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Summary

Natural resources such as soil and water are essential to agriculture, especially in arid and semi-
arid rain-fed areas, yet the impacts of managing these crucial natural resources on farm
technical efficiency are little known. Using data from 400 households with 1031 plots, we
examined the impacts of soil and water conservation measures (SWCMs) on the technical
efficiency of farmers in the semi-arid Bundelkhand (central India). We estimated stochastic
production frontiers, considering potential self-selection bias stemming from both observable
and unobservable factors in the adoption of SWCMs at the farm level. The farm technical
efficiency for adopters of SWCMs ranged from 0.68 to 0.72, and that for non-adopters ranged
from 0.52 to 0.65, depending on how biases were controlled for. As the average efficiency is
consistently higher for adopter farmers than the control group, promoting SWCMs could help
to increase input use efficiency, especially in resource-deprived rain-fed systems in the semi-
arid tropics.

Introduction

Degradation of agriculturally productive land has become a pressing challenge to securing rural
livelihoods across the world due to its detrimental effects on food production and agro-
ecological stability (Gupta 2019). Approximately 20% of cropland worldwide is degraded
(Malav et al. 2022). In India, land degradation accounts for c. 29% of the total geographical area
of the country (GoI 2016a), and the problem is more severe in arid and semi-arid regions (Kosoe
et al. 2020). Recognizing the urgent need for land management to ensure global food security,
the United Nations General Assembly focused on attaining land degradation neutrality (LDN)
as a Sustainable Development Goal by 2030. India has also joined the Bonn Challenge and aims
to restore 26 Mha of degraded land by 2030 under the United Nations Convention to Combat
Desertification (UNCCD) framework (Singh & Tewari 2021).

Soil and water erosion has emerged as one of the critical causes of impaired quality of land,
impinging on the agricultural production and socio-economic status of farmers. Soil erosion is
responsible for a third of total degraded land in USA, and in Europe, China and India the figures
are 17%, 30% and 45%, respectively (Singh et al. 2020). Furthermore, c. 56% of the global
degraded land area is affected by water erosion; in India, this affects 68% of the total land area
(Bhattacharyya et al. 2015).

Soil and water conservation measures (SWCMs) may be instrumental to restoring land
quality and thus safeguarding the interests of rural households by increasing farm productivity
and stabilizing yield, particularly in semi-arid regions, where land resource degradation is
relentless (Palanisami et al. 2009, Pathak 2020). The commonly recommended SWCMs for
these areas include contour bunding (constructing embankments or bunds along the contour
lines of the land), graded bunding (constructing bunds with a specific slope), compartment
bunding (dividing a piece of land into compartments using bunds), ridges and furrows, tied
ridging (creating ridges and furrows in such a way that the soil is anchored or tied to reduce
erosion), contour cultivation, set-furrow cultivation (creating furrows or rows in a planned
manner to optimize water conservation and soil fertility), grass and tree stripping on bunds,
agroforestry, orchard plantation and rejuvenation of ponds (Vittal et al. 2004, Mishra et al.
2018). These limit the top-soil loss, improve water retention capacity of soil and increase
groundwater availability (Stocking & Murnaghan 2001, Singha 2017).

That adoption of SWCMs could help to restore land quality and improve farm productivity
and income, as demonstrated in studies conducted in, for example, Ethiopia, Latin America, the
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Middle East, sub-Saharan Africa, northern Ghana and China
(Barron et al. 2009, Chen et al. 2013, Nkegbe & Shankar 2014,
Yaebiyo et al. 2015). Few studies have investigated the impacts of
SWCMs on farm income in India (Datta 2015, Singha 2017, Kumar
et al. 2020). Studies on the impacts of SWCMs on farm-specific
technical efficiency (TE) – a measure of resource optimization at
the farm level – in the Indian context to date are scarce. Mondal
et al. (2012), using a stochastic production frontier (SPF) model,
made an explicit attempt at this by comparing farm-specific TEs in
watersheds (treated areas with resource conservation practices)
and control (untreated) areas in the Bundelkhand region of the
Indian state of Madhya Pradesh. However, they made a simple
comparison of TE estimates from two sets of samples (treated and
control), which may have led to biased results because of the
potential endogeneity issue associated with the farmers’ adoption
decisions (Bravo-Ureta et al. 2012, Morais et al. 2021). The
adoption decision of farmers is usually influenced by observable
factors (e.g., farm and producer characteristics, such as household
size, income, schooling and experience) and unobservable factors
(e.g., farmer’s managerial capacity). Failing to account for these
characteristics tends to bias estimates of the impacts of SWCMs on
the TE of farmers (Villano et al. 2015).

