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Optimal unstirred state of a passive scalar
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Given a passive tracer distribution f (x, y), what is the simplest unstirred pattern that
may be reached under incompressible advection? This question is partially motivated by
recent studies of three-dimensional (3-D) magnetic reconnection, in which the patterns
of a topological invariant called the field line helicity greatly simplify until reaching a
relaxed state. We test two approaches: a variational method with minimal constraints, and
a magnetic relaxation scheme where the velocity is determined explicitly by the pattern of
f . Both methods achieve similar convergence for simple test cases. However, the magnetic
relaxation method guarantees a monotonic decrease in the Dirichlet seminorm of f , and
is numerically more robust. We therefore apply the latter method to two complex mixed
patterns modelled on the field line helicity of 3-D magnetic braids. The unstirring separates
f into a small number of large-scale regions determined by the initial topology, which is
well preserved during the computation. Interestingly, the velocity field is found to have
the same large-scale topology as f . Similarity to the simplification found empirically in
3-D magnetic reconnection simulations supports the idea that advection is an important
principle for field line helicity evolution.

Key words: variational methods, topological fluid dynamics

1. Introduction

Non-diffusive transport occurs when there is a conserved quantity that can be rearranged
in the system but not destroyed (Del-Castillo-Negrete 2010). One practical example is
the transport of potential vorticity in the quasi-geostrophic model, which has a wide
range of applications in oceanography and atmospheric science (Nigam & DeWeaver
2015). When the horizontal scales are dominant, this system is analogously described by
two-dimensional (2-D) incompressible Euler equations in the vorticity form, for which the
conserved vertical component of the vorticity behaves as a passive scalar (Majda & Tabak
1996).
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We ask a simple question: Given some highly complex two-dimensional distribution of
a scalar field f0(x, y), what is the simplest distribution fT(x, y) that can be obtained by
transport with an arbitrary velocity field? We quantify ‘simplest’ by the desire to minimise
gradients in fT , so that we seek to minimise a measure like the Dirichlet seminorm, given
by the surface integral

U( fT) =
∫
(∇fT ,∇fT) dS. (1.1)

Arnold & Khesin (1998) investigated possible minimal states under U( fT), but for complex
initial conditions f0, the minimal state fT is not immediately known and must be computed
numerically.

Perhaps surprisingly, our particular motivation comes from an attempt to understand
the turbulent relaxation of 3-D magnetic fields in plasmas. In these 3-D resistive
magnetohydrodynamic (MHD) simulations (Yeates, Hornig & Wilmot-Smith 2010; Pontin
et al. 2011, 2016), an initially braided magnetic field is allowed to evolve without a driving
force until it reaches a quasi-steady state. The relaxed state is usually simple, and made
of nearly uniformly twisted flux tubes. For example, the T = 2 model from Yeates et al.
(2010) is shown in figure 1(a–c). To appreciate the relevance of 2-D advection, note that
the topological structure of braided magnetic fields may be completely characterised by a
single invariant number attached to each magnetic field line. This is called the field line
helicity (FLH) (Yeates & Hornig 2013, 2014), denoted by

A(C) =
∫
C

A · dl, (1.2)

where A(x, y, z, t) is a suitable vector potential for the magnetic field B = ∇ × A and
C is a magnetic field line (Russell et al. 2015; Yeates & Page 2018). The FLH has the
physical interpretation of the net magnetic flux around the given field line (Yeates &
Hornig 2011), and in braided magnetic fields may be viewed as a 2-D scalar distribution
on any cross-sectional surface. It is observed in these simulations that magnetic relaxation
simplifies the cross-sectional FLH pattern as if it is being ‘unstirred’ by an effective flow
w; see figure 1(d–f ) for the case of the T = 2 model.

The evolution equation for the FLH, which was obtained by Russell et al. (2015), throws
further light on the role of advection. First, note that the electric field E can be decomposed
into perpendicular and parallel components as E = −w × B + ∇ψ , where w is known as
a field line velocity, ψ(x, y, t) = ∫ x

x− η j · dl is a voltage that gives the parallel electric
field, η is the electrical resistivity and j = ∇ × B is the current. From the analysis shown
in Russell et al. (2015) (see also Yeates 2020), the evolution equation of the FLH is then

∂A
∂t

+ (w · ∇)A = [w · A − ψ]+− , (1.3)

where the superscript + and subscript − signify evaluation at the points where the field
line exits and enters the domain (cf. (12) in Russell et al. 2015). In practice, ψ can be
chosen so that the terms on the right-hand side are non-zero only at one boundary, and
if the FLH is inspected on that boundary, then (1.3) reduces to a 2-D problem governing
A(x, y, t). The left-hand side of (1.3) signifies advection of the FLH with the field line
flow w (generally distinct from the plasma motion), which mathematically establishes the
relevance of advection to this problem. Advection is not the only relevant process, due
to (non-diffusive) terms on the right-hand side of (1.3). However, Russell et al. (2015)
showed that the ψ terms are relatively small in complex magnetic fields, and that the w · A
terms integrate to (nearly) zero over myriad small regions containing opposite polarity
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Figure 1. Magnetic reconnection of an initially braided magnetic field (T = 2 model; for more details see
Yeates et al. 2010). (a–c) Blue and orange magnetic field lines are traced from distinct disks on the bottom
plane at z = −24; these field lines are highly mixed at t = 0, but magnetic reconnection separates them into
a pair of separate oppositely twisted flux tubes. Red/blue volumes in (a,b) represent the iso-surfaces of the
positive/negative current density. (d–f ) The corresponding FLH on the boundary cross-section z = 24. Time is
measured in units of Alfvén time.

