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A TAUBERIAN THEOREM FOR A SCALE OF 
LOGARITHMIC METHODS OF SUMMATION 

R. PHILLIPS 

1. Introduction. We suppose throughout that p is a non-negative integer, 
and use the following notations: 

TTp(x) = ) : : , for X > ev, 

\\ogox . logix . . Aogpx' ~ p' 
\ 0, otherwise, 

where log0x = x for x ^ e0 = 1, logn+iX = log(lognx) for x ^ en+1 = e*n 

(« = 0 , 1 , 2 , . . . ) ; 

oo 

*p(x) = ]C Trv(n)xn (— 1 < x < 1); 
n=0 

n 

sn = X) a* (» = 0, 1, 2, . . . ) ; 
fc=0 

1 n 

[ogp+in k=o 

We shall say that X2=o ^ is summable Lp to 5 and write 
oo 

X ^ n = s(Lp) or 5„ —> s(Lp), 
71=0 

if 
1 °° 

lim — T T X ) irp(n)snx
n = 5. 

We shall say that Yln=o an is summable /p to s, and write 
oo 

53 a„ = s(/p) or sn -> s(/„), 
rc=0 

if 4 —> ^ as w —» oo . 
Since XX=o irP(n) = co the Lp method is regular [3, Theorem 1], i.e., every 

convergent series is summable to its natural sum. It is easily seen that the lv 

method is equivalent to a (N, qn) method with qn = wP(n) and hence is regular 
[4, p. 57]. 

It follows from a known result that the L0 method is equivalent to a standard 
logarithmic method L (see, for example, [2]). Using a standard result on N 
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898 R. PHILLIPS 

methods (see, for example, [4, Theorem 14]) the Z0 method can easily be shown 
to be equivalent to the / method which has been considered by a number of 
authors (see, for example, [4; 5; 7]). 

The aim of this paper is to establish the following Tauberian theorem. 

THEOREM. If X)ï=o an
 = s(Lp) and if the following Tauberian condition holds: 

(Tp) lim inf (sn — sm) ^ 0 when n > m —» oo and \ogp+2n — logp+2m —•> 0, 
then J2n=o an converges. 

The case p = 0 of this result is due to Kwee [7]. An immediate consequence 
of the above theorem and Lemmas 3 and 6 (below) is the following corollary, 
the case p = 0 of which includes " 0" Tauberian results established by 
Ishiguro [5]. 

COROLLARY. If a series ]CS=o o,n is Lv or lp summable and if for H a positive 
constant an ^ —H7rp+i(n) for n ^ ep+i, then the series converges. 

Acknowledgement. I wish to acknowledge my indebtedness to Dr. D. Borwein 
for suggesting the topic and for his help in the preparation of this paper. I 
would also like to thank Dr. A. Meir for suggesting the proof of Lemma 2. 

2. Preliminary results. We require the following lemmas. 

LEMMA 1. If 

fix) 
lim^-r^- = c > 0 and if lim g(x) = oo 
x^a &\pC ) x^a 

where — oo ^ a ;= oo, then 

H m l0&H-l/(*) = L 

logP+ig(x) 
Proof. Since 

l i m log/(*0 = l i m log{/(*)/g(*Q} + i = i 
x->a l ogg(x) x^a logg(x) 

the result holds for the case p = 0, and the general case can be established 
by induction. 

LEMMA 2. 

ap (x) ~ logp+i Y~IT~ as x ' 

Proof. For p = 0 the result is obvious, and for p > 0 since 

lim supw^œ n-Kpin) = 0 

we obtain from a theorem due to Agnew [1, Theorem 1.1] that 

lim sup 
oo [1/lOg X-1] 

]>^ Xkirp(k) — ^ irP(k) 
Jc=0 k=0 

SO, 
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where \y] denotes the largest integer not exceeding y. Also, it is familiar that 

n 

(1) J2 Tp(k) ~ \ogv+in as n->co. 