It is crucial to measure and evaluate the performance of farms
in terms of their efficiency in using agricultural inputs if
sustainable farming systems are to be implemented. Estimating
TE can highlight the significance of practices such as modifying
farmmanagement (e.g., education and training programmes) and
farm structure during the implementation stage of natural
resource-based projects, with the aim of enhancing farm
productivity levels.

A robust methodology to assess the impacts of SWCMs is
lacking, and there is therefore a dearth of precise empirical
estimates of the impacts of SWCMs on the TE of farms, especially
those situated in arid and semi-arid regions. The primary objective
of this paper is to address this gap in the Bundelkhand region, a
typical semi-arid tropical region of central India grappling with
profound natural resource degradation risks.We provide empirical
evidence of the impacts on the rain-fed farms located there by
comparing the impacts of SWCMs on the TE of adopter (treated)
and non-adopter (control) farmers. We apply an econometric
framework that addresses selectivity biases arising from observed
and unobserved factors, and by allowing for selectivity bias we can
also assess the factors influencing the adoption of SWCMs by
farmers in the region.

Material and methods

Study area

This study was conducted in the Lalitpur district (latitudes 24°11’–
25°14’ N and longitudes 78°10’–79°0’ E) of the Bundelkhand
region of central India (Fig. S1). Of the total district area, c. 19% is
degraded land, and c. 52% of the total degraded land is agricultural.
Most of the population in the district is dependent on crop/
livestock-based activities (GoI 2016b).

The prevalent undulating topography, hard rock geology, low
soil fertility, scarce groundwater resources along with poor and
erratic rainfall lead to frequent droughts and crop failure in the
region (Garg et al. 2020, Singh et al. 2023). Farmers mainly
cultivate crops such as groundnut, black gram, sesame and millet
during the kharif (monsoon) and wheat, chickpea, barley, mustard
and lentils during the rabi (October–February) season.

Three villages, namely Birdha, Purakhurd and Jhabar, in the
Talbehat block of Lalitpur district were designated as treated
villages, as all of the soil and water conservation activities were
concentrated within their physical boundaries. Three adjacent
villages, namely Gundera, Gebra and Viharipura, were chosen as
control villages, which did not receive any soil- or water-based
interventions but shared similarities with the treated villages in
terms of agro-climatic conditions, infrastructure and socio-
economic status.

Soil and water conservation measures in the study area

As a part of a project to double farmers’ income (KISAN MITrA)
funded by the government of Uttar Pradesh State (India), various
types of SWCMs were started in the study area in 2017 by the
ICRISAT Development Center (IDC; Hyderabad) in a consortium
with ICAR – Central Agroforestry Research Institute (CAFRI;
Jhansi), ICAR – Indian Grassland and Fodder Research Institute
(IGFRI; Jhansi) and a non-governmental organization (NGO)
partner, Upman Mahila Sansthan.

Details of the SWCMs in the project villages are given in
Table S1. As developing surface water and groundwater resources
is crucial to enhancing farm productivity in rain-fed areas, a
significant proportion of the total project expenditure was
allocated for harvesting surface water through deepening and
widening of the drainage network and the construction of water-
harvesting structures such as farm ponds and havelis (traditional
rainwater-harvesting tank systems to store runoff generated from
the catchment during the monsoon and used for multiple
purposes), which were present in almost every village in
Bundelkhand (Meter et al. 2016, Garg et al. 2020, Pathak et al.
2020). All of these off-farm activities were being used for
conserving soil and ensuring supplemental irrigation to nearby
fields during dry periods.