(paired increases and decreases of w · A). This leaves the advection term as the only
non-negligible term of a fundamentally global nature, consistent with the intuition drawn
from simulations that 2-D advection is the process from which to begin understanding
the observed simplification of the FLH during 3-D turbulent magnetic relaxation. It is
therefore of interest to determine the simplest contour pattern of A consistent with a given
initial distribution, so as to test whether passive advection is playing a controlling role in
the turbulent relaxation, and help identify any significant effects attributable to the other
terms in (1.3).

The actual computation to search for the minimal ‘unstirred’ state is independent of
the motivating magnetic braid problem, and has more in common with the well-studied
problem of transport and mixing of passive tracers in engineering (Warhaft 2000). Usually
the objective is to find a velocity field that mixes f0 as efficiently as possible and maximises
U( fT), but the inverse problem is essentially analogous owing to the reversibility of the
advection equation. To better quantify the homogenisation of the passive tracer, several
other norms have also been used in the literature, including a class of ‘mix-norms’
(Mathew, Mezić & Petzold 2005; Thiffeault 2012). This type of norm has recently been
applied to the optimisation problems of mixing in 2-D plane Poiseuille flow (Foures,
Caulfield & Schmid 2014) and stratified plane Poiseuille flow (Marcotte & Caulfield
2018) using variational methods. From this perspective, our unstirring problem may be
considered as an interesting test of the state-of-the-art of the methods used in this branch
of fluid dynamics.
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In this paper, the constraint that the final state must be reachable by passive advection
makes the minimisation a non-trivial computational task. We consider two approaches
to identify suitable unstirring velocity fields u. One is a variational approach where we
test both the Dirichlet seminorm and a mix-norm as measures of the homogenisation.
Inspiration for how to implement the constraint of passive advection comes from work with
adjoint-based methods both in pipe flow (identifying the seed to chaos; Kerswell, Pringle
& Willis 2014) and in kinematic dynamo theory (finding the magnetic instability; Willis
2012). The variational approach allows in principle for any possible (incompressible)
velocity field, although we might expect that the obtained velocity field will in practice
be constrained by the structure of f0 in some way. Studies of mixing have found that the
topological structure of the final, mixed, state can be related directly to the properties of
the velocity field that produced it. For example, in Ottino (1990), the islands or holes
among chaotic fluid regions are linked to periodic points created by a sequence of stirring
motions.

The second approach to unstirring that we consider is rather different, in that the velocity
field is prescribed in a pre-defined way based on the pattern of f . It is chosen to guarantee
simplification of the pattern at any instant, using the magnetic relaxation method (Moffatt
1990; Linardatos 1993; Moffatt & Dormy 2019). This works because the magnetic field
lines in a 2-D ideal-MHD flow are material lines. These field lines are contours of a
scalar flux function, which is analogous to the scalar field f in our unstirring problem,
and a corresponding MHD solution is used for the velocity field u. Thus it is no longer
a variational calculation but a single well-defined evolution from f0 to fT , during which
the Dirichlet seminorm – which is analogous to the magnetic energy – is minimised. The
resulting patterns of fT have been studied by Linardatos (1993) for simple f0 distributions
with either a single maximum or a pair of local maxima with a saddle point between. The
system minimises the length of the contours while preserving the area enclosed, making
them circular where this is not prevented by other considerations such as the domain
boundary. An interesting feature is that the saddle point collapses to a thin current sheet
in the relaxed state, and Moffatt & Dormy (2019) conjecture that every saddle point in f0
will collapse to a finite-length current sheet in fT (see also Arnold & Khesin 1998). This
suggests what kind of patterns might be expected in the unstirred state.

The remainder of this paper is organised as follows. We define the problem in § 2,
including the equations solved in both the variational (§ 2.1) and the magnetic relaxation
(§ 2.2) approaches. The numerical methods are described in § 2.3, before comparing them
for simple test cases in § 2.4. In § 3, we present the results for more complex initial
distributions using the magnetic relaxation method. A summary and discussion of the
results are presented in § 4.

2. Problem set-up and methods

Given a density function f (x, y, t) in a domain D ∈ R
2, with initial distribution f (x, y, 0) =

f0(x, y), we define a time-dependent energy by the Dirichlet seminorm of f ,

E(t) = 〈|∇f |2〉, (2.1)

where 〈· · · 〉 = ∫∫
D · · · dS is the surface integral over D. For the final state fT = f (x, y, T),

this energy is (1.1). We search for the minimum-energy state fT reachable under the
advection equation,

∂f
∂t

+ u · ∇f = 0, (2.2)
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in a fixed time interval [0, T]. The velocity field is constrained to be incompressible,

∇ · u = 0, (2.3)

so that the area inside any closed material curve is conserved. We assume f obeys
periodic boundary conditions or ∇f |∂D = 0. Having formally defined the problem in this
way, we can derive structural constraints on the final state, fT . For example, consider a
small deformation which under (2.2) and (2.3) takes the form δf = −ξ · ∇f where ξ =
∇ × ζ(x, y)ẑ = ∇ζ(x, y)× ẑ and ξ · n|∂D = 0. Using either type of boundary condition
mentioned above,

