A TAUBERIAN THEOREM FOR A SCALE OF LOGARITHMIC METHODS OF SUMMATION

R. PHILLIPS

1. Introduction. We suppose throughout that p is a non-negative integer, and use the following notations:

$$
\pi_{p}(x)=\left\{\begin{array}{cl}
\frac{1}{\log _{0} x \cdot \log _{1} x \ldots \log _{p} x}, & \text { for } x \geqq e_{p} \\
0, & \text { otherwise }
\end{array}\right.
$$

where $\log _{0} x=x$ for $x \geqq e_{0}=1, \log _{n+1} x=\log \left(\log _{n} x\right)$ for $x \geqq e_{n+1}=e^{e_{n}}$ ($n=0,1,2, \ldots$);

$$
\begin{aligned}
\sigma_{p}(x) & =\sum_{n=0}^{\infty} \pi_{p}(n) x^{n} \quad(-1<x<1) \\
s_{n} & =\sum_{k=0}^{n} a_{k} \quad(n=0,1,2, \ldots) \\
t_{n} & =\frac{1}{\log _{p+1} n} \sum_{k=0}^{n} \pi_{p}(k) s_{k} \quad\left(n \geqq e_{p+1}\right) .
\end{aligned}
$$

We shall say that $\sum_{n=0}^{\infty} a_{n}$ is summable L_{p} to s and write

$$
\sum_{n=0}^{\infty} a_{n}=s\left(L_{p}\right) \quad \text { or } \quad s_{n} \rightarrow s\left(L_{p}\right)
$$

if

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{\sigma_{p}(x)} \sum_{n=0}^{\infty} \pi_{p}(n) s_{n} x^{n}=s .
$$

We shall say that $\sum_{n=0}^{\infty} a_{n}$ is summable l_{p} to s, and write

$$
\sum_{n=0}^{\infty} a_{n}=s\left(l_{p}\right) \quad \text { or } \quad s_{n} \rightarrow s\left(l_{p}\right)
$$

if $t_{n} \rightarrow s$ as $n \rightarrow \infty$.
Since $\sum_{n=0}^{\infty} \pi_{p}(n)=\infty$ the L_{p} method is regular [3, Theorem 1], i.e., every convergent series is summable to its natural sum. It is easily seen that the l_{p} method is equivalent to a (\bar{N}, q_{n}) method with $q_{n}=\pi_{p}(n)$ and hence is regular [4, p. 57].

It follows from a known result that the L_{0} method is equivalent to a standard logarithmic method L (see, for example, [2]). Using a standard result on \bar{N}

[^0]methods (see, for example, [4, Theorem 14]) the l_{0} method can easily be shown to be equivalent to the l method which has been considered by a number of authors (see, for example, $[\mathbf{4} ; \mathbf{5} ; \mathbf{7}]$).

The aim of this paper is to establish the following Tauberian theorem.
Theorem. If $\sum_{n=0}^{\infty} a_{n}=s\left(L_{p}\right)$ and if the following Tauberian condition holds:
$\left(\mathrm{T}_{p}\right) \lim \inf \left(s_{n}-s_{m}\right) \geqq 0$ when $n>m \rightarrow \infty$ and $\log _{p+2} n-\log _{p+2} m \rightarrow 0$, then $\sum_{n=0}^{\infty} a_{n}$ converges.

The case $p=0$ of this result is due to Kwee [7]. An immediate consequence of the above theorem and Lemmas 3 and 6 (below) is the following corollary, the case $p=0$ of which includes " ${ }_{0}$ " Tauberian results established by Ishiguro [5].

Corollary. If a series $\sum_{n=0}^{\infty} a_{n}$ is L_{p} or l_{p} summable and if for H a positive constant $a_{n} \geqq-H \pi_{p+1}(n)$ for $n \geqq e_{p+1}$, then the series converges.

Acknowledgement. I wish to acknowledge my indebtedness to Dr. D. Borwein for suggesting the topic and for his help in the preparation of this paper. I would also like to thank Dr. A. Meir for suggesting the proof of Lemma 2.
2. Preliminary results. We require the following lemmas.