Conceptual framework

The two primary methodologies employed in measuring farm TE
are SPF analysis and data envelope analysis (DEA; Bravo-Ureta
et al. 2012, Wang et al. 2013, Choudhary et al. 2022). The DEA
method is sensitive to outliers due to its reliance on the assumption
of there being no sampling errors (Diagne et al. 2013), and its
applicability in agricultural studies, where output is particularly
susceptible to random errors, is constrained (Koirala et al. 2016).
We therefore opted for the SPF approach to assess the TE of
farmers, and the model was specified as in Equation 1:

Yi ¼ f Xi; dið Þ þ "i (1)

where Yi is the output variable for the ith farmer, Xi denotes the
input variables and the adoption of SWCMs is encapsulated by the
dummy variable d (1 = adopters, 0 = non-adopters). The error
term ϵi is delineated as the disparity between the stochastic error
term (vi) (v ~ N(0, σv2)) and a positive one-sided component (ui)
designed to account for the impact of inefficiency in the production
process.

Several observed and unobserved factors exert influence on
farmers’ adoption decisions, introducing self-selection bias in the
case of SWCMs. Consequently, the dummy variable di, signifying
the technology adoption status of the farmers, is endogenously
determined (Ma et al. 2018). Therefore, the sample selection
equation for the adoption decision of farmers was formulated as in
Equation 2:
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d�i ¼ αiWi þ ei (2)

where di* serves as a latent variable denoting a farmer’s inclination
towards adopting SWCMs; it signifies the adoption status, with
di taking a value of 1 for adopters and 0 for non-adopters.
Wi encompasses exogenous variables that impact the adoption
decision of the farmer. The coefficient α represents unknown
parameters, and ei represents the error term.

Selectivity bias correction

The propensity score matching (PSM) technique was employed to
pair farmers from treated and control villages based on observed
characteristics. The predicted probability of farmers adopting
SWCMs, known as the propensity score, was generated by
estimating Equation 2 through a binary-choice probit model. To
ensure a balanced comparison between groups was achieved, a
balancing test was conducted to confirm that farmers from treated
and control villages were perfectly matched, indicating no
systematic differences in observed characteristics such as age,
education and landholdings. In order to address selectivity biases
arising from unobserved factors such as attitude to risk, managerial
ability and motivation of farmers within a SPF framework, we
adopted Greene’s (2010) model, which is superior to Heckman’s
self-selection specification for linear regression models (Bravo-
Ureta et al. 2012, Ma et al. 2018). The error structure in Greene’s
(2010) model assumes correlation between the error term in the
selection equation (ϵi) and the noise (vi) in the stochastic frontier
model. Mathematically, the error structures of Greene’s (2010)
model can be expressed as in Equation 3:

ui ¼ σuUij j ¼ σu Uij j; Ui � N 0; 1½ �

vi ¼ σvVi ; Vi � N 0; 1½ �

"i; við Þ � N2 0; 1ð Þ; 1; ρσv; σ2vð Þ½ � (3)

where ρ represents the selectivity correction term, and a
statistically significant coefficient for ρwould indicate the presence
of selectivity bias arising from unobservable factors. U is a non-
negative term accounting for technical inefficiency, V is a
symmetric error term, σ is the standard deviation and N is the
normal distribution function.

Sampling procedure and data collection

Given that the matching technique employed in this study
necessitates a larger number of observations from control units,
ideally in a ratio of c. 1:2 (Datta 2015), data were collected from 150
farm households from the treated villages and 250 households
from the control villages. Stratification of household heads was
conducted based on land size categories within each village, and the
probability proportional to size method was applied to select
sample households from each village. Respondent household heads
were then chosen using a random sampling technique.

The survey schedule comprehensively gathered information on
various socio-economic parameters, including the age and
education status of household members, the farming experience
of the household head and the landholdings of the household. The
crop farming data encompassed details on the area and production
of each crop cultivated during the kharif and rabi seasons for the
agricultural year 2021–2022. Additionally, the survey delved into
the variable costs associated with diverse input categories such as

human labour, machine labour, seeds, fertilizers and pesticides on
a crop-by-crop basis.

Empirical techniques

We employed both PSM and the selectivity bias-corrected SPF
model of Greene (2010) to control for biases arising from both
observed and unobserved factors. Within PSM, we used kernel-
based matching (KBM) with a bandwidth of 0.01 due to its
reported effectiveness at minimizing biases (Ma et al. 2018). The
application of KBM resulted in a total of 336matched observations,
comprising 150 farmers from the treated villages and 186 farmers
from the control villages.