1
2δE =

∫
D

∇f · ∇δf dS = −
∫

D
∇f · ∇(ξ · ∇f ) dS

= −
∮
∂D
(ξ · ∇f )∇f · n dS +

∫
D
(ξ · ∇f )∇2f dS =

∫
D

∇ζ · (ẑ × ∇f )∇2f dS

=
∮
∂D
ζ∇2f (ẑ × ∇f ) · n dS −

∫
D
ζ∇ ·

(
(ẑ × ∇f )∇2f

)
dS

= −
∫

D
ζ ẑ · ∇f × ∇(∇2f ) dS. (2.4)

A state fT that minimises E(t) under (2.2) and (2.3) must therefore satisfy

∇fT × ∇
(
∇2fT

)
= 0, (2.5)

so that ∇2fT is constant along the contours of fT . In addition, the structure of fT is related
to that of f0 because the evolution preserves the topology of the contours of f . Specifically,
for f (x, y) = fc (where fc /= 0), the enclosed area is invariant, which we can represent with
a signature function (Moffatt 1990; Arnold & Khesin 1998),

S( fc) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫∫
f (x,y)≥ fc

dS if fc > 0,

∫∫
f (x,y)≤ fc

dS if fc < 0.
(2.6)

We now give two complementary approaches to finding a suitable u: (i) the variational
method imposes fewer restrictions on u but has no guarantee of convergence; (ii)
the magnetic relaxation method uses a specific MHD solution for u to guarantee
monotonically decreasing E(t), as we will show in § 2.2. It turns out that both methods can
find the expected minimal energy state of fT for simple initial states f0, but for complicated
cases only the second method is numerically stable. We will describe each method in more
detail below.

2.1. Variational method
Given the initial distribution f0 = f (x, y, 0) of a passive scalar field f , the variational
method searches for the optimal velocity field u with respect to an augmented Lagrangian
L. In fluid mixing and transport studies, the Lagrangian is commonly defined by a measure
of homogenisation and other constraints, such as the Navier–Stokes equation and the
normalisation condition of a seed perturbation field. Although it would be intuitive to
use the Dirichlet seminorm to quantify homogenisation, a ‘mix-norm’ 〈|∇−1fT |2〉 has been
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shown to be numerically robust and efficient (Thiffeault 2012; Marcotte & Caulfield 2018).
We therefore define a generic Lagrangian applicable to two measures of homogenisation
as

L = 〈|∇θ fT |2〉 + θ〈Π∇ · u〉 + θ

∫ T

0

〈
Γ

(
∂f
∂t

+ u · ∇f
)〉

dt, (2.7)

where θ = 1 represents the Dirichlet seminorm and θ = −1 represents a mix-norm, and
fT = f (x, y, T) is the final unstirred state. When f becomes less mixed, the Dirichlet
seminorm goes down while this mix-norm goes up. Thus, we minimise the Lagrangian
when θ = 1, and maximise the Lagrangian when θ = −1. Meanwhile, Γ (x, y, t) and
Π(x, y) are Lagrange multipliers which impose constraints (2.2) and (2.3) respectively,
and u(x, y) is a time-independent velocity field. We can also formulate (2.7) with a general
time-dependent field ũ(x, y, t), in which case we also need a time-dependent Lagrange
multiplier Π̃(x, y, t). With time-dependent ũ, we found the numerical error tends to
accumulate at each time step, so in this paper we present the variational method results
only with a steady velocity field. Unlike similar models where the flow scale u∗ carries
important physical meaning (Pringle, Willis & Kerswell 2012; Chen, Herreman & Jackson
2015), in our case, the velocity field can always be rescaled with arbitrary time and length
scales as u∗ ∼ L∗/t∗, while still giving the same final state of f . Since we are mostly
interested in the spatial distribution of u, there is then no need to impose the normalisation
of u as a separate constraint in (2.7).

Each of the variational derivatives of L has to vanish separately for the optimal solution,
since

δL =
〈
δL
δfT
δfT

〉
+

〈
δL
δΠ

δΠ

〉
+

〈
δL
δu

· δu
〉
+

∫ T

0

〈
δΓ

δL
δΓ

〉
dt +

∫ T

0

〈
δf
δL
δf

〉
dt. (2.8)

These variational derivatives are derived explicitly in appendix A. Note that, in (2.8), we
have already taken into account that the boundary terms vanish when u and f either both
satisfy periodic boundary conditions or satisfy u · n = 0 and ∇f |∂D = 0 respectively. By
setting all variational derivatives to zero except that of the unknown optimal velocity field
u, we obtain a coupled system of Euler–Lagrange equations. We solve these iteratively
by adapting the adjoint method (see the review by Luchini & Bottaro (2014)), which
has typically been applied to the full Navier–Stokes equations rather than the advection
equation alone. Specifically, we iterate the following four steps until the variational
derivative δL/δu also converges to zero:

(i) Calculate f forward in time from t = 0 to t = T using the advection equation (2.2),
which is equivalent to solving δL/δΓ = 0 for t : 0 → T .

(ii) Apply the terminal condition δL/δfT = 0, so that

ΓT = 2θ∇2θ fT , (2.9)

where the usual Laplacian operator corresponds to θ = 1 (minimising the Dirichlet
seminorm), and the inverse Laplacian operator corresponds to θ = −1 (maximising
one type of mix-norm).

