity. MMA as a by-product ofmethylmalonyl CoAmetabolism
increases in B12 deficiency. When total serum B12 is <287 pM, its
concentrations increase. MMA metabolite is affected neither by
folate nor other B vitamins, but it increases with renal
dysfunction, so serum creatinine should bemeasured, especially
in the elderly. MMA levels increase with aging, especially after
age 70, and neither lower intake nor impaired renal function fully
explains why this occurs. Higher serum concentrations of MMA
occur also with an overgrowth of intestinal bacteria that produce
propionic acid. Conversely, antibiotic treatment may lower the
level(93).

Fig. 4. Formation of methylcobalamin: The highly nucleophilic cob(I)alamin
reacts with a methylating agent to form methylcobalamin. Modified in
ChemDraw, version 20.0 on the basis of publication of Kräutler(579).

Fig. 3. Physiological function of vitamin B12 and its connection with folate metabolism: (A) Together with folic acid (vitamin B9), methylcobalamin as a cofactor for the
enzymemethionine synthase is necessary for the formation of methionine. During the reaction, themethyl group is transferred frommethyltetrahydrofolate (CH3-THF) to
homocysteine by the enzyme; the resulting tetrahydrofolate can be then converted to methylenetetrahydrofolate (CH2=THF), the form required for de novo thymidine
synthesis. (B) In the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A, B12 is involved in its active form adenosylcobalamin as a cofactor of the enzyme
methylmalonyl-coenzymeAmutase. The resulting succinyl-coenzyme A is amajor mediator of the tricarboxylic acid (TCA) cycle; CoA, coenzyme A; DHF, dihydrofolate;
THF, tetrahydrofolate.
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Determination of total serum homocysteine

The biomarker tHcy is not specific for B12 levels. It reflects the
availability of B12 for metabolic functions, i.e. methionine
synthase activity. Concentrations increase when total serum
B12 is <300 pM, but also in deficiency of folates, riboflavin and
vitamin B6, as well as with renal insufficiency and
hypothyroidism(93).

Combination of biomarkers

The combination of all four biomarker values (serum B12 levels,
holoTC, tHcy and MMA) or the cB12 mathematical model using
‘four-biomarker’ analysis appears to be the most accurate for
determining B12 levels, but in some cases is unbearably
expensive(93). A study by Fedosov et al.(587) showed that the
cB12 model using analysis of ‘three-biomarker‘or ‘two-bio-
marker’ estimates the level of B12 within acceptable error limits
compared with the analysis of ‘four-biomarker’. The combina-
tion of holoTC, MMA and total serumB12 levels appears to be the
best in the ‘three-biomarker’ analysis. Further quality analysis is
achieved by omitting total serum B12 or holoTC from the ‘four-
biomarker’ analysis. In terms of ‘two-biomarker’ analysis, the
smallest error was observed when holoTC was used in
conjunction with the MMA assay. The article by Fedosov
et al.(587) also provides formulas for cB12 for cases where one or
two biomarkers are missing.

Identification of aetiology of vitamin B12 deficiency

A formerly used Schilling test was withdrawn mainly due to
concerns of bovine spongiform encephalopathy transmission
via its animal-derived intrinsic factor(585,588). Another way to
detect a deficiency caused by impaired absorption is the
CobaSorb test, which uses holoTC as a sensitive marker of the
recent intake of B12. The test consists of taking blood samples
before and 1–2 d after taking an oral dose of 9 μg of
cyanocobalamin three times a day and measuring the increase
in holoTC(589). This method can detect holoTC elevation of ≥10
pM only if the holoTC baseline was <75 pM. Under these

conditions, both sensitivity and specificity are considered
excellent(590). Hardlei et al. improved this method. After stating
that a major part of the oral test dose of cyanocobalamin is
absorbed without modification, it was suggested that the
capacity to absorb vitamin B12 can be evaluated by measuring
TC-cyanocobalamin before and after administration of the test
dose of cyanocobalamin. C-Cobasorb, as this method is named,
has a higher specificity than the previously mentioned
CobaSorb(591). Therefore, if holoTC baseline is >65 pM, it is
recommended to use the C-CobaSorb assay for the assess-
ment(592). Other laboratory tests usable for determination of the
cause of B12 deficiency are tests based on plasma IF antibodies,
plasma gastrin and pepsinogen I, and plasma parietal cell
antibodies(585,593).