Lemma 1. If

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=c>0 \quad \text { and if } \quad \lim _{x \rightarrow a} g(x)=\infty
$$

where $-\infty \leqq a \leqq \infty$, then

$$
\lim _{x \rightarrow a} \frac{\log _{p+1} f(x)}{\log _{p+1} g(x)}=1
$$

Proof. Since

$$
\lim _{x \rightarrow a} \frac{\log f(x)}{\log g(x)}=\lim _{x \rightarrow a} \frac{\log \{f(x) / g(x)\}}{\log g(x)}+1=1,
$$

the result holds for the case $p=0$, and the general case can be established by induction.

Lemma 2.

$$
\sigma_{p}(x) \sim \log _{p+1} \frac{1}{1-x} \quad \text { as } \quad x \rightarrow 1^{-}
$$

Proof. For $p=0$ the result is obvious, and for $p>0$ since

$$
\lim _{\sup _{n \rightarrow \infty}} n \pi_{p}(n)=0
$$

we obtain from a theorem due to Agnew [1, Theorem 1.1] that

$$
\limsup _{x \rightarrow 1^{-}}\left|\sum_{k=0}^{\infty} x^{k} \pi_{p}(k)-\sum_{k=0}^{\left[1 / \log x^{-1}\right]} \pi_{p}(k)\right| \leqq 0
$$

where $\lceil y]$ denotes the largest integer not exceeding y. Also, it is familiar that

$$
\begin{equation*}
\sum_{k=0}^{n} \pi_{p}(k) \sim \log _{p+1} n \quad \text { as } \quad n \rightarrow \infty \tag{1}
\end{equation*}
$$

The lemma now follows by Lemma 1. Notice in particular that

$$
\begin{equation*}
\sigma_{p}\left(e^{-1 / x}\right) \sim \log _{p+1} x \quad \text { as } \quad x \rightarrow \infty \tag{2}
\end{equation*}
$$

Lemma 3. If $\sum_{n=0}^{\infty} a_{n}=s\left(l_{p}\right)$ and condition $\left(\mathrm{T}_{p}\right)$ holds, then $\sum_{n=0}^{\infty} a_{n}$ converges.

Proof. The proof is modelled on Kwee's proof of the case $p=0$ [7, Lemma 3]. Assume, without loss of generality, that $s=0$, and let N be the integer such that $N-1<e_{p+2} \leqq N$. Then for $n>m \geqq N$

$$
t_{n} \log _{p+1} n-t_{m} \log _{p+1} m=s_{m+1} \pi_{p}(m+1)+\ldots+s_{n} \pi_{p}(n)
$$

Let ϵ be an arbitrary positive number. By condition $\left(\mathrm{T}_{p}\right)$ there are numbers

$$
M=M(\epsilon) \geqq N \quad \text { and } \quad \delta=\delta(\epsilon)>0
$$

such that: if $n>m \geqq M$ and $\log _{p+2} n-\log _{p+2} m \leqq \delta$, then $s_{n}-s_{m} \geqq-\epsilon$ and hence

$$
\left(s_{m}-\epsilon\right) \sum_{k=m+1}^{n} \pi_{p}(k) \leqq t_{n} \log _{p+1} n-t_{m} \log _{p+1} m \leqq\left(s_{n}+\epsilon\right) \sum_{k=m+1}^{n} \pi_{p}(k) ;
$$

i.e.,

$$
s_{m}-\epsilon \leqq\left[t_{n} \frac{\log _{p+1} n}{\log _{p+1} m}-t_{m}\right]\left[\log _{p+1} m / \sum_{k=m+1}^{n} \pi_{p}(k)\right]
$$

and

$$
s_{n}+\epsilon \geqq\left[t_{n} \frac{\log _{p+1} n}{\log _{p+1} m}-t_{m}\right]\left[\log _{p+1} m / \sum_{k=m+1}^{n} \pi_{p}(k)\right] .
$$