The lemma now follows by Lemma 1. Notice in particular that 

(2) ap(e~1/x) ~ \ogp+iX as x —> oo . 

LEMMA 3. If Yln=oan = s(lp) and condition (Tp) holds, then J2n=o an con
verges. 

Proof. The proof is modelled on K wee's proof of the case p = 0 [7, Lemma 3]. 
Assume, without loss of generality, that s = 0, and let N be the integer such 
that N — 1 < ep+2 ^ N. Then for n > m è N 

tn \ogp+in — tm \ogp+1m = sm+1Tp(m + 1) + . . . + snTp(n). 

Let e be an arbitrary positive number. By condition (Tp) there are numbers 

M = M(e) ^ N and Ô = <5(e) > 0 

such that: if n > m ^ M and \ogp+2n — logp+2w ^ 8, then sn — sm ^ — e and 
hence 

n n 

0m — e) S TTpO) ^ /«logp+itt - ^logp+im ^ (sn + e) ^ *>(&); 

and 
L AOgp+lW J L / k=m+l J 

L lOgp+iW J L / fc=m+l J Ogp+ltn J L / fc=m+l 

Keeping e fixed and letting w > m —» oo subject to 

è<5 ^ logp+2^ - logp+2w ^ <5, 
we get 

lim sup sm S e and lim inf sw ^ — e ; 

since 4 —> 0, 

\ogp+m 
and 

[log^/jC , x,(*)] ~ i ^ f 5 i ^ 
i 

(logP+iw/logp+iw — 1) 

It follows that lim^^^ sre = 0. 

= 0(1). 
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LEMMA 4. If 0 < d < 1 and if g(x) is a real valued function, continuous on 
each of the intervals [0, d), [d, 1], which tends to a finite limit as x —> d~, and 
if sn ^ 0 and sn —» s(Lp), then 

1 °° 
l i m ; T 7 ^ ^ ^(wK*wg(t f n ) = 5 • g ( l ) . 

Proof. By Lemmas 1 and 2, we have, for c ^ 0, 

lim — r r S I T * ( » W -xcn = lim - ^ - r - r 7 - ^ r ] C ^ K x ( c + 1 ) n 

= 5 lim p y 

v logp+iÇl — x c + 1 ) - 1 

= ^ lim , x - j r= r -
*->i- logp+i(l — x) 

= s. 

T h u s the lemma holds for g(x) = xc, and the full result follows by an a rgument 
similar to t h a t used by Ishiguro [6, L e m m a 2]. 

L E M M A 5. If sn —» s(Lp) and sn ^ — Af, /feen sw —> s( / p ) . 

Proof. T h e proof is similar to Ishiguro's proof of the case p = 0 
[6, Theorem 2]. Le t 

(x) = ( 0 for 0 g x < 1/e, 
\l/x for 1/e ^ x ^ 1, 

so t h a t g ( l ) = 1 and £(xn) = 0 if n > l / l o g ( l / x ) . Hence, by L e m m a 4, 

lim —7-r X **(») fan + M) = s + M. 
x^l- Gp\X) »^l/(log(l/x)) 

Pu t t i ng x = e~1/n, we get, by (1) and (2), 

i n 1 n 

lim , _1/n, X) **(*)fa* + AT) = lim : £ *>(*)** + M = 5 + M. 
tt->oo VvK0 ) k=0 w^oo A O g p + 1 ^ k=0 

L E M M A 6. If for H a positive constant an ^ —Hirp+i(n) for n ^ eP+i, then 
the condition (Tp) is satisfied. 