(iii) Calculate Γ backward in time from t = T to t = 0 using the adjoint advection
equation

∂Γ

∂t
+ u · ∇Γ = 0, (2.10)

which is equivalent to enforcing δL/δf = 0 with the incompressible condition (2.3)
for t : T → 0.
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(iv) Finally, the update scheme for u is

u := u − θΔu
δL
δu
, (2.11)

where Δu > 0 is a step size that we adjust and the gradient is given by

δL
δu

= θ

(
−∇Π +

∫ T

0
Γ (∇f ) dt

)
. (2.12)

This method will in principle reach a local minimum with consecutive steps;
however, the convergence is not guaranteed should the search algorithm (iv) become
trapped or encounter numerical instabilities.

Section 2.3.1 provides numerical details of both cases (θ = ±1), while convergence of
all methods is compared in § 2.4.

2.2. Magnetic relaxation method
The magnetic relaxation method relates the reduction of the Dirichlet seminorm E(t) to
the relaxation process of a 2-D magnetic field in ideal MHD (see § 1 for the background
information). To achieve this, we define a fictitious magnetic field B(x, y, t) on D whose
field lines at any time are the contours of the function f , given by

B = ∇ × f (x, y, t)ẑ. (2.13)

The energy of this magnetic field is proportional to our energy measure (2.1), since

〈B2〉 = 〈|∇f |2〉 = E(t). (2.14)

Any momentum equation that lowers the magnetic energy ideally, i.e. preserving the
isocontours of f , can therefore be used to reduce E(t). We choose to use a magnetic
relaxation scheme of the form

μ∇2u + (∇ × B)× B − ∇P = 0, (2.15)

which describes the balance of fluid viscosity, Lorentz force and pressure. The first term
in (2.15) represents viscous dissipation where μ is an artificial viscosity; the second term
represents the Lorentz force by taking the current as j = ∇ × B. We include the pressure
P(x, y, t) here so that u(x, y, t) may be chosen to satisfy the incompressibility condition
(2.3). Using a viscous term rather than a frictional term μu (like, for example, Linardatos
1993) avoids some limitations of the frictional approach such as the inability of B = 0
points to move (Low 2013). We also set μ = 1 so that the typical evolution time is
of the order t∗ ∼ (l∗/f ∗)2, which is estimated by substituting (2.13) into (2.15). As the
homogenisation of f increases, the length scale l∗ increases so the relaxation is expected
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to slow down proportionally. If we rewrite the Lorentz force term in (2.15) as

(∇ × B)× B = −∇2f ẑ × (∇f × ẑ) = −∇2f (∇f ), (2.16)

we see clearly that both ∇2f and the gradient ∇f (including its magnitude and direction)
play a role in determining the velocity field u. By writing

u = ∇ × ψ(x, y, t)ẑ (2.17)

and taking the curl of (2.15), we can calculate u at a given time by solving the biharmonic
equation

μ∇4ψ = ẑ · ∇f × ∇(∇2f ). (2.18)

For this approach, we either assume periodic boundary conditions for ψ or set

ψ |∂D = ∇2ψ |∂D = 0, (2.19)

which implies the velocity field satisfies not quite the no-slip condition but rather

u · n|∂D = 0, ∇ × u|∂D = 0. (2.20a,b)

Combining (2.2), (2.15), (2.16) and (2.20a,b), we find

1
2
∂E(t)
∂t

=
∫

D
∇f · ∂(∇f )

∂t
dS = −

∫
D

∇2f
∂f
∂t

dS +
∮
∂D

∂f
∂t
(∇f · n) dl

=
∫

D
∇2f (u · ∇f ) dS =

∫
D

u · (μ∇2u) dS −
∫

D
u · ∇P dS

= −μ
∫

D
|∇ × u|2 dS +

∮
∂D

u · [(∇ × u)× n] dl −
∮
∂D

P(u · n) dl

= −μ
∫

D
|∇ × u|2 dS ≤ 0. (2.21)

This shows that the Dirichlet seminorm E(t) will decrease monotonically, in direct
proportion to the enstrophy

ε(t) = 〈|∇ × u|2〉. (2.22)

If it converges then the final minimal energy state will obey ∇ × u = 0. Since this
corresponds to ∇2ψ ≡ 0, (2.18) shows that such a state fT must satisfy

∇fT × ∇(∇2fT) = 0, (2.23)

which is consistent with (2.5). A similar derivation that shows (2.23) but with the frictional
term in place of the viscous term is discussed in Moffatt & Dormy (2019). Note that the
boundary conditions (2.19) also imply that u = 0 for such a state; alternatively, periodic
boundaries would allow for a uniform velocity.

2.3. Numerical schemes
In this section we discuss the numerical implementation of the two methods mentioned
above.
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2.3.1. Variational method
As described in § 2.1, we iterate four steps to search for the optimal velocity field u: (i)
compute forward advection for f , (ii) apply the terminal condition, (iii) compute backward
(adjoint) advection for Γ and (iv) update u. Steps (i) and (iii) are discretised in space
using a pseudo-spectral method, which is also used to evaluate the derivative in the
terminal condition (ii). We also tested with a finite difference method to solve the advection
equation, but the accuracy of the unstirred state fT was not sufficient for this iterative
process, i.e. any small deviation in fT will feed back into the update step (iv). The time
discretisation uses a fourth-order Runge–Kutta method, with adaptive time step chosen as

�t = as d
max{|ui,j|} , (2.24)

where as = 0.1 is a safety factor, d = �x = �y is the grid spacing and ui,j are the values
of u at the grid points.