Keeping ϵ fixed and letting $n>m \rightarrow \infty$ subject to

$$
\frac{1}{2} \delta \leqq \log _{p+2} n-\log _{p+2} m \leqq \delta,
$$

we get

$$
\underset{m \rightarrow \infty}{\limsup } s_{m} \leqq \epsilon \quad \text { and } \quad \underset{n \rightarrow \infty}{\liminf } s_{n} \geqq-\epsilon ;
$$

since $t_{n} \rightarrow 0$,

$$
e^{\delta} \geqq \frac{\log _{p+1} n}{\log _{p+1} m} \geqq e^{\frac{1}{2} \delta}>1+\frac{1}{2} \delta
$$

and

$$
\begin{aligned}
& {\left[\log _{p+1} m / \sum_{k=m+1}^{n} \pi_{p}(k)\right] \sim \frac{\log _{p+1} m}{\log _{p+1} n-\log _{p+1} m} } \\
&=\frac{1}{\left(\log _{p+1} n / \log _{p+1} m-1\right)}=O(1)
\end{aligned}
$$

It follows that $\lim _{n \rightarrow \infty} s_{n}=0$.

Lemma 4. If $0<d<1$ and if $g(x)$ is a real valued function, continuous on each of the intervals $[0, d),[d, 1]$, which tends to a finite limit as $x \rightarrow d^{-}$, and if $s_{n} \geqq 0$ and $s_{n} \rightarrow s\left(L_{p}\right)$, then

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{\sigma_{p}(x)} \sum_{n=0}^{\infty} \pi_{p}(n) s_{n} x^{n} g\left(x^{n}\right)=s \cdot g(1)
$$

Proof. By Lemmas 1 and 2, we have, for $c \geqq 0$,

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \frac{1}{\sigma_{p}(x)} \sum_{n=0}^{\infty} \pi_{p}(n) s_{n} x^{n} \cdot x^{c n} & =\lim _{x \rightarrow 1^{-}} \frac{\sigma_{p}\left(x^{c+1}\right)}{\sigma_{p}(x)} \frac{1}{\sigma_{p}\left(x^{c+1}\right)} \sum_{n=0}^{\infty} \pi_{p}(n) s_{n} x^{(c+1) n} \\
& =s \lim _{x \rightarrow 1^{-}} \frac{\sigma_{p}\left(x^{c+1}\right)}{\sigma_{p}(x)} \\
& =s \lim _{x \rightarrow 1^{-}} \frac{\log _{p+1}\left(1-x^{c+1}\right)^{-1}}{\log _{p+1}(1-x)^{-1}} \\
& =s .
\end{aligned}
$$

Thus the lemma holds for $g(x)=x^{c}$, and the full result follows by an argument similar to that used by Ishiguro [6, Lemma 2].

Lemma 5. If $s_{n} \rightarrow s\left(L_{p}\right)$ and $s_{n} \geqq-M$, then $s_{n} \rightarrow s\left(l_{p}\right)$.
Proof. The proof is similar to Ishiguro's proof of the case $p=0$ [6, Theorem 2]. Let

$$
g(x)=\left\{\begin{aligned}
0 & \text { for } 0 \leqq x<1 / e \\
1 / x & \text { for } 1 / e \leqq x \leqq 1
\end{aligned}\right.
$$

so that $g(1)=1$ and $g\left(x^{n}\right)=0$ if $n>1 / \log (1 / x)$. Hence, by Lemma 4,

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{\sigma_{p}(x)} \sum_{n \leqq 1 /(\log (1 / x))} \pi_{p}(n)\left(s_{n}+M\right)=s+M
$$

Putting $x=e^{-1 / n}$, we get, by (1) and (2),

$$
\lim _{n \rightarrow \infty} \frac{1}{\sigma_{p}\left(e^{-1 / n}\right)} \sum_{k=0}^{n} \pi_{p}(k)\left(s_{k}+M\right)=\lim _{n \rightarrow \infty} \frac{1}{\log _{p+1} n} \sum_{k=0}^{n} \pi_{p}(k) s_{k}+M=s+M
$$

Lemma 6. If for H a positive constant $a_{n} \geqq-H \pi_{p+1}(n)$ for $n \geqq e_{p+1}$, then the condition $\left(\mathrm{T}_{p}\right)$ is satisfied.

