Microstructural Comparison of La-V-O Compounds prepared by Sol-Gel Acrylamide Polymerization and Solid State Reaction.

 $\underline{G.\ Herrera}^*$, E. Chavira ** , J. Jiménez-Mier * , A. Ordoñez † , E. Bucio * , L. Baños ** , J. Guzmán ** , E. Fregoso-Israel * O. Novelo ** ,

 $LaVO_4$ and $LaVO_3$ are lanthanum orthovanadates that belong to a group of compounds with interesting structural, electronic, magnetic and electrical properties. The crystal structure of $LaVO_4$ compound has been reported in two polymorphs, namely, tetragonal zircon-type (t- $LaVO_4$) isostructural to $ZrSiO_4$ compound and monoclinic monazite-type (m- $LaVO_4$). $LaVO_3$ compound has an orthorhombic distorted perovskite structure first found in $GdFeO_3$ compound. The purpose of this work is to compare the influence of sol-gel acrylamide polymerization synthesis on the crystal structure and microstructure in m- $LaVO_4$ and $LaVO_3$. These results were contrasted with the samples obtained by solid state reaction (SSR). The differential thermal analysis (DTA) for SGAP shows the formation of m- $LaVO_4$ occurs at 400 oC , in comparison with the sample prepared by SSR at 1400 oC [1].

Fig. 1 (a) shows the morphology and roughness obtained by atomic force microscopy (AFM). The image reveals needle shape particles (needles are made of metal-EDTA and polymer). This crystallization style depends of EDTA molar concentration and pH value. We use a solution of 1:1 vanadium-EDTA molar ratio and we adjusted the pH to 5.4 with NH_4OH . Because the fast acrylamide polymerization is generally in aqueous medium whose pH is close to neutral [2]. It has been reported that weak ligand such as EDTA adjusts the morphology and uniformity of crystals shape in the crystallization process. Also, Jia *et al.* [3] reported that the pH value ranged from 7-13 exhibited rods like morphology. The needle shape was maintained up to the formation of $LaVO_4$ compound. This result was confirmed by scanning electron microscopy (SEM) micrographs, see Fig. 1 (b). The $m-LaVO_4$ -SGAP reveals a homogeneous morphology with needle-shaped grains of 50 nm average size. The SSR present a broader size distribution in the micrometer range.

Both $m\text{-}LaVO_4$ samples were reduced into $LaVO_3$ using a Zr rod at 850 oC in vacuum. Fig. 2 (right) shows a homogeneous grain distribution with an average size of 745 nm for $LaVO_3$ -SGAP. $LaVO_3$ -SSR has an average size of 3.45 μm (Fig. 2, left). The stoichiometry of all compounds was confirmed by energy dispersive X-ray spectroscopy (EDX). X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) give crystal structures in agreement with those reported in the literature. An image from TEM study for $LaVO_3$ -SGAP is shown in Fig. 3. The morphology is in agreement with SEM results.

References

- [1] G. Herrera et al., J. Alloys Compd. (2009) in press.
- [2] A. Sin and P. Odier. Adv. Mater. 12, 9 (2000) 649.
- [3] C. Jia, et al., J. Phys. Chem. B 109 (2005) 3284.
- [4] Research supported by grants UNAM-PAPIIT IN109308; CONACYT U41007-F and 56764.

^{*}Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México, 70-543, 04510 México D. F., MEXICO. guillermo.herrera@nucleares.unam.mx

^{**}Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México, 70-360,04510 México D. F., MEXICO.

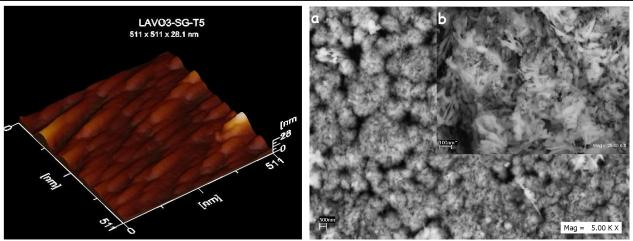


Fig. 1 (a) AFM micrograph obtained by AC mode of gel prepared by SGAP. The image size is 511 x 511 nm and clock speed of 666.70 μs . (b) SEM micrograph of $m\text{-}LaVO_4\text{-}SGPA$ at the end of synthesis at 400 $^{\circ}C$ during 12 hours in air.

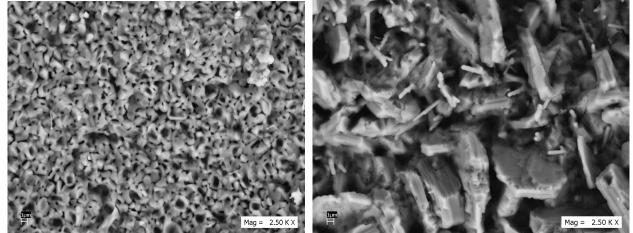


Fig. 2. Comparison of microstructure obtained by SEM on surface of $LaVO_3$ compound at the end of heat treatment at 850 ^{o}C during 15 days prepared by SGAP (right). SEM micrograph of surface of $LaVO_3$ compound into a pellet topology at 850 ^{o}C during 15 days prepared by SSR.

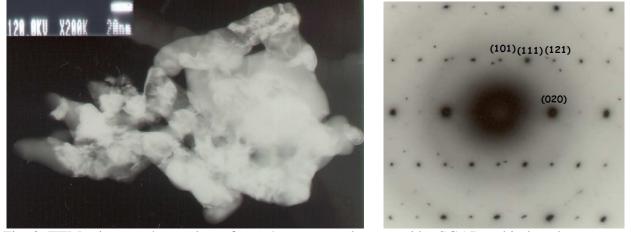


Fig. 3. TEM micrograph powders of $LaVO_3$ compound prepared by SGAP and indexed diffraction pattern of [101] zone axe.