To compute the variational derivative δL/δu in step (iv) as given by (2.12), we first
compute h = ∫ T

0 (∇f ) Γ dt using the trapezium rule and then use this to findΠ (and hence
∇Π ) by solving the Poisson problem

∇2Π = ∇ · h, (2.25)

using a Fourier finite difference method since the pseudo-spectral method is sensitive to
numerical noise. We then use the Barzilai–Borwein method to update u. The step size in
(2.11) is set to

Δu =

〈
gn ·

(
δL
δun

− δL
δun−1

)〉
〈∣∣∣∣ δLδun

− δL
δun−1

∣∣∣∣
2
〉 , (2.26)

where gn denotes the update un+1 = un + gn for n > 2, computed from (2.12). We apply
the standard 2/3 rule for de-aliasing when calulcating u. The initial velocity is u = 0.
The first two iterations have fixed Δu = 10−3. The time step �t is halved (effectively
as := 0.5as) when the energy increases En(T) > En−1(T) to reduce numerical errors. We
stop the iteration when 〈g2〉 < 10−6.

2.3.2. Magnetic relaxation method
To implement this method, we discretise the advection equation (2.2) in time with the
velocity u at each time step derived from f by solving the biharmonic equation (2.18) for
the streamfunction ψ in (2.17).

The advection equation is solved using LeVeque’s scheme as described in Durran (2010)
with the Van Leer flux limiter. This method limits the gradient of neighbouring grid points
to computationally realistic values, so it is particularly suitable for dealing with complex
patterns in f . The time step is adaptive as in (2.24). To solve the biharmonic equation, we
first use a second-order finite difference method to calculate the right-hand side, denoted
by g. Next we solve two Poisson problems to get the solution for ψ using a Fourier finite
difference method,

∇2ψ = g̃, ∇2g̃ = g. (2.27a,b)

The algorithm that calculates ψ uses either Fourier transforms with periodic boundary
conditions, or sine transforms for the boundary condition (2.19). The velocity field u

911 A30-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1154


L. Chen, A.R. Yeates and A.J.B. Russell

0.5

–0.5

–0.5 0.5

0.5

–0.5

0

0

0

0.5

–0.5

–0.5 0.5

0.5

–0.5

0

0

0

0.5

–0.5

–0.5 0.5

0.5

–0.5

0

0

0

x x x

y

α = 0.1 α = 0.3 α = 0.5(a) (b) (c)

Figure 2. Initial conditions f0 with increasing complexity from (a) to (c), where α is the initial shearing
strength.

is calculated from ψ using a fourth-order finite difference method. Then we solve the
advection equation for the next time step. We compute E(t) at each time step to monitor
the homogenisation of f . We stop the computation if E(t) is found to increase.

2.4. Test cases
To facilitate the discussion of the two different approaches, from now on we will refer to
the variational method as VM and the magnetic relaxation method as MR. In this section
we compare the performance of the methods for simple test examples, which have periodic
boundary conditions.

Our tests consider how well the methods unstir a sheared pattern towards a known
minimal energy state. We create an initial state

f0 = sin[π(2x − α cos(kyπy))] sin(πy), (2.28)

where ky is the wavenumber of the shearing and α is a parameter controlling the amount
of shearing. The expected minimal energy state is

fT = sin (2πx) sin (πy) , (2.29)

with energy E(T) = 5π2, which would be reached by advection with a steady velocity
field

ũ = (− cos(kyπy), 0), (2.30)

precisely at time α = T . For MR, T is determined by the evolution. In the examples
presented, we choose ky = 7 so as to create non-trivial patterns. We then vary the value of
α to see if the algorithms can still identify u when f0 contains sharper gradients. Figure 2
shows the three initial conditions tested with increasing complexity from left to right.
For VM in particular, we also test the two formulations which use either the Dirichlet
seminorm (θ = 1) or a mix-norm (θ = −1).

The results for VM (θ = ±1) and MR are shown in table 1. For the simplest f0 with α =
0.1, VM (θ = 1) is not numerically stable: it does not converge with increased resolution
N. In contrast, both VM (θ = −1) and MR are able to reach the expected minimal energy
with the correct final state. In figure 3, we plot a few snapshots to show how fT evolves
iteratively with VM (θ = −1) and how f0 has been unstirred with MR. For VM (θ = −1),
the shape of the recovered velocity field – as shown in figure 4 – is quite close to the
expected solution, but differs in that (i) it picks up some y component, and (ii) ux is not
evolving much with each iteration in places where f is zero (e.g. along the line y = 0).
These differences do not change the energy substantially, and indeed multiple velocity
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VM

α 0.1 0.1 0.1 0.1 0.3 0.5
Norm type θ 1 1 −1 −1 −1 −1
N 512 1024 512 1024 512 512
Iterations 9 4a 22 22 24 15a

Total time steps 3412 978a 8636 17 200 157 096 74 932a

E(0) 73.194 73.208 73.194 73.208 263.897 644.887
E(T) 51.873 53.209a 49.301 49.308 53.907 75.926a

�E(T) 2.525 3.861 −0.047 −0.040 4.559 26.578

MR

α 0.1 0.1 0.3 0.3 0.5 0.5
N 512 1024 512 1024 512 1024
T 0.67 0.43 1.77 1.01 2.48 1.64
Total time steps 231 424 886 1560 1641 3034
E(0) 73.194 73.208 263.897 264.076 644.887 645.706
E(T) 49.509 49.631 49.677 50.126 49.789 50.267
�E(T) 0.161 0.283 0.329 0.778 0.441 0.919

Table 1. Test results: T is the total time for advection; �E(T) is the difference between the obtained E(T) and
the expected minimal energy 5π2 ≈ 49.348.

aBest value achieved without meeting the convergence criterion.

fields can reach the same fT pattern, e.g. two velocity fields that differ in their component
along the f contours will have the same u · ∇f .