Proof. There is a positive number H such that

$$
a_{k} \geqq-H \pi_{p+1}(k) \quad\left(k \geqq e_{p+1}\right),
$$

so that for $n>m \geqq e_{p+1}$,

$$
s_{n}-s_{m}=\sum_{k=m+1}^{n} a_{k} \geqq-H \sum_{k=m+1}^{n} \pi_{p+1}(k) \sim-H\left(\log _{p+2} n-\log _{p+2} m\right) .
$$

Hence, $\lim \inf \left(s_{n}-s_{m}\right) \geqq 0$ when $n>m \rightarrow \infty$ and $\log _{p+2} n-\log _{p+2} m \rightarrow 0$, and condition ($\mathrm{T}_{\boldsymbol{p}}$) is satisfied.

Lemma 7. Let Φ be an increasing continuous non-negative function in $[0, \infty)$ such that $\Phi(u) \rightarrow \infty$ and $\Phi(u)-\Phi(u-1) \rightarrow 0$ as $u \rightarrow \infty$, and let

$$
\tau(x)=\sum_{n=0}^{\infty} c_{n}(x) s_{n} \text { for } x>0
$$

Suppose that the following conditions are satisfied:
(i) (a) $c_{n}(x) \geqq 0 \quad(x>0)$,
(b) $c_{n}(x) \rightarrow 0$ as $x \rightarrow \infty$,
(c) $\sum_{n=0}^{\infty} c_{n}(x)=1 \quad(x>0)$;
(ii) (a) $\sum_{n=0}^{M} c_{n}(x) \rightarrow 0$ when $x>M \rightarrow \infty$ and $\Phi(x)-\Phi(M) \rightarrow \infty$;
(b) $\sum_{n=M}^{\infty} c_{n}(x)(\Phi(n)-\Phi(M)) \rightarrow 0$ when $M>x \rightarrow \infty$ and $\Phi(M)-\Phi(x) \rightarrow \infty ;$
(iii) $\lim \inf (s(t)-s(u)) \geqq 0$ when $t>u \rightarrow \infty$ and $\Phi(t)-\Phi(u) \rightarrow 0$, where $s(t)=s_{n}$ for $n \leqq t<n+1$;
(iv) $\tau(x)$ is bounded for $x>x_{0}$.

Then s_{n} is bounded.
Kwee [7], using a result due to Vijayaraghavan (see [4, Theorem 238]), has proved this lemma with the additional condition

$$
\sum_{n=M}^{\infty} c_{n}(x) \rightarrow 0 \text { when } M>x \rightarrow \infty \text { and } \Phi(M)-\Phi(x) \rightarrow \infty
$$

It has been pointed out that in fact this condition is redundant (see [8, Chapter II, Theorem 9]).
3. Proof of the Theorem. The proof is based on Kwee's proof [7] of the case $p=0$. Let

$$
\Phi(u)= \begin{cases}\log _{p+2} u & \text { for } u \geqq e_{p+2} \\ u / e_{p+2} & \text { for } 0 \leqq u<e_{p+2}\end{cases}
$$

and, for $x>0$, let

$$
\tau(x)=\frac{1}{\sigma_{p}\left(e^{-1 / x}\right)} \sum_{n=0}^{\infty} \pi_{p}(n) s_{n} e^{-n / x}=\sum_{n=0}^{\infty} c_{n}(x) s_{n}
$$

where

$$
c_{n}(x)=\frac{\pi_{p}(n) e^{-n / x}}{\sigma_{p}\left(e^{-1 / x}\right)} .
$$

Clearly $\Phi(u)$ is a strictly increasing non-negative continuous function which tends to infinity as u tends to infinity, and by Lemma $1, \Phi(u)-\Phi(u-1) \rightarrow 0$ as $u \rightarrow \infty$.