Cobalamin deficiency

Subclinical and clinical cobalamin deficiency

Low levels of vitamin B12 can be divided into four stages. The first
two stages represent depletion, while the second two represent
deficiency. Stage I is low serum vitamin B12; stage II is low stores
in cells; stage III is biochemical deficiency; and stage IV is clinical
deficiency with overt manifestations(594). Other classification
divides vitamin B12 deficiency into clinical and subclinical forms.
Subclinical cobalamin deficiency involves mild biochemical
changes without clinical manifestations. Clinical deficiency
usually results from severe, persistent malabsorption, while
dietary insufficiency, intermittent or partial malabsorption can
usually merely induce only subclinical cobalamin deficiency(595).

At the cellular and molecular level, vitamin B12 deficiency
manifests itself in one or both forms of coenzyme B12

(methylcobalamin and adenosylcobalamin). Methylcobalamin
deficiency leads to impaired nucleotide synthesis and methyla-
tion, and adenosylcobalamin deficiency disrupts the metabolism
of methylmalonate, which is derived from the catabolism of odd-
chain fatty acids and ketogenic amino acids(93,260). This can also
be the key to understanding the mechanisms responsible for
clinical manifestations.

Fig. 5. Formation of adenosylcobalamin: Adenosylcobalamin functions as a reversible source of the 5 0-deoxyadenosyl radical, this reaction produces cob(II)alamin.
Modified in ChemDraw, version 20.0 on the basis of publication of Kräutler(579).
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Table 2. Summary of analytical methods for the assessment of vitamin B12 in biological fluids

Technique Sensitivity nmol/L Analytes Matrix Advantages Disadvantages Ref. Published

LC–MS LLOQ
7-11

B12 and its metabolites
(9 analytes)

o plasma
o milk
o mice brain
samples

o small sample volume (30 μl plasma, 20 mg
milk or brain tissue)

o short analysis time
o various matrices

(703) 2015

LLOQ
0.03

B12 and its metabolites
(4 analytes)

o rat plasma o online SPE
o short analysis time
o small sample volume (100 μl)

(704) 2022

LOD
0.22

B12 and 7 others o whole blood o simple sample preparation o relatively long analysis time (705) 2022

LLOQ
1000

B12 o pig plasma o MRM
o online SPE
o short analysis time

o low sensitivity (706) 2012

HPLC-PDA LOD
29.51

B12 and 1 other o urine o simple sample preparation o long analysis time (707) 2009

LLOQ 6 × 10−5 B12 o saliva o FPSE membrane
o reusable

o long sample preparation time
o long analysis time (25 min)

(708) 2023

Electrochemical
sensor

LOD 4.13 × 10−3 B12 o urine o selective
o sensitive

o not available in the market (709) 2018

Nanoparticles and
nanosensor

LOD
3

B12 o serum o small sample volume (200 μl)
o no sample preparation

o not available in the market (710) 2018

Nanosensor FLD B12 o cell lines o in vivo, in vitro, prokaryotic, eukaryotic cells o not available in the market (711) 2018
Nanoparticles FLD LOD

0.0216
B12 o plasma

o urine
o large sample (5 ml) and solvent volume (712) 2017

MIP – nanoparticles
(magnetic)

B12 o breast milk o reusable (5 times) o not available in the market (713) 2018

ELISA kits LOD 91.09 × 10−3 B12 o serum
o plasma
o tissue

o small sample volume (250 μl)
o one kit for various matrices
o sensitive

o for research only
o cross-reactivity with analogues
o time and money consuming for small
sample series