In terms of performance, for α = 0.1, VM (θ = −1) finds a slightly more accurate
fT than MR, but the error is also more localised; see figure 5. The largest error of fT
occurs where the expected value f̃T ≈ 0. VM is unable to prevent these discontinuities
from forming. This proves to be problematic when the initial distribution contains sharper
gradients, because the pseudo-spectral method that was needed for accuracy is unable to
resolve the corresponding variational derivative δL/δu for the update. For α ≥ 0.3, VM
(θ = −1) struggles to converge while MR finds a minimal energy that is close (< 2 %)
to the expected value. Note that for α = 0.3 case, even though the test run with VM
(θ = −1) has met the convergence criterion, the number of time steps taken is huge and the
minimal energy is not as low as we expect. In addition, with VM the optimisation may go
in the wrong direction before it eventually converges, whereas with MR the convergence
is gradual and smooth in terms of the change in E(t) – see figure 6 for comparison. The
MR method remains numerically stable for all α.

Based on the test runs, we find these two approaches each have their own benefits
and limitations for finding the optimal fT . On the one hand, VM (θ = −1) gives a more
accurate result for simple initial conditions, but the lack of diffusion or any additional
‘smoothing’ constraint in the Lagrangian means little control over the sharpness of the
gradient ∇f in regions where the expected value f̃T ≈ 0. On the other hand, MR has
restricted the form of the velocity field so the search for the minimal energy state is
not necessarily optimal, but the obtained unstirred state fT appears to be smoother for
simple initial conditions, as seen in figure 5; also it is the most robust method for
general initial conditions. Therefore, we move on to analyse complex patterns using
only MR.
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Figure 3. Selected snapshots during unstirring. Test run with N = 512 and α = 0.1. (a,c,e) VM (θ = −1).
(b,d, f ) MR. Both exhibit a reduction in shearing.

3. Results for complex patterns

Our original motivation for this study was to determine the unstirred pattern of a passive
scalar field, namely the FLH, extracted on 2-D cross-sections of 3-D simulations. For this
purpose, we consider two initial FLH patterns from the T = 2 case and T = 3 case studied
by Yeates et al. (2010). The number T refers to the topological degree of the underlying
(3-D) field line mapping, which is preserved in the 3-D simulation and controls the number
of large-scale regions of the FLH in the relaxed state (see also Yeates, Russell & Hornig
2015) – effectively the number of large-scale magnetic flux tubes in the relaxed state.
Specific details of the construction are given in appendix B. We show contour plots of the
initial states f0 in the top row of figure 7. These initial patterns are much more complicated
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Figure 4. Comparison between obtained velocity field u using VM (θ = −1) and the expected velocity field
ũ. Test run with N = 512 and α = 0.1. (a) The expected x-component of the velocity field ũx = − cos(7πy)
(the expected y-component is ũy = 0). (b) Pseudo-colour plot of ux. (c) Pseudo-colour plot of uy.
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and α = 0.1. (a) VM (θ = −1); the actual maximal magnitude of error for VM is 0.014. (b) MR, where the
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Figure 6. Comparison of convergence. (a) VM (θ = −1), showing E(T) as a function of the iteration number.
For α = 0.1 the results with N = 512, 1024 coincide, and for α = 0.5 the lowest E(T) did not meet the
convergence criterion and hence is excluded from this plot. (b) MR, showing E(t) as a function of time step
during the relaxation.

than our test cases in § 2.4. Due to regions with negative and positive values being in close
proximity to one another, they are numerically challenging to unstir since the gradient of f
can be large. The computational domain D : [−20, 20] × [−20, 20] is chosen to be large
enough so that ∇f ≈ 0 at the boundary. The grid resolution is 6000 × 6000.
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Figure 7. Pseudo-colour plot of f with four contour levels: (a–d) T = 2 case; (e–h) T = 3 case. (a,e) Initial
density distribution f0 = A(x, y, 0); (b, f ) contours of f become less elongated; (c, g) positive and negative
regions separate; (d,h) the final unstirred scalar field fT . Animated versions of the two columns of this figure
are available in the supplementary material; see movies 1 and 2 available at https://doi.org/10.1017/jfm.2020.
1154.
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Figure 8. The obtained velocity field u at different times superimposed on isocontours of f . Two contours
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by dashed blue lines. As time goes by, u gradually unfolds f . An animated version of this figure is available in
the supplementary material; see movies 3 and 4. (a–c) The T = 2 case. (d–f ) The T = 3 case.

We apply MR and show the time evolution of f for both cases by the subsequent rows
in figure 7. Only the central region [−6, 6] × [−6, 6] is shown for clarity. We see that
the MR algorithm successfully separates the tangled patterns of f0 into separate regions,
and multiple extrema exist within each region. The density distribution around each local
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Figure 11. Comparison of histograms of f0 and fT sampled from the same plot windows as in figure 7.

extremum becomes more circular in the relaxed solution. For the T = 3 case, the saddle
point between the two negative regions in f has collapsed to a line, also seen for simpler
initial conditions by Linardatos (1993).