To evaluate the efficacy of the matching process, we conducted
t-tests both before and after matching, as outlined by Leuven and
Sianesi (2003). These tests were employed to assess the null
hypothesis that the means of observed characteristics for
beneficiaries and non-beneficiaries are equal. Utilizing the
propensity scores, we estimated the selectivity correction term
(ρ) and incorporated it into the SPF framework, following the
approach of Abdulai and Abdulai (2017). In the estimation of the
production frontier, we compared both the Cobb–Douglas and
translog functional forms using the likelihood ratio (LR) test. Based
on the test results, we specified the Cobb–Douglas function as in
Equation 4:

ln Yið Þ ¼ β0 þ
X

4
i¼1

βi ln Xi þ #idi þ "i (4)

In the specified model, the dependent variable ln(Yi) represents the
log transformation of the total gross revenue (in INR) from the
considered crop. The independent variable ln(Xi) is the log-
transformed value of inputs, aggregated into four major categories,
namely expenditures on labour, machinery, seeds and agro-
chemicals (fertilizers and pesticides). The parameter βi denotes the
production elasticity of the ith input and was estimated. ϑ is the
coefficient parameter of d (adoption status) and ϵ is the error term.

To compare the goodness of fit between two nested models,
where one model is a constrained version of the other, we
performed the LR test on both the unmatched and matched
samples to examine potential technology disparities between the
treated and control groups. Specifically, the restricted model
assumes no disparities in technology adoption between the treated
and control groups, whereas the unrestricted model permits
differences in technology adoption (Equation 5).

LR ¼ � 2 lnLP � lnLT þ lnLCð Þð Þ (5)

where lnLP, lnLT and lnLC represent the log-likelihood function
values estimated from the pooled sample, treated subsample and
control subsample, respectively. If the null hypothesis indicating
no differences in technology adoption between the treated and
control groups was rejected based on the LR test, this implied that
the parameters for the production frontiers differed between
treated and control farmers. This rejection would suggest
significant disparities in how technology is adopted and utilized
by the treated and control groups; technology-related factors were
influencing production outcomes differently for the two groups.
The SPF for beneficiaries and non-beneficiaries was then estimated
as in Equations 6 and 7:
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Beneficiaries : ln Yið Þ ¼ θ0 þ
X

4
i¼1

θi ln Xi þ 1� ’ð Þδiρi þ ei

(6)

Non� beneficiaries ln Yið Þ ¼ θ0 þ
X

4
i¼1

θi lnXi þ 1� ’ð Þτiρi
þ !i

(7)

where ln(Yi) and ln(Xi) are the logarithmic forms of gross revenue
and input parameters, respectively, ρi is a correction term, ϕ0 and
θ0 are constant terms, δi, θi and τi are parameters to be estimated
and ϕ is a selectivity correction term that takes a value of 0 when
unobserved selection bias issue is considered and 1 if this not
considered in estimating the SPF. Both e and ω are error terms of
their respective equations.

Results

Descriptive results and propensity score matching analysis

The variables used in both the sample selection equation and
production frontier model, along with their descriptive statistics
for the overall sample, are presented in Table 1.

Prior to matching, there were discernible systematic differences
in observed characteristics between households from treated and
control villages (Table 2). Notably, household heads and female
members from treated villages tended to exhibit higher education
levels and to possess larger operational holdings than those from
control villages. Nevertheless, following the implementation of the
matching procedure, none of the mean differences in the selected
variables between the treated and control groups were statistically
significant, indicating that the matching process had effectively
generated a balanced counterfactual (Table 2).

This attests to the fulfilment of the balancing test requirement
(Rosenbaum & Rubin 1983), as evident in the considerable drop of
pseudo-R2 from c. 31% to 9% before matching (Table S2).
Furthermore, the non-significant p-values of the LR test and low
mean standard bias (<20%) suggest that the propensity score

specification achieved balance in the distribution of covariates
between the treated and control groups (Table S2).

The propensity score distributions for both the treated group
and the control group before and after matching (Fig. 1) suggest
that the control group was nowmore similar to the treated group in
terms of the confounding factors, suggesting that the assumption
of common support – critical for PSM – is firmly upheld.

The test of means revealed that the total gross revenue for
adopters was significantly higher than that of non-adopters
(Table S3). It is evident that treated households on average were
spending more on inputs than their control counterparts
(Table S3).