(714) 2021

LOD
0.2814

B12 o serum
o plasma
o biological
fluids

o tissue
homogenate

o small sample volume (50 μl)
o one kit for various matrices
o sensitive

o for research only
o cross-reactivity with analogues
o time and money consuming for small
sample series

(715) 2021

LOD
0.034

B12 o serum
o plasma
o biological
fluids

o tissue
homogenate

o small sample volume (50 μl)
o one kit for various matrices
o sensitive

o for research only
o cross-reactivity with analogues
o time and money consuming for small
sample series

(716) 2022

CLIA kit LOD 1.8 × 10−8 B12 o serum o small sample volume (34 μl)
o sensitive
o short analysis time (15 min)

o for research only (717) 2022

LOD
0.83-2.99 × 10−3

B12 o serum o small sample volume (50 μl)
o sensitive

o results guaranteed only with the use of
the defined analyser

(718) 2020
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Causes of vitamin B12 deficiency and diagnosis

B12 deficiency can be caused by several pathophysiological
processes. They can affect both B12 supply and demand, and
they can occur at any time during human life. Specifically,
cellular B12 deficiency could be due to insufficient intake and/or
bioavailability including malabsorption, chemical inactivation(3)

or disruption of B12 transport in the blood or intracellular uptake
and metabolism. Also, some diseases, medications and bacterial
overgrowth are related to B12 deficiency(5,260,577). It can also
occur in people with increased demands, such as during major
bleeding, and in pregnant or breastfeeding women, and this can
impact their infants as well(260,577).

People from developing countries and those who do not
voluntarily consume animal products because of their religion,
culture or personal attitude may suffer from B12 defi-
ciency(260,577). In terms of new vegans, the symptoms of vitamin
B12 deficiency may not appear for several years owing to the
large reserves in the human body and reabsorption of
the vitamin(569,577). Lacto- and lacto-ovo-vegetarian diet could
be sufficient thanks to milk and eggs that contain a low amount
of cobalamin(577). Metabolic and clinical signs of cobalamin
deficiency have been reported in neonates from strict vegetarian
mothers or in breastfed infants by cobalamin-deficient moth-
ers(566,596,597). To avoid the risk of deficiency, they can obtain
cobalamin from fortified foods (see section Prevention by
fortification of food) or food supplements(5,260).

Furthermore, the deficiency occurs because of cobalamin
malabsorption. In the case of pernicious anaemia (chronic
atrophic gastritis type A), cobalamin cannot be absorbed
because of the lack of IF. It is a consequence of autoimmune
gastritis when the parietal cells producing IF and hydrochloric
acid in the stomach are destroyed. Chronic atrophic gastritis type
B, which is related to persistent infection with Helicobacter
pylori, may also impair vitamin B12 absorption. Both are due to
disturbance of the pH of the stomach and the inability to release
vitamin B12 from food proteins(260,566,577). Proton pump inhib-
itors, H2-receptor antagonists and antacids also suppress the
gastric acidity and, hence, similarly impair vitamin B12

absorption(260,569,577,578). Diseases affecting the small intestine
such as coeliac disease, Crohn’s disease or ulcerative colitis are
connected with B12 malabsorption due to villous atrophy and
mucosal injury or recurrent diarrhoea(5,260,569,577). Last but not
least, cobalamin malabsorption is associated with gastric, post-
gastric or ileal resection, or pancreatic insufficiency or
pancreatectomy that cause inability of B12 release from HC
binding(5,260,569). Another disease associated with low levels of
cobalamin is HIV infection. Plasma concentrations decreasewith
disease progression(66). In addition, older people are at risk of
malabsorption not only because of the various diseases and
medications they take, but also because of the natural aging
process. Several age-related physiological factors can adversely
affect the absorption of the vitamin from the intestine(577).