When it comes to large-scale features, for the T = 2 case, there are two main regions in
the final state fT (positive and negative), but for the T = 3 case, there are three regions (the
positive region is split into two disconnected parts). We see that T controls not only the
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number of regions in the FLH but also the final state fT in our MR calculations. This is a
direct consequence of preserving the topological structure of f0. The fact that an analogous
evolution happens in the 3-D simulations of Yeates et al. (2010) supports the idea that the
FLH in the 3-D simulation evolves primarily by simplifying under advection (Russell et al.
2015; Pontin et al. 2016). For the T = 2 case, we can also directly compare figures 1(d–f )
and 7.

During the unstirring, the velocity field u determined by the MR algorithm adapts to
the patterns of f at every time step. This is illustrated by the vector plots in figure 8 with
the contours of f in the background. The unstirring occurs mostly in regions where f is
‘folded’ and is less relevant around the edges of the domain. Interestingly, we observe that
u has the same topology as f , in the following sense. We can assign a topological degree
to u as the number of vortex centres (O-points) minus the number of stagnation points
(X-points). This number is observed to match the equivalent number computed from the
critical points of the scalar field f , which for these simulations is T .

Next we show some diagnostics of the MR process. The energy E(t) = 〈|∇f |2〉 and
the enstrophy ε(t) = 〈|∇ × u|2〉 as functions of time are shown in figure 9. In both test
cases, the energy converges to an asymptotic value. The enstrophy is expected to converge
towards zero from (2.21). Numerically we find a O(105)magnitude drop. Additionally, the
signature function S( fc) and the histogram of f values at each grid point for f0 and fT are
well conserved, shown in figures 10 and 11. For the signature function, the isocontours fc
are taken at 200 equally spaced points in the range [ fmin, fmax]. The histogram is sampled
in the same reduced domain as in figure 7. Together, these measures show that the topology
of f is well preserved during MR.

4. Conclusion

In this study, we sought to determine the simplest final state fT of a passive scalar field
that could be obtained by incompressible advection. Two types of method were tested: the
adjoint-based VM that either minimises the Dirichlet seminorm E(t) = 〈|∇f |2〉 directly
(parametrised by θ = 1), or maximises a mix-norm measured by 〈|∇−1f |2〉 (parametrised
by θ = −1); and the 2-D MR driven by a fictitious force −∇2f (∇f ), which guarantees a
monotonic decrease in E(t). VM has the theoretical advantage of imposing fewer a priori
restrictions on the unstirring velocity field, and VM (θ = −1) is numerically more stable
than VM (θ = 1). This is consistent with previous studies using mix-norms (Thiffeault
2012; Foures et al. 2014; Marcotte & Caulfield 2018). VM is also adaptable in ways that
MR is not: for example, if one were to consider a more restricted problem requiring that
the velocity field satisfies the Navier–Stokes equations. However, VM (θ = −1) becomes
computationally expensive, and struggles to converge when f0 gets complex. Hence, we
found MR to be the preferred method for general initial conditions, since it is numerically
more robust and scalable than VM.

Having identified our preferred method for complex initial conditions, we applied it
to the FLH patterns of 3-D magnetic braids. Our main objective in doing so was to
probe the governing principles of the 3-D simulations; specifically, could simplifying
the pattern of the FLH under passive advection determine the final magnetic field
produced by 3-D turbulent magnetic reconnection? The results in this paper agree with
the 3-D simulations, in that f separates into a small number of large-scale regions with
positive or negative FLH, with the same topological degree as the initial configuration
(cf. Yeates et al. 2015). This finding supports the idea that the dominant evolution of the
FLH, at least at large scales, is pure advection.
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An interesting difference between the optimal unstirred states found in this work and the
FLH distributions produced by 3-D magnetic reconnection is that the large-scale regions
produced by pure advection still contain topological substructure in the contours of f (for
example in figure 7d). There are several local maxima/minima within the main positive
and negative regions, because the topology of contours and critical points is preserved
under advection. Previously published 3-D magnetic reconnection simulations – like in
figure 1( f ) – have not shown this substructure in the final FLH (Yeates et al. 2010; Pontin
et al. 2016). The evolution equation (1.3) for the FLH derived by Russell et al. (2015)
contains other terms in addition to the advection term. In principle, these terms allow for
further simplification of the substructure. The w · A term is especially interesting from this
point of view, and our findings motivate and support future investigations of its role. At
the same time, it is also possible that this substructure is not seen in the 3-D simulations
because the numerically accessible resistivity causes it to diffuse.

A natural question that arises from this study is how the MR method could be
generalised to 3-D fluids. One idea is to choose the unstirring velocity to be a
volume-preserving mean curvature flow (Huisken 1987). Such a flow has already been
used to model the deformation of droplets (Thürey et al. 2010), though care would be
needed at singularities (Mayer 2001). By contrast, the VM method generalises naturally to
three dimensions, though its numerical implementation would be a significant challenge.