Production frontier results

Table 3 presents the maximum likelihood estimates of the
conventional and selectivity-corrected SPF models on the PSM
subsample. Separate frontiers were estimated for the treated and
control groups due to the rejection of the null hypothesis for
technical homogeneity between beneficiaries and non-beneficiar-
ies by the LR test (Equation 5; 79.36, p= 0.000).

All of the estimated production elasticity coefficients were
positive, as expected, althoughwith varyingmagnitudes and levels of
significance. The coefficient for the variable representing SWCMs
for the overall sample under the conventional SPF model indicates
that a SWCM on a farm had a direct and significant influence on
total revenue from crop output. Amongst all of the estimated
models, crop acreage and SWCM had the highest elasticity values.

The statistical significance of the error variance (σ2) in all cases
indicates the goodness of fit of the model. The gamma coefficients
(γ) were also significantly different from 0 at the 1% level,
suggesting that farm technical inefficiency (TI) was indeed
stochastic and that inefficiency caused variability in the observed
output. This implies that there are unobserved factors affecting TI
and that the estimated models accounted for this stochastic nature
of TI.

The coefficients of the correction term (ρ) in the sample
selection SPFmodels were statistically different from 0 for both the

Table 1. Summary statistics of the selected variables (USD = INR 83.02 as of 11 January 2024).

Variable Parameter Description Mean (SD)

Variables used in the sample selection equation
AGE α1 Age of household head (years) 47.32 (12.53)
EXP HH α2 Experience of household head in agriculture (years) 27.37 (12.36)
HH SIZE α3 Number of members in household 6.09 (2.39)
ADULT α4 Number of adult members in household 3.97 (1.76)
EDUC HH α5 Level of education of the household head (years) 4.26 (4.06)
Dependency
Ratio

α6 (Household members <15 and >65 years age)/household size 0.36 (0.07)

TLAND α7 Total farmland (ha) 4.69 (2.63)
Off-farm α8 Off-farm income (1 = yes, 0 otherwise) 0.58 (0.17)
Per_Degradation α9 Perception index of degradation on plots (highest = 3) 2.17 (0.39)
Training α10 Percentage of households exposed to extension services, training and demonstration visits

during 2018–2019
69.28 (5.72)

Credit α11 Farmer has access to farm credit (1 = yes, 0 otherwise) 0.78 (0.07)
Variables used in the production frontier model
TLC β1 Total labour cost (INR/ha) 6877.87 (4606.58)
TMC β2 Total machinery cost (INR/ha) 3932.11 (1842.92)
TSC β3 Total seed cost (INR/ha) 2950.50 (2701.99)
TAC β4 Total agrochemicals cost (INR/ha) 2178.98 (1829.99)
CLAND β5 Total land under crops (ha) 3.19 (1.97)
SWCM β6 Dummy (1 if the household is from treated villages) –
TR Total revenue (INR/ha) 35 219.20 (12 374.07)
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treated and control groups, confirming the presence of selection
bias due to unobservable factors. Consequently, using conven-
tional SPF models to estimate frontier efficiency would be
inconsistent and would yield biased results for TE scores (Ma
et al. 2018). Therefore, in our case, separate SPF models were
justified for the treated and control groups within the sample
selection framework.

The null hypothesis of simultaneous 0 values for all coefficients
in both the matched and unmatched samples was rejected
(Table 4), indicating that the estimated coefficients of these probit
models could be compared. The lower number of statistically
significant parameters in the matched sample was justified, as PSM
reduced the variability between the treated and control groups,
which can affect the significance of estimates. Off-farm income and
training were important policy variables that positively influenced
the economic efficiency of farmers (Table 4). A unit percentage
increase in off-farm income and training increased the efficiency
by 0.16% and 0.18%, respectively.

Table 5 presents the mean TE scores for all of the estimated
models in Table 3, along with TE estimates from the conventional
SPF for the unmatched sample. The average TE for the treated
group ranged from 68% to 72% and was higher than that of the
control group in all cases (Table 5). The statistical differences in
means indicate the existence of an efficiency gap between
beneficiaries and non-beneficiaries of the soil and water
conservation treatment. However, this gap is expected to narrow

after implementing the matching technique, as PSM controls for
selection bias arising from observable variables. Furthermore, the
sample selection SPF for the matched sample further decreased the
TE gap.