We now show that the other conditions of Lemma 7 are satisfied. Since, by (2),

$$
\begin{equation*}
0 \leqq c_{n}(x) \leqq \frac{\pi_{p}(n)}{\sigma_{p}\left(e^{-1 / x}\right)} \sim \frac{\pi_{p}(n)}{\log _{p+1} x} \quad(0<x \rightarrow \infty) \tag{3}
\end{equation*}
$$

we obtain (i) (a) and (i) (b); (i) (c) holds by definition of $\sigma_{p}\left(e^{-1 / x}\right)$. Now
using (1) and (3), and letting $x>M \rightarrow \infty$ subject to $\log _{p+2} x-\log _{p+2} M \rightarrow \infty$, (ii) (a) follows from

$$
\sum_{n=0}^{M} \frac{\pi_{p}(n)}{\log _{p+1} x} \sim \frac{\log _{p+1} M}{\log _{p+1} x} \rightarrow 0 .
$$

For (ii) (b), we will show that $\sum_{n=M}^{\infty} c_{n}(x) \phi(n) \rightarrow 0$ when $M>x \rightarrow \infty$, which is more than required by condition (ii) (b). Since $\pi_{p}(t) \log _{p+2} t$ is a decreasing function of t for $t \geqq e_{p+2}$ we have, for $M \geqq e_{p+2}$,

$$
\begin{aligned}
0 \leqq \sum_{n=M}^{\infty} c_{n}(x) \Phi(n) & \sim\left[\log _{p+1} x\right]^{-1} \sum_{n=M}^{\infty} e^{-n / x} \pi_{p}(n) \log _{p+2} n \\
& \leqq\left[\log _{p+1} x\right]^{-1} \pi_{p}(M) \log _{p+2} M \sum_{n=0}^{\infty} e^{-n / x} \\
& \sim\left[\log _{p+1} x\right]^{-1} x \pi_{p}(M) \log _{p+2} M \\
& <M\left[\log _{p+1} M\right]^{-1} \pi_{p}(M) \log _{p+2} M \rightarrow 0 \quad(M>x \rightarrow \infty)
\end{aligned}
$$

Condition (iii) is implied by condition (T_{p}) of the theorem.
Since $s_{n} \rightarrow s\left(L_{p}\right)$, we have

$$
\lim _{x \rightarrow \infty} \tau(x)=\lim _{t \rightarrow 1^{-}} \frac{1}{\sigma_{p}(t)} \sum_{n=0}^{\infty} \pi_{p}(n) s_{n} t^{n}=s,
$$

and hence condition (iv) is satisfied.
We have thus shown all the conditions of Lemma 7 are satisfied and it follows that s_{n} is bounded. Hence, by Lemma $5, s_{n} \rightarrow s\left(l_{p}\right)$ and so, by Lemma $3, \sum_{n=1}^{\infty} a_{n}$ converges.

References

1. R. P. Agnew, Abel transforms and partial sums of Tauberian series, Ann. of Math. 50 (1949), 110-117.
2. D. Borwein, A logarithmic method of summability, J. London Math. Soc. 33 (1958), 212-220.
3. - On methods of summability based on power series, Proc. Roy. Soc. Edinburgh Sect. A 64 (1957), 342-349.
4. G. H. Hardy, Divergent series (Oxford University Press, Oxford, 1949).
5. K. Ishiguro, Tauberian theorems concerning the summability methods of logarithmic type, Proc. Japan Acad. 39 (1963), 156-159.
6. - A converse theorem on the summability methods, Proc. Japan Acad. 99 (1963), 38-41.
7. B. Kwee, A Tauberian theorem for the logarithmic method of summation, Proc. Cambridge Philos. Soc. 63 (1967), 401-405.
8. H. R. Pitt, Tauberian theorems (Bombay, 1958).

University of Western Ontario, London, Ontario

[^0]: Received February 25, 1972 and in revised form, May 31, 1972. This research was partially supported by an NRC Studentship.