In addition to the above-mentioned drugs, low levels of
vitamin B12 are also associated with oral contraceptives(598),
metformin, cholestyramine, colchicine, several antibiotics, and
drugs such as p-aminosalicylic acid(260,578) and in elderly patients
also with ACE inhibitors(599). In some, the mechanism is known

as with cholestyramine that may bind intrinsic factor, while
colchicine, several antibiotics, and antituberculotic drug p-
aminosalicylic acid, may act as inhibitors of intrinsic factor-B12

endocytosis(260).
In terms of the chemical inactivation, the anaesthetic gas

nitrous oxide irreversibly oxidates cobalt. This oxidation is,
however, relevant solely the enzyme methionine syn-
thase(3,260,600). On the other hand, adenosylcobalamin is not
changed. The reason is that mechanisms of the catalytic reaction
differ between methionine synthase and methylmalonyl-coen-
zyme A mutase particularly in relation to changes in the
oxidation state of the central cobalt ion. During methionine
synthesis, cob(I)alamin intermediate, which is susceptible to
oxidation, is formed, whereas during methylmalonyl-succinyl
coenzyme A transformation, cobalt is never reduced to Co(I)
and, thus, not susceptible to N2O-induced oxidation. (580,600).

Moreover, there are some rare genetic defects causing
impairment in absorption, transport, metabolism or utilisation of
cobalamin. Hereditary IF deficiency caused by recessive
mutations in the IF gene (CBLIF) is an inherited disorders of
vitamin B12 absorption associated with congenital pernicious
anaemia. Imerslund–Gräsbeck syndromes 1 and 2 (also known
as hereditary megaloblastic anaemia 1 and 2) are associated with
selective vitamin B12 malabsorption in the ileum; there is a defect
in transport of cobalamin into the enterocytes due to mutation in
cubilin (gene CUBN) and amnionless (gene AMN), respectively.
With respect to the physiological function of TCI (gene TCN1)
and TCII (gene TCN2), it is clear that congenital deficiency of at
least one of them leads to defective absorption as well as
transport into cells. In addition, mutations in TCII receptor
CD320 are known. There is also a group of historically so-called
cobalamin mutant diseases cblA, cblB, cblC, cblD, cblE, cblF,
cblG, cblJ, cblK and cblX. These diseases affect different
processes associated with vitamin B12: (1) efflux from lysosomes
to cytosol (cblF – gene LMBRD1, cblJ – gene ABCD4);
(2) intracellular vitamin B12 trafficking via chaperone
MMACHC (cblC, /gene MMACHC/), silencing its gene (‘epi-cbl
C’, gene PRDX1), or proteins regulating its expression – cblX /
gene HCFC1 on X chromosome/ and cblK /gene ZNF143/;
(3) likely transport to methionine synthase – cblD /gene
MMADHC/; (4) metabolism by methionine synthase (cblG,
methione synthase, gene MTR) or methionine synthase reduc-
tase (cblE, gene MTRR); (5) synthesis of adenosylcobalamin by
ATP:cobalamin adenosyltransferase /cblB, gene MMAB/ and
transport of produced adenosylcobalamin to methylmalonyl
CoA mutase /cblA, gene MMAA/. Methylmalonyl CoA mutase
deficiency (gene MMUT) is also known(566,571,577,581,601).

The reference intervals of the individual biomarkers aswell as
their values indicating B12 deficiency are given in Table 3(260,587).
To determine the aetiology of vitamin B12 deficiency, the (C-)
CobaSorb assay or plasma IF antibodies, plasma gastrin and
pepsinogen I, and plasma parietal cell antibodies (585,593) can be
used, as mentioned above.

Clinical manifestations

Clinical deficiency ismanifested by haematological, neurological
and neuropsychiatric symptoms(2,260,441,569,577,602–604). No specific

12 M Moravcová et al.

https://doi.org/10.1017/S0954422424000210 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422424000210


correlation between haematological and neurological symptoms
has been demonstrated, so patients with neurological manifes-
tations may not have any haematological abnormalities and
vice versa(93,605).