Discussion

We found that SWCMs exhibited a direct and significant impact
on total crop revenue, emphasizing the importance of these
activities for enhancing agricultural outcomes. Area under crop
and SWCMs emerged as key determinants of farm TE, having the
highest elasticity values amongst all of the variables. Crop acreage
exerted a direct influence on total revenue from agriculture by
leveraging economies of scale. A larger cultivated area allowed
farmers to spread fixed costs over a greater production volume,
resulting in a lower per-unit cost of production and leading to
increased efficiency (Duffy 2009). Economies of scale in agriculture
are also realized through enhanced utilization of resources and
streamlined operations on large farms (FAO 2017). Farmers
adopting SWCMs are better positioned to optimize resource use,
reduce production costs and ultimately increase total revenue by
harnessing the intrinsic value of a healthier and more resilient
agro-ecosystem (Choudhary et al. 2022). The return to scale,
obtained by summing up all of the partial production elasticities,
was consistently less than 1 for all of the SPF models. This suggests
that upward adjustments in input usage by farmers will not result

Table 2. Mean difference of the variables used in the sample selection equation.

Unmatched sample Matched sample

Variable Treated Control Difference Treated Control Difference

AGE 46.63 47.73 1.11 46.63 47.68 –1.05
EXP HH 26.83 27.69 0.86 26.83 27.95 –1.12
HH SIZE 6.19 6.03 –0.16 6.19 6.38 –0.19
ADULT 3.85 4.03 0.18 3.85 3.99 –0.14
EDUC HH 5.27 3.65 –1.62*** 5.27 4.71 0.56
FEMALE EDUC 2.58 1.48 –1.10*** 2.58 2.38 0.20
FEMALE RATIO 28.29 27.26 –1.04 28.29 27.50 0.80
TLAND 4.66 3.91 –0.75*** 4.66 4.00 0.66
Sample size 150 250 – 150 186 –

Note: For variable descriptions, see Table 1.
***p< 0.01.

Figure 1. Propensity score distributions of treated and control farmers for (a) the unmatched sample and (b) the matched sample.
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in a proportionate increase in output, which is consistent with
prior studies on small andmarginal farmers in less favourable areas
(e.g., Chavas et al. 2005, Solís et al. 2007).

Off-farm income helps to alleviate the liquidity constraints
faced by farmers and promotes efficient production. Contact with
extension and training agencies facilitates knowledge and
experience exchange, highlights suitable technologies and assists
in efficient resource utilization, all of which play decisive roles in

improving efficiency. These findings are consistent with the results
of Choudhary et al. (2022).

We show that the adoption of SWCMs significantly enhances
the TE of farmers. The integration of SWCMs, coupled with access
to valuable information through training and extension support,
plays a crucial role in managing soil erosion, boosting groundwater
levels to support irrigation and ultimately enhancing overall
productivity. The empirical estimates of farm TE further

Table 3. Parameter estimates of the stochastic production frontier (SPF) model for the matched sample. Figures in parentheses are standard errors:
� ¼ σ2u= σ2u þ σ2vð Þ.

Variables Conventional SPF Sample selection SPF

Overall Treated Control Treated Control

Constant 10.617 (0.402)*** 10.742 (0.438)*** 9.223 (0.518)*** 10.515 (0.609)*** 9.381 (0.526)***
TLC (ln) 0.069 (0.025)*** 0.039 (0.024) 0.059 (0.041) 0.084 (0.063) 0.043 (0.061)
TMC (ln) 0.126 (0.061)** 0.141 (0.049)*** 0.093 (0.053) 0.119 (0.037)*** 0.099 (0.043)***
TSC (ln) 0.191 (0.023)*** 0.172 (0.059)*** 0.213 (0.041)*** 0.138 (0.014)*** 0.207 (0.027)***
TAC (ln) 0.106 (0.021)*** 0.138 (0.042)*** 0.083 (0.043)* 0.125 (0.027)*** 0.097 (0.028)***
CLAND (ln) 0.238 (0.079)*** 0.213 (0.128) 0.284 (0.117)*** 0.242 (0.126)*** 0.281 (0.148)
SWCM 0.206 (0.043)** – – – –
RTS 0.730 0.703 0.732 0.708 0.727
Log likelihood –259.38 –141.15 –221.73 –317.39 –267.47
σ2 1.114 (0.025)*** 0.935 (0.006)*** 1.263 (0.040)*** 1.128 (0.016)*** 1.318 (0.004)***
σ(u) 0.5681 (0.033)*** 0.501 (0.014)*** 0.639 (0.027)*** 0.571 (0.017) 0.619 (0.081)
σ(v) 0.261 (0.034)*** 0.235 (0.028)*** 0.192 (0.029)*** 0.148 (0.013)*** 0.161 (0.043)***
γ 3.512 (0.049)*** 2.812 (0.071)*** 3.107 (0.065)*** 2.912 (0.161)*** 3.114 (0.038)***
ρ – – – −0.481 (0.037)*** −0.396 (0.196)**
Sample size 336 150 250 150 186