To conclude, our study shows that MR provides a powerful method for unstirring
a scalar field, even if the original scalar has nothing to do with magnetic fields. We
have shown that the method can work well for configurations much more complex than
the pioneering numerical studies of Linardatos (1993), while reproducing the expected
tendencies of contours to become ‘simpler’ and of saddle points to degenerate into Y-type
line singularities (Linardatos 1993; Arnold & Khesin 1998). The most obvious example
of the latter is between the negative regions at the end of the T = 3 simulation (figure 7).
The strength of MR lies in its prescription of a specific velocity field that is guaranteed to
efficiently unstir f , in the sense that the Dirichlet seminorm is monotonically decreasing.
While such a velocity field may be challenging to generate in real fluids, it could in
principle be imposed in a conducting fluid by appropriate control of the electric current
density. It could be used more readily as an unstirring method in computational studies.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1154.
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Appendix A. Variations of the Lagrangian

Here we show explicitly the variational derivatives of the Lagrangian L given by (2.7). We
assume either periodic boundary conditions on f and u, or ∇f |∂D = 0 and impermeable
boundary conditions on u (u · n|∂D = 0). For clarity, we take the case θ = 1. Firstly, to
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Optimal unstirred state of a passive scalar

derive the variations with respect to f and fT , we rewrite the Lagrangian as

L = −〈 fT∇2fT〉 +
∮
∂D

fT n · ∇fT dl + 〈Π∇ · u〉

−
∫ T

0

〈(
∂Γ

∂t
+ u · ∇Γ + Γ (∇ · u)

)
f
〉

dt + 〈Γ f 〉|T0 +
∫ T

0

∮
∂D
Γ (u · n)f dl dt

= −〈fT∇2fT〉 + 〈Π∇ · u〉 −
∫ T

0

〈(
∂Γ

∂t
+ (u · ∇)Γ + Γ (∇ · u)

)
f
〉

dt

+ 〈ΓT fT − Γ0f0〉, (A1)

where the contour integral along the boundary vanishes because of the boundary
conditions on f and u mentioned above. Similarly, since

−〈fT∇2δfT〉 = 〈∇fT · ∇δfT〉 −
∮
∂D

fT n · ∇δfT dl

= −〈∇2fTδfT〉 +
∮
∂D

∇fTn · ∇δfT dl −
∮
∂D

fTn · ∇δfT dl

= −〈δfT∇2fT〉, (A2)

the variational derivatives with respect to fT and f are
δL
δfT

= −2∇2fT + ΓT , (A3)

δL
δf

= −
(
∂Γ

∂t
+ (u · ∇)Γ + Γ (∇ · u)

)
. (A4)

To get the variation with respect to u, we need to rewrite the Lagrangian as follows:

L = 〈|∇fT |2〉 − 〈∇Π · u〉 +
∮
∂D
Π(n · u) dl +

∫ T

0

〈
Γ
∂f
∂t

+ Γ (u · ∇)f
〉

dt

= 〈|∇fT |2〉 − 〈∇Π · u〉 +
∫ T

0

〈
Γ
∂f
∂t

+ Γ (u · ∇)f
〉

dt. (A5)

The velocity field is steady so we can take it out of the integral, and then (A5) becomes

L = 〈|∇fT |2〉 − 〈∇Π · u〉 +
∫ T

0

〈
Γ
∂f
∂t

〉
dt +

〈
u ·

∫ T

0
(∇f ) Γ dt

〉
. (A6)

Hence, the variational derivative with respect to u is

δL
δu

= −∇Π +
∫ T

0
(∇f )Γ dt. (A7)

The two trivial variational derivatives give back the constraints we impose:
δL
δΠ

= ∇ · u, (A8)

δL
δΓ

= ∂f
∂t

+ (u · ∇)f . (A9)

The derivation for the mix-norm (θ = −1) is similar. If we write ∇2φ = fT , then φ =
∇−2fT , so we get ∇φ = ∇∇−2fT = ∇−1fT , as in Foures et al. (2014) and Marcotte &
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Caulfield (2018). The objective functional can then be rewritten as

〈|∇−1fT |2〉 = 〈|∇φ|2〉 = −〈φ∇2φ〉 +
∮
∂D
φ n · ∇φ dl = −〈(∇−2fT)fT〉, (A10)

where we assumed periodic boundary conditions for φ, and the variational derivatives for
fT and f are

δL
δfT

= −2∇−2fT − ΓT , (A11)

δL
δf

= ∂Γ

∂t
+ (u · ∇)Γ + Γ (∇ · u). (A12)

Appendix B. Initial patterns for § 3

Our initial f0 patterns are based on the T = 2 and T = 3 configurations simulated in three
dimensions by Yeates et al. (2010). Those initial configurations were braided magnetic
fields in a 3-D Cartesian domain with the general form

B0(x, y, z) = ẑ +
n∑

i=1

2ki√
2

[−( y − yi)x̂ + (x − xi)ŷ
]

× exp
[
−(x − xi)

2 + ( y − yi)
2

2
− (z − zi)

2

4

]
. (B1)

The case with topological degree T = 2, also called the E3 braid, has parameters n = 6,
ki = xi = [1,−1, 1,−1, 1,−1], yi = [0, 0, 0, 0, 0, 0] and zi = [−20,−12,−4, 4, 12, 20].
The case with topological degree T = 3 has parameters n = 8, ki = [1, 1,−1,−1, 1,
1,−1, −1], xi = 1.27[1,−1, 0, 0, 1,−1, 0, 0], yi = 1.27[0, 0, 1,−1, 0, 0, 1,−1] and zi =
[−18,−18,−6,−6, 6, 6, 18, 18].

We set our initial 2-D scalar field f0 to the FLH pattern of the corresponding magnetic
field, as defined in (1.2). Since each field line connects from the lower boundary z = −24
to the upper boundary z = 24, we can view A as a scalar function on any cross-section
– here, we take the lower boundary z = −24, and set f0(x, y) = A(x, y, 0). The resulting
patterns are shown in the top row of figure 7.
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