Haematological manifestations are usually but not always
connected with macrocytic or megaloblastic anaemia that is
characterised by enlarged but less numerous erythrocytes, and
by hypersegmented neutrophils. It is the result of disruption of
DNA synthesis. In B12 deficiency, the recovery of tetrahydro-
folate is disrupted. This limits the supply of folate for the
synthesis of thymidylate, purine nucleotides and, subsequently,
DNA. The haematopoietic system is particularly affected
because blood cells are cells with a rapid turnover. DNA
synthesis in bone marrow blood cell precursors is stopped,
which prevents mitosis but allows cytoplasmic maturation(93,260).
Because other haematopoietic cells are also affected, it can lead
to isolated thrombocytopenia and neutropenia and even
pancytopenia with impairment of cellular and humoral
immunity(93,260,441,569,602).

Cobalamin deficiency appears to be more common in
patients with a number of chronic neurological and neuropsy-
chiatric diseases. Clinical manifestations of vitamin B12 defi-
ciency can include several CNS symptoms (peripheral
neuropathy, subacute combined degeneration of the spinal
cord, paraesthesia, ataxia, abnormal reflexes, bowel and bladder
incontinence, erectile dysfunction, stroke, optic atrophy,
orthostatic hypotension, dementia, multiple sclerosis,
Alzheimer’s disease, parkinsonian syndromes, depression,
mania, irritability, paranoia, delusions, psychosis, delirium),
but also atherosclerosis. However, it is still not clear whether
there is a direct causality(441,569,577,602,603). There are several
theories that link cobalamin deficiency with neurological and
neuropsychiatric problems such as (a) disorders of the formation
of monoamine neurotransmitters, because cobalamin and folate
are essential for the production of tetrahydrobiopterin that is
required for monoamine synthesis(606); (b) DNA synthesis
disturbances due to deficiency of methyl donors(604);
(c) hyperhomocysteinaemia and its discussed vasculotoxic
and neurotoxic effects(583,604,607,608); (d) demyelination due to a
lack of S-adenosylmethionine as a consequence of inhibition of
homocysteine methylation to methionine(604,608,609); (e) inhib-
ition of the methylmalonyl-succinyl CoA pathway causes
disruption of odd–chain fatty acid metabolism and may also
lead to demyelination(604,609).

In addition, there is a higher risk for infants born to
B12-deficient women to develop neural tube defects with
impairment of psychomotor function and brain development,

anaemia and growth disorders. Neural disturbances may be
irreversible(244,610).

Prevention by fortification of food

Fortification of foods with vitamin B12 is primarily intended for
populations at risk for its deficiency. The highest prevalence of
deficiency occurs in people who have a low dietary intake of the
vitamin and in those, primarily the elderly, suffering from
malabsorption of food-bound cobalamin, whose vitamin B12

status can be poor despite intakes often appearing to be
adequate. As already discussed, vegetarian diets also represent a
clear risk factor for vitamin B12 deficiency, as those diets have
become very popular in the past few decades, especially in
developed countries, because of their potential health benefits
but also due to ethical and environmental issues. The diets of
populations in low- and middle-income countries are typically
low in animal-source foods because of their relatively high
cost, lack of availability, and/or cultural and religious rea-
sons(66,81,611–613). Reduced acid production in the stomach
associated with atrophic gastritis does not interfere with the
absorption of the free crystalline vitamin present in fortified
foods or supplements because intrinsic factor is still
secreted(63,66,81,85,93,137,152,199,200,205,260,455,565,612,614–623). Fortification
with cobalamin has also been recommended in foods fortified
with folate because of concerns that excess intake of folic acid
alone by people with a low vitamin B12 status, particularly in
the elderly, may delay the diagnosis of cobalamin deficiency.
High levels of folate may mitigate (‘mask’) symptoms of
anaemia caused by cobalamin deficiency and cannot correct
nervous system damage, allowing or even accelerating its
progression in persons with unrecognised and untreated
cobalamin deficiency. Significance of this phenomenon has
been an issue of persistent debate(63,200,242,453,615–619,623–656).
Whether the concerns are substantiated or
not(108,456,612,627,639,657–666), cobalamin deficiency should be
prevented in any case, and fortification with both folate and
cobalamin would reduce possible risks. As of 2022, there are
twenty-five countries in Africa, Central and South America, and
Asia having mandatory fortification of wheat flour, maize flour
or rice with vitamin B12 (Burundi, Cameroon, Chad, Ethiopia,
Ghana, Kenya, Liberia, Malawi, Mozambique, Nigeria,
Rwanda, Tanzania, Uganda, Zimbabwe, Costa Rica, Cuba,
Guatemala, Nicaragua, Panama, Peru, Afghanistan, Jordan,
Palestine, Uzbekistan and Vietnam)(667–670). In addition, food is
fortified with the vitamin on a voluntary basis in many other
countries including, e.g., the United States, Brazil, India,