Proof. There is a positive number H such t h a t 

ak ^ —Hirp+i(k) (k ^ ep+i)y 

so t h a t for n > m ^ ep+i, 

77. n 

s n - sm = X) a * = ~ # X) ir*+i(*) ~ - ^ ( l o g p + 2 n - l o g e r a ) . 
A;=ra+1 7fc=m+l 

Hence, lim inf (sn — sm) ^ 0 when n > m —> oo and logp+2w — logp+2m —> 0, 
and condition (Tp) is satisfied. 

https://doi.org/10.4153/CJM-1973-095-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-095-x


A TAUBERIAN THEOREM 901 

LEMMA 7. Let $ be an increasing continuous non-negative function in [0, oo ) 
such that $(u) —-> oo and $(u) — $(u — 1) —> 0 as u —> co , and let 

oo 

*•(#) = 2 ^ cn(x)snfor x > 0. 

Suppose that the following conditions are satisfied: 
(i) (a) 4,6*0 ^ 0 (x > 0), 

(b) cn(x)-^0 as x —> oo , 
(c) 2SLoC»(*) = 1 (x > 0); 

(ii) (a) X^Lo £»(*) —> 0 w&ew x > ikf -» oo awd $(x) — $(Af) —» oo ; 
(b) T,n=M cn(x)($(n) — $(M)) -» 0 wAew i f > x —> oo and 

$(M) — $(x) —» oo ; 
(iii) lim inf (s(t) — s(u)) ^ 0 when t > u —> co and $(£) — $(w) —> 0, 

w/jere 5(0 = 5n /or n ^ t < n + 1; 
(iv) r(x) is bounded for x > x0. 
77ze?z 5W 2s bounded. 

Kwee [7], using a result due to Vijayaraghavan (see [4, Theorem 238]), has 
proved this lemma with the additional condition 

00 

2 cn(%) —> 0 when M > x —» 00 and $(Af) — $(x) —» 00. 

It has been pointed out that in fact this condition is redundant (see 
[8, Chapter II, Theorem 9]). 

3. Proof of the Theorem. The proof is based on Kwee's proof [7] of the 
case p = 0. Let 

$(«) = (logp+2u for u ^ ep+2, 
\u/ep+2 for 0 ^ u < ep+2j 

and, for x > 0, let 
1 00 00 

r(x) = —/ -l/xx 2 Trp{n)sne~nlx = ^ c„ (*)$„, 

where 

Clearly <i>(̂ ) is a strictly increasing non-negative continuous function which 
tends to infinity as u tends to infinity, and by Lemma 1, <£>(w) — $(u — 1) —» 0 
as u —» 00 . 

We now show that the other conditions of Lemma 7 are satisfied. Since, 
by (2), 

(3) 0 ^ c ( * ) ^ - ^ L ~ j ^ : ( 0 < * - o o ) , 
ap{e ) logp+iX 

we obtain (i) (a) and (i) (b); (i) (c) holds by definition of ap(e~1/x). Now 
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using (1) and (3), and letting x > M —> oo subject to hgp+2X — logp+2Af —» GO , 
(ii) (a) follows from 

^ 7TP (» logy +iikT 

w=o logp+ix logp+ix 

For (ii) (b), we will show that J^=M cn(x)<j)(n) —> 0 when M > x —-> oo, 
which is more than required by condition (ii) (b). Since ^ ( ^ logp+2/ is a 
decreasing function of t for / ^ ep+2 we have, for Af ^ epf 2, 

CO OO 

0 ^ X) cn(x)$(n) ~ [logp+ix]-1 X ^~w/:r7rp(w) logp+2n 
n=M n=M 

CO 

^ [\ogj)+1x)-\v(M) logp+iMj2 e-n,x 

~ [logp+ix]~1X7r2,(ikf) logp+2ikT 

< MPogp+iM]"1^ (M) logp+2M -> 0 (M > x —» oo). 

Condition (iii) is implied by condition (Tp) of the theorem. 
Since sn —> s(Lp), we have 

1 °° 
limr(x) = lim —TT^^L irp(n)snt

n = 5, 

and hence condition (iv) is satisfied. 
We have thus shown all the conditions of Lemma 7 are satisfied and it follows 

that sn is bounded. Hence, by Lemma 5, sn —» s(lp) and so, by Lemma 3, XX=i Q>n 

converges. 
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