Note: For variable descriptions, see Table 1.
*p< 0.10, **p < 0.05, ***p< 0.01.

Table 4. Parameter estimates of the probit sample selection equation.

Parameter Unmatched Sample Matched Sample

Coefficient Standard error Coefficient Standard error

α1 –0.058** 0.028 –0.003 0.017
α2 0.026*** 0.003 0.043 0.036
α3 0.067*** 0.017 0.021 0.019
α4 0.236*** 0.075 0.145 0.083
α5 0.146 0.081 0.079 0.046
α6 0.046 0.045 0.038 0.027
α7 0.029*** 0.008 0.017 0.011
α8 0.074*** 0.025 0.169** 0.034
α9 0.014*** 0.005 0.011*** 0.001
α10 0.124*** 0.003 0.189*** 0.004
α11 0.034 0.025 0.019 0.014
Constant 1.426*** 0.441 1.162*** 0.739
Log likelihood –246.36 –189.48
χ2 36.52*** 19.76**
Sample size 400 336

Note: For parameter descriptions, see Table 1.
**p< 0.05, ***p< 0.01.

Table 5. Mean technical efficiency scores for the stochastic production frontier (SPF) models (standard errors are in parentheses).

SPF models Overall Treated Control Differencea

Conventional SPF model with unmatched sample 0.55 (0.14) 0.68 (0.17) 0.52 (0.12) 0.16***
Conventional SPF model with matched sample 0.62 (0.19) 0.68 (0.17) 0.58 (0.23) 0.10***
Sample selection SPF model with matched sample – 0.72 (0.13) 0.65 (0.04) 0.07***

***p< 0.01.
aA t-test is used to determine whether the technical efficiency means are significantly different between the treated and control groups.
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demonstrate that without appropriate corrections for selection
bias, farmTE tends to be underestimated, and the performance gap
between treated farmers and their control counterparts would be
overestimated. These findings are consistent with Mayen et al.
(2010), Bravo-Ureta et al. (2012) and Ma et al. (2018), who also
reported bias correction on TE differentials between treated and
control groups. Achieving precision in farm TE estimates is
essential for identifying areas of improvement and implementing
evidence-based policies that address specific challenges within the
agricultural sector. By controlling biases, policymakers can ensure
a more reliable foundation for decision-making, fostering
sustainable agricultural practices, resource optimization and
overall economic development in the farming industry.
Moreover, the econometric analyses of the impacts of SWCMs
on farm efficiency could inform effective adoption and successful
implementation of such measures in semi-arid tropical areas
elsewhere, where natural resource management is encouraged as
an adaptation strategy for climate change.

Conclusion

By employing robust methodologies to address biases from
observed and unobserved variables, we meticulously examine
the farm TE in soil and water conservation activities in the
Bundelkhand region of central India. Utilizing PSM and
selectivity-corrected models for stochastic frontiers, the findings
consistently indicate higher TE amongst beneficiary farmers, even
after accounting for selectivity bias. The TE improvement for both
treated and control farmers, coupled with a narrowed gap in post-
bias correction, underscores the positive impacts of development
projects on farm efficiency. Notably, a positive correlation is
observed between TE and off-farm income, training and extension
outreach. Prioritizing efforts to enhance off-farm income through
government initiatives and strengthening extension services and
training facilities emerge as crucial for optimizing farm production
in this semi-arid region. Integrating participatory models such as
farmer field schools and supporting local research institute
demonstrations can play a pivotal role in advancing sustainable
agriculture practices, and this should also be the case worldwide.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0376892924000146.
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