Table 3. The reference intervals of the individual biomarkers, values indicating transitional status and B12 deficiency

Biomarker; unit B12 reference interval Transitional B12 status B12 deficiency

References: (587) (260) (587) (587) (260)

B12 (pM) 186–650 200–600 119–186 <119 <148
holoTC (pM) 37–190 40–100 20–37 <20 <35
tHcy (μM) 8–13.6 8–15 13.6–19.2 >51 >15
MMA (μM) 0.11–0.35 0.04–0.37 0.35–1.7 >1.7 >0.37
cB12 −0.5 to þ1.5 −2.5 to þ1.5 −2.5 to −0.5 <−2.5 <−0.5

B12, total serum B12 concentrations; cB12, combined indicator of vitamin B12 status.
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Bangladesh, Myanmar, Indonesia, Sudan, Sierra Leone and
countries of the European Union(224,444,449,450,461,521,667,668,671–674).
Foods fortified with vitamin B12 include cereal-based
foods, meat substitute products (such as tofu), milk substitutes
(such as soy-based milk and yoghurt alternatives), nutritional
yeast, fruit juices, multivitamin sweets and milk powder
infant foods(85,93,152,199,216,224,256,259,444,449,612,613,636,669,671,672,675–679).
Attractive strategies for fortification have been investigated, such
as fortification of milk (616,621), yoghurt(680), tea (681,682), fruit and
vegetable juices(388), ready-to-blend fresh-cut fruit/vegetable
mix(683), mineral water(684), sugar cubes(438), salt (391,439), dried
soup(621) and toothpaste(685,686).

Therapy

The first-line treatment in patients with risk factors for the vitamin
deficiency is prevention of this deficiency and/or supplementa-
tion with vitamin B12. Treatment should be started as soon as
possible(260). Parenteral therapy or high-dose oral administration
can be used to treat vitamin B12 deficiency if due to inadequate
dietary intake. In diagnosed vitamin B12 deficiency, intra-
muscular administration should be preferred as the effect or
oral treatment is lower based on current knowledge(2).
Intramuscular injections of 1000 μg of cyanocobalamin or
hydroxocobalamin are given daily or every other day for at least
one week followed by weekly injections for at least one month.
Thereafter, they are reduced to a dose of 1000 μg of
cyanocobalamin monthly. Injections of hydroxocobalamin can
be given each 3 months after the initial intensive therapy.
Alternatively, subcutaneous administration is recommended in
cases of contraindications of intramuscular application, e.g.
when a patient is treated with anticoagulants. Oral treatment
consists of 1000–2000 μg of cyanocobalamin orally per day. In
some countries, also sublingual and intranasal vitamin B12 is
available, but their clinical profit has not yet been clearly
established(2,260,441,602). The development of nanoparticles for
oral vitamin B12 administration able to overcome the IF-
absorption pathway can enrich the palette of current treatment
modalities in the future(452).

The duration of treatment depends on the cause and clinical
manifestations of the deficit. Blood count usually recovers within
2 months, and neurological signs correct or improve within
6 months(441). However, in patients with severe neurological
disorders, improvement usually will be weak after 1 year of
adequate therapy. These patients may suffer from permanent
impairments(260). In case of malabsorption, treatment continues
even after the symptoms have disappeared; it is usually a life-
long therapy. Both routes of administration (including self-
injection at home) can be used(2). Selection of the route of
administration usually depends on patient preferences and the
compliance. As mentioned above, other less studied routes of
administration (sublingual, nasal or even transdermal) are
available, but they are also more expensive(441,455). Regarding
dietary deficiency, it is recommended to take at least 6 μg/d after
the symptoms have disappeared and the body’s vitamin B12

levels have been restored. In infants, treatment is usually started
with intramuscular injections of 250–1000 μg cyanocobalamin or
hydroxocobalamin daily, then until recovery once a week,

followed by an oral administration of 1–2 μg daily using various
B12-containing formulas. Treatment of the mothers is also
indicated to adjust breast milk vitamin levels(260).

There is dose–response relationship between oral B12 dose
and serum/plasma B12 levels(687). Doubling vitamin B12

increases serum/plasma levels approximately by 11% and
slightly more in the elderly (13%) than in adults (8%).

Pharmacological use

Vitamin B12 is mainly used, as mentioned above, to supplement
at-risk people and to treat deficiency. In particular, older people
who are more susceptible to food–cobalamin malabsorption
should consume vitamin B12 in crystalline form, i.e. from
supplements or fortified foods, as this form is likely to be better
absorbed(93).

It is speculated that vitamin B12 could be used as an
adjunctive or integrative treatment for painful conditions such as
various types of neuralgia and neuropathy, low back pain and
aphthous stomatitis. Further studies are needed in this
area(688,689). Vitamin B12 could have a positive effect on sperm
quality. It primarily increased sperm count and secondarily
elevated sperm motility and reduced sperm DNA damage(690).
However, in both cases, further studies are needed as well.

Toxicity

To date, there are minimal claims on cobalamin toxicity. Vitamin
B12 is usually well tolerated with rare incidence of adverse
effects. Allergic reactions are unusual but may be anaphylac-
tic(691,692). Injectable forms appear to be more allergenic than
pills, but this could be associated rather with some preservatives
(e.g. benzylalcohol) in injections than by the vitamin itself(2).
High oral dose supplementation seems to be better tolerated, but
there are known exceptions(693). Although there is a cross-
reaction between hydroxocobalamin and cyanocobalamin, it is
possible to reintroduce vitamin B12 with concomitant adminis-
tration of glucocorticoids or antihistamines or with desensitisa-
tion therapy(691,692). There are also cases of acneiform eruptions
after intramuscular or high oral doses of vitamin B12, which easily
disappear after discontinuation(694,695). Nausea, dry mouth and
blurred vision were reported after administration of vitamin B12

as well(696). Other rare documented side effects of vitamin B12

include discolouration of the skin and urine, mild arterial
hypertension, hypokalaemia, congestive heart failure, pulmo-
nary oedema and local pain at the injection site in case of
parenteral administration(578).

Conclusion

This review summarised all critical aspects of vitamin B12

biology. It emphasised that animal-based diets are almost the
sole source of this vitamin for humans and, hence, vegetarians
are at risk of developing its deficiency, which can progress to
very severe and irreversible stages. At present, many countries
havemandatory or voluntary fortification of food by this vitamin,
but the risk of vitamin B12 deficiency is still not negligible
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worldwide. Moreover, there are many diseases, drugs and
surgical procedures which can cause its deficiency, which is
mostly delayed by several years as humans have relatively large
stores of this vitamin. Prevention or treatment should be ideally
case specific due to the complicated absorption mechanism of
this vitamin. There are no convincing data on the pharmaco-
logical administration of vitamin B12 with exception of its
deficiency. Its administration is considered safe in the majority of
patients, but hypersensitive reactions can occur particularly after
its parenteral administration.
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366. Mądry E, Lisowska A, Grebowiec P (2012) The impact of
vegan diet on B-12 status in healthy omnivores: five-year
prospective study. Acta Sci Pol Technol Aliment 11, 209–212.

367. Kiely ME (2021) Risks and benefits of vegan and vegetarian
diets in children. Proc Nutr Soc 80, 159–164.

368. Redecillas-Ferreiro S, Moráis-López A, Moreno-Villares